Step | Hyp | Ref
| Expression |
1 | | df-nqqs 7289 |
. 2
⊢
Q = ((N × N) /
~Q ) |
2 | | mulpipqqs 7314 |
. 2
⊢ (((𝑥 ∈ N ∧
𝑦 ∈ N)
∧ (𝑧 ∈
N ∧ 𝑤
∈ N)) → ([〈𝑥, 𝑦〉] ~Q
·Q [〈𝑧, 𝑤〉] ~Q ) =
[〈(𝑥
·N 𝑧), (𝑦 ·N 𝑤)〉]
~Q ) |
3 | | mulpipqqs 7314 |
. 2
⊢ (((𝑧 ∈ N ∧
𝑤 ∈ N)
∧ (𝑣 ∈
N ∧ 𝑢
∈ N)) → ([〈𝑧, 𝑤〉] ~Q
·Q [〈𝑣, 𝑢〉] ~Q ) =
[〈(𝑧
·N 𝑣), (𝑤 ·N 𝑢)〉]
~Q ) |
4 | | mulpipqqs 7314 |
. 2
⊢ ((((𝑥
·N 𝑧) ∈ N ∧ (𝑦
·N 𝑤) ∈ N) ∧ (𝑣 ∈ N ∧
𝑢 ∈ N))
→ ([〈(𝑥
·N 𝑧), (𝑦 ·N 𝑤)〉]
~Q ·Q [〈𝑣, 𝑢〉] ~Q ) =
[〈((𝑥
·N 𝑧) ·N 𝑣), ((𝑦 ·N 𝑤)
·N 𝑢)〉] ~Q
) |
5 | | mulpipqqs 7314 |
. 2
⊢ (((𝑥 ∈ N ∧
𝑦 ∈ N)
∧ ((𝑧
·N 𝑣) ∈ N ∧ (𝑤
·N 𝑢) ∈ N)) →
([〈𝑥, 𝑦〉]
~Q ·Q [〈(𝑧
·N 𝑣), (𝑤 ·N 𝑢)〉]
~Q ) = [〈(𝑥 ·N (𝑧
·N 𝑣)), (𝑦 ·N (𝑤
·N 𝑢))〉] ~Q
) |
6 | | mulclpi 7269 |
. . . 4
⊢ ((𝑥 ∈ N ∧
𝑧 ∈ N)
→ (𝑥
·N 𝑧) ∈ N) |
7 | 6 | ad2ant2r 501 |
. . 3
⊢ (((𝑥 ∈ N ∧
𝑦 ∈ N)
∧ (𝑧 ∈
N ∧ 𝑤
∈ N)) → (𝑥 ·N 𝑧) ∈
N) |
8 | | mulclpi 7269 |
. . . 4
⊢ ((𝑦 ∈ N ∧
𝑤 ∈ N)
→ (𝑦
·N 𝑤) ∈ N) |
9 | 8 | ad2ant2l 500 |
. . 3
⊢ (((𝑥 ∈ N ∧
𝑦 ∈ N)
∧ (𝑧 ∈
N ∧ 𝑤
∈ N)) → (𝑦 ·N 𝑤) ∈
N) |
10 | 7, 9 | jca 304 |
. 2
⊢ (((𝑥 ∈ N ∧
𝑦 ∈ N)
∧ (𝑧 ∈
N ∧ 𝑤
∈ N)) → ((𝑥 ·N 𝑧) ∈ N ∧
(𝑦
·N 𝑤) ∈ N)) |
11 | | mulclpi 7269 |
. . . 4
⊢ ((𝑧 ∈ N ∧
𝑣 ∈ N)
→ (𝑧
·N 𝑣) ∈ N) |
12 | 11 | ad2ant2r 501 |
. . 3
⊢ (((𝑧 ∈ N ∧
𝑤 ∈ N)
∧ (𝑣 ∈
N ∧ 𝑢
∈ N)) → (𝑧 ·N 𝑣) ∈
N) |
13 | | mulclpi 7269 |
