ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mulassnqg GIF version

Theorem mulassnqg 7446
Description: Multiplication of positive fractions is associative. (Contributed by Jim Kingdon, 17-Sep-2019.)
Assertion
Ref Expression
mulassnqg ((𝐴Q𝐵Q𝐶Q) → ((𝐴 ·Q 𝐵) ·Q 𝐶) = (𝐴 ·Q (𝐵 ·Q 𝐶)))

Proof of Theorem mulassnqg
Dummy variables 𝑥 𝑦 𝑧 𝑤 𝑣 𝑢 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-nqqs 7410 . 2 Q = ((N × N) / ~Q )
2 mulpipqqs 7435 . 2 (((𝑥N𝑦N) ∧ (𝑧N𝑤N)) → ([⟨𝑥, 𝑦⟩] ~Q ·Q [⟨𝑧, 𝑤⟩] ~Q ) = [⟨(𝑥 ·N 𝑧), (𝑦 ·N 𝑤)⟩] ~Q )
3 mulpipqqs 7435 . 2 (((𝑧N𝑤N) ∧ (𝑣N𝑢N)) → ([⟨𝑧, 𝑤⟩] ~Q ·Q [⟨𝑣, 𝑢⟩] ~Q ) = [⟨(𝑧 ·N 𝑣), (𝑤 ·N 𝑢)⟩] ~Q )
4 mulpipqqs 7435 . 2 ((((𝑥 ·N 𝑧) ∈ N ∧ (𝑦 ·N 𝑤) ∈ N) ∧ (𝑣N𝑢N)) → ([⟨(𝑥 ·N 𝑧), (𝑦 ·N 𝑤)⟩] ~Q ·Q [⟨𝑣, 𝑢⟩] ~Q ) = [⟨((𝑥 ·N 𝑧) ·N 𝑣), ((𝑦 ·N 𝑤) ·N 𝑢)⟩] ~Q )
5 mulpipqqs 7435 . 2 (((𝑥N𝑦N) ∧ ((𝑧 ·N 𝑣) ∈ N ∧ (𝑤 ·N 𝑢) ∈ N)) → ([⟨𝑥, 𝑦⟩] ~Q ·Q [⟨(𝑧 ·N 𝑣), (𝑤 ·N 𝑢)⟩] ~Q ) = [⟨(𝑥 ·N (𝑧 ·N 𝑣)), (𝑦 ·N (𝑤 ·N 𝑢))⟩] ~Q )
6 mulclpi 7390 . . . 4 ((𝑥N𝑧N) → (𝑥 ·N 𝑧) ∈ N)
76ad2ant2r 509 . . 3 (((𝑥N𝑦N) ∧ (𝑧N𝑤N)) → (𝑥 ·N 𝑧) ∈ N)
8 mulclpi 7390 . . . 4 ((𝑦N𝑤N) → (𝑦 ·N 𝑤) ∈ N)
98ad2ant2l 508 . . 3 (((𝑥N𝑦N) ∧ (𝑧N𝑤N)) → (𝑦 ·N 𝑤) ∈ N)
107, 9jca 306 . 2 (((𝑥N𝑦N) ∧ (𝑧N𝑤N)) → ((𝑥 ·N 𝑧) ∈ N ∧ (𝑦 ·N 𝑤) ∈ N))
11 mulclpi 7390 . . . 4 ((𝑧N𝑣N) → (𝑧 ·N 𝑣) ∈ N)
1211ad2ant2r 509 . . 3 (((𝑧N𝑤N) ∧ (𝑣N𝑢N)) → (𝑧 ·N 𝑣) ∈ N)
13 mulclpi 7390 . . . 4 ((𝑤N𝑢N) → (𝑤 ·N 𝑢) ∈ N)
1413ad2ant2l 508 . . 3 (((𝑧N𝑤N) ∧ (𝑣N𝑢N)) → (𝑤 ·N 𝑢) ∈ N)
1512, 14jca 306 . 2 (((𝑧N𝑤N) ∧ (𝑣N𝑢N)) → ((𝑧 ·N 𝑣) ∈ N ∧ (𝑤 ·N 𝑢) ∈ N))
16 mulasspig 7394 . . . . 5 ((𝑥N𝑧N𝑣N) → ((𝑥 ·N 𝑧) ·N 𝑣) = (𝑥 ·N (𝑧 ·N 𝑣)))
17163adant1r 1233 . . . 4 (((𝑥N𝑦N) ∧ 𝑧N𝑣N) → ((𝑥 ·N 𝑧) ·N 𝑣) = (𝑥 ·N (𝑧 ·N 𝑣)))
18173adant2r 1235 . . 3 (((𝑥N𝑦N) ∧ (𝑧N𝑤N) ∧ 𝑣N) → ((𝑥 ·N 𝑧) ·N 𝑣) = (𝑥 ·N (𝑧 ·N 𝑣)))
19183adant3r 1237 . 2 (((𝑥N𝑦N) ∧ (𝑧N𝑤N) ∧ (𝑣N𝑢N)) → ((𝑥 ·N 𝑧) ·N 𝑣) = (𝑥 ·N (𝑧 ·N 𝑣)))
