ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mulassnqg GIF version

Theorem mulassnqg 7504
Description: Multiplication of positive fractions is associative. (Contributed by Jim Kingdon, 17-Sep-2019.)
Assertion
Ref Expression
mulassnqg ((𝐴Q𝐵Q𝐶Q) → ((𝐴 ·Q 𝐵) ·Q 𝐶) = (𝐴 ·Q (𝐵 ·Q 𝐶)))

Proof of Theorem mulassnqg
Dummy variables 𝑥 𝑦 𝑧 𝑤 𝑣 𝑢 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-nqqs 7468 . 2 Q = ((N × N) / ~Q )
2 mulpipqqs 7493 . 2 (((𝑥N𝑦N) ∧ (𝑧N𝑤N)) → ([⟨𝑥, 𝑦⟩] ~Q ·Q [⟨𝑧, 𝑤⟩] ~Q ) = [⟨(𝑥 ·N 𝑧), (𝑦 ·N 𝑤)⟩] ~Q )
3 mulpipqqs 7493 . 2 (((𝑧N𝑤N) ∧ (𝑣N𝑢N)) → ([⟨𝑧, 𝑤⟩] ~Q ·Q [⟨𝑣, 𝑢⟩] ~Q ) = [⟨(𝑧 ·N 𝑣), (𝑤 ·N 𝑢)⟩] ~Q )
4 mulpipqqs 7493 . 2 ((((𝑥 ·N 𝑧) ∈ N ∧ (𝑦 ·N 𝑤) ∈ N) ∧ (𝑣N𝑢N)) → ([⟨(𝑥 ·N 𝑧), (𝑦 ·N 𝑤)⟩] ~Q ·Q [⟨𝑣, 𝑢⟩] ~Q ) = [⟨((𝑥 ·N 𝑧) ·N 𝑣), ((𝑦 ·N 𝑤) ·N 𝑢)⟩] ~Q )
5 mulpipqqs 7493 . 2 (((𝑥N𝑦N) ∧ ((𝑧 ·N 𝑣) ∈ N ∧ (𝑤 ·N 𝑢) ∈ N)) → ([⟨𝑥, 𝑦⟩] ~Q ·Q [⟨(𝑧 ·N 𝑣), (𝑤 ·N 𝑢)⟩] ~Q ) = [⟨(𝑥 ·N (𝑧 ·N 𝑣)), (𝑦 ·N (𝑤 ·N 𝑢))⟩] ~Q )
6 mulclpi 7448 . . . 4 ((𝑥N𝑧N) → (𝑥 ·N 𝑧) ∈ N)
76ad2ant2r 509 . . 3 (((𝑥N𝑦N) ∧ (𝑧N𝑤N)) → (𝑥 ·N 𝑧) ∈ N)
8 mulclpi 7448 . . . 4 ((𝑦N𝑤N) → (𝑦 ·N 𝑤) ∈ N)
98ad2ant2l 508 . . 3 (((𝑥N𝑦N) ∧ (𝑧N𝑤N)) → (𝑦 ·N 𝑤) ∈ N)
107, 9jca 306 . 2 (((𝑥N𝑦N) ∧ (𝑧N𝑤N)) → ((𝑥 ·N 𝑧) ∈ N ∧ (𝑦 ·N 𝑤) ∈ N))
11 mulclpi 7448 . . . 4 ((𝑧N𝑣N) → (𝑧 ·N 𝑣) ∈ N)
1211ad2ant2r 509 . . 3 (((𝑧N𝑤N) ∧ (𝑣N𝑢N)) → (𝑧 ·N 𝑣) ∈ N)
13 mulclpi 7448 . . . 4 ((𝑤N𝑢N) → (𝑤 ·N 𝑢) ∈ N)
1413ad2ant2l 508 . . 3 (((𝑧N𝑤N) ∧ (𝑣N𝑢N)) → (𝑤 ·N 𝑢) ∈ N)
1512, 14jca 306 . 2 (((𝑧N𝑤N) ∧ (𝑣N𝑢N)) → ((𝑧 ·N 𝑣) ∈ N ∧ (𝑤 ·N 𝑢) ∈ N))
16 mulasspig 7452 . . . . 5 ((𝑥N𝑧N𝑣N) → ((𝑥 ·N 𝑧) ·N 𝑣) = (𝑥 ·N (𝑧 ·N 𝑣)))
17163adant1r 1234 . . . 4 (((𝑥N𝑦N) ∧ 𝑧N𝑣N) → ((𝑥 ·N 𝑧) ·N 𝑣) = (𝑥 ·N (𝑧 ·N 𝑣)))
18173adant2r 1236 . . 3 (((𝑥N𝑦N) ∧ (𝑧N𝑤N) ∧ 𝑣N) → ((𝑥 ·N 𝑧) ·N 𝑣) = (𝑥 ·N (𝑧 ·N 𝑣)))
19183adant3r 1238 . 2 (((𝑥N𝑦N) ∧ (𝑧N𝑤N) ∧ (𝑣N𝑢N)) → ((𝑥 ·N 𝑧) ·N 𝑣) = (𝑥 ·N (𝑧 ·N 𝑣)))
20 mulasspig 7452 . . . . 5 ((𝑦N𝑤N𝑢N) → ((𝑦 ·N 𝑤) ·N 𝑢) = (𝑦 ·N (𝑤 ·N 𝑢)))