. . . 4
⊢ ((𝑤 ∈ N ∧
𝑢 ∈ N)
→ (𝑤
·N 𝑢) ∈ N) |
14 | 13 | ad2ant2l 500 |
. . 3
⊢ (((𝑧 ∈ N ∧
𝑤 ∈ N)
∧ (𝑣 ∈
N ∧ 𝑢
∈ N)) → (𝑤 ·N 𝑢) ∈
N) |
15 | 12, 14 | jca 304 |
. 2
⊢ (((𝑧 ∈ N ∧
𝑤 ∈ N)
∧ (𝑣 ∈
N ∧ 𝑢
∈ N)) → ((𝑧 ·N 𝑣) ∈ N ∧
(𝑤
·N 𝑢) ∈ N)) |
16 | | mulasspig 7273 |
. . . . 5
⊢ ((𝑥 ∈ N ∧
𝑧 ∈ N
∧ 𝑣 ∈
N) → ((𝑥
·N 𝑧) ·N 𝑣) = (𝑥 ·N (𝑧
·N 𝑣))) |
17 | 16 | 3adant1r 1221 |
. . . 4
⊢ (((𝑥 ∈ N ∧
𝑦 ∈ N)
∧ 𝑧 ∈
N ∧ 𝑣
∈ N) → ((𝑥 ·N 𝑧)
·N 𝑣) = (𝑥 ·N (𝑧
·N 𝑣))) |
18 | 17 | 3adant2r 1223 |
. . 3
⊢ (((𝑥 ∈ N ∧
𝑦 ∈ N)
∧ (𝑧 ∈
N ∧ 𝑤
∈ N) ∧ 𝑣 ∈ N) → ((𝑥
·N 𝑧) ·N 𝑣) = (𝑥 ·N (𝑧
·N 𝑣))) |
19 | 18 | 3adant3r 1225 |
. 2
⊢ (((𝑥 ∈ N ∧
𝑦 ∈ N)
∧ (𝑧 ∈
N ∧ 𝑤
∈ N) ∧ (𝑣 ∈ N ∧ 𝑢 ∈ N)) →
((𝑥
·N 𝑧) ·N 𝑣) = (𝑥 ·N (𝑧
·N 𝑣))) |
20 | | mulasspig 7273 |
. . . . 5
⊢ ((𝑦 ∈ N ∧
𝑤 ∈ N
∧ 𝑢 ∈
N) → ((𝑦
·N 𝑤) ·N 𝑢) = (𝑦 ·N (𝑤
·N 𝑢))) |
21 | 20 | 3adant1l 1220 |
. . . 4
⊢ (((𝑥 ∈ N ∧
𝑦 ∈ N)
∧ 𝑤 ∈
N ∧ 𝑢
∈ N) → ((𝑦 ·N 𝑤)
·N 𝑢) = (𝑦 ·N (𝑤
·N 𝑢))) |
22 | 21 | 3adant2l 1222 |
. . 3
⊢ (((𝑥 ∈ N ∧
𝑦 ∈ N)
∧ (𝑧 ∈
N ∧ 𝑤
∈ N) ∧ 𝑢 ∈ N) → ((𝑦
·N 𝑤) ·N 𝑢) = (𝑦 ·N (𝑤
·N 𝑢))) |
23 | 22 | 3adant3l 1224 |
. 2
⊢ (((𝑥 ∈ N ∧
𝑦 ∈ N)
∧ (𝑧 ∈
N ∧ 𝑤
∈ N) ∧ (𝑣 ∈ N ∧ 𝑢 ∈ N)) →
((𝑦
·N 𝑤) ·N 𝑢) = (𝑦 ·N (𝑤
·N 𝑢))) |
24 | 1, 2, 3, 4, 5, 10,
15, 19, 23 | ecoviass 6611 |
1
⊢ ((𝐴 ∈ Q ∧
𝐵 ∈ Q
∧ 𝐶 ∈
Q) → ((𝐴
·Q 𝐵) ·Q 𝐶) = (𝐴 ·Q (𝐵
·Q 𝐶))) |