20 mulasspig 7394 . . . . 5 ((𝑦N𝑤N𝑢N) → ((𝑦 ·N 𝑤) ·N 𝑢) = (𝑦 ·N (𝑤 ·N 𝑢)))
21203adant1l 1232 . . . 4 (((𝑥N𝑦N) ∧ 𝑤N𝑢N) → ((𝑦 ·N 𝑤) ·N 𝑢) = (𝑦 ·N (𝑤 ·N 𝑢)))
22213adant2l 1234 . . 3 (((𝑥N𝑦N) ∧ (𝑧N𝑤N) ∧ 𝑢N) → ((𝑦 ·N 𝑤) ·N 𝑢) = (𝑦 ·N (𝑤 ·N 𝑢)))
23223adant3l 1236 . 2 (((𝑥N𝑦N) ∧ (𝑧N𝑤N) ∧ (𝑣N𝑢N)) → ((𝑦 ·N 𝑤) ·N 𝑢) = (𝑦 ·N (𝑤 ·N 𝑢)))
241, 2, 3, 4, 5, 10, 15, 19, 23ecoviass 6701 1 ((𝐴Q𝐵Q𝐶Q) → ((𝐴 ·Q 𝐵) ·Q 𝐶) = (𝐴 ·Q (𝐵 ·Q 𝐶)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  w3a 980   = wceq 1364  wcel 2164  (class class class)co 5919  Ncnpi 7334   ·N cmi 7336   ~Q ceq 7341  Qcnq 7342   ·Q cmq 7345
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-coll 4145  ax-sep 4148  ax-nul 4156  ax-pow 4204  ax-pr 4239  ax-un 4465  ax-setind 4570  ax-iinf 4621
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-ral 2477  df-rex 2478  df-reu 2479  df-rab 2481  df-v 2762  df-sbc 2987  df-csb 3082  df-dif 3156  df-un 3158  df-in 3160  df-ss 3167  df-nul 3448  df-pw 3604  df-sn 3625  df-pr 3626  df-op 3628  df-uni 3837  df-int 3872  df-iun 3915  df-br 4031  df-opab 4092  df-mpt 4093  df-tr 4129  df-id 4325  df-iord 4398  df-on 4400  df-suc 4403  df-iom 4624  df-xp 4666  df-rel 4667  df-cnv 4668  df-co 4669  df-dm 4670  df-rn 4671  df-res 4672  df-ima 4673  df-iota 5216  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-ov 5922  df-oprab 5923  df-mpo 5924  df-1st 6195  df-2nd 6196  df-recs 6360  df-irdg 6425  df-oadd 6475  df-omul 6476  df-er 6589  df-ec 6591  df-qs 6595  df-ni 7366  df-mi 7368  df-mpq 7407  df-enq 7409  df-nqqs 7410  df-mqqs 7412
This theorem is referenced by:  recmulnqg  7453  halfnqq  7472  prarloclemarch  7480  ltrnqg  7482  addnqprl  7591  addnqpru  7592  appdivnq  7625  mulnqprl  7630  mulnqpru  7631  mullocprlem  7632  mulassprg  7643  1idprl  7652  1idpru  7653  recexprlem1ssl  7695  recexprlem1ssu  7696
  Copyright terms: Public domain W3C validator