21203adant1l 1233 . . . 4 (((𝑥N𝑦N) ∧ 𝑤N𝑢N) → ((𝑦 ·N 𝑤) ·N 𝑢) = (𝑦 ·N (𝑤 ·N 𝑢)))
22213adant2l 1235 . . 3 (((𝑥N𝑦N) ∧ (𝑧N𝑤N) ∧ 𝑢N) → ((𝑦 ·N 𝑤) ·N 𝑢) = (𝑦 ·N (𝑤 ·N 𝑢)))
23223adant3l 1237 . 2 (((𝑥N𝑦N) ∧ (𝑧N𝑤N) ∧ (𝑣N𝑢N)) → ((𝑦 ·N 𝑤) ·N 𝑢) = (𝑦 ·N (𝑤 ·N 𝑢)))
241, 2, 3, 4, 5, 10, 15, 19, 23ecoviass 6739 1 ((𝐴Q𝐵Q𝐶Q) → ((𝐴 ·Q 𝐵) ·Q 𝐶) = (𝐴 ·Q (𝐵 ·Q 𝐶)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  w3a 981   = wceq 1373  wcel 2177  (class class class)co 5951  Ncnpi 7392   ·N cmi 7394   ~Q ceq 7399  Qcnq 7400   ·Q cmq 7403
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-coll 4163  ax-sep 4166  ax-nul 4174  ax-pow 4222  ax-pr 4257  ax-un 4484  ax-setind 4589  ax-iinf 4640
This theorem depends on definitions:  df-bi 117  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ne 2378  df-ral 2490  df-rex 2491  df-reu 2492  df-rab 2494  df-v 2775  df-sbc 3000  df-csb 3095  df-dif 3169  df-un 3171  df-in 3173  df-ss 3180  df-nul 3462  df-pw 3619  df-sn 3640  df-pr 3641  df-op 3643  df-uni 3853  df-int 3888  df-iun 3931  df-br 4048  df-opab 4110  df-mpt 4111  df-tr 4147  df-id 4344  df-iord 4417  df-on 4419  df-suc 4422  df-iom 4643  df-xp 4685  df-rel 4686  df-cnv 4687  df-co 4688  df-dm 4689  df-rn 4690  df-res 4691  df-ima 4692  df-iota 5237  df-fun 5278  df-fn 5279  df-f 5280  df-f1 5281  df-fo 5282  df-f1o 5283  df-fv 5284  df-ov 5954  df-oprab 5955  df-mpo 5956  df-1st 6233  df-2nd 6234  df-recs 6398  df-irdg 6463  df-oadd 6513  df-omul 6514  df-er 6627  df-ec 6629  df-qs 6633  df-ni 7424  df-mi 7426  df-mpq 7465  df-enq 7467  df-nqqs 7468  df-mqqs 7470
This theorem is referenced by:  recmulnqg  7511  halfnqq  7530  prarloclemarch  7538  ltrnqg  7540  addnqprl  7649  addnqpru  7650  appdivnq  7683  mulnqprl  7688  mulnqpru  7689  mullocprlem  7690  mulassprg  7701  1idprl  7710  1idpru  7711  recexprlem1ssl  7753  recexprlem1ssu  7754
  Copyright terms: Public domain W3C validator