| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 3com12 | GIF version | ||
| Description: Commutation in antecedent. Swap 1st and 3rd. (Contributed by NM, 28-Jan-1996.) (Proof shortened by Andrew Salmon, 13-May-2011.) |
| Ref | Expression |
|---|---|
| 3exp.1 | ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) |
| Ref | Expression |
|---|---|
| 3com12 | ⊢ ((𝜓 ∧ 𝜑 ∧ 𝜒) → 𝜃) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3ancoma 987 | . 2 ⊢ ((𝜓 ∧ 𝜑 ∧ 𝜒) ↔ (𝜑 ∧ 𝜓 ∧ 𝜒)) | |
| 2 | 3exp.1 | . 2 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) | |
| 3 | 1, 2 | sylbi 121 | 1 ⊢ ((𝜓 ∧ 𝜑 ∧ 𝜒) → 𝜃) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ w3a 980 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 df-3an 982 |
| This theorem is referenced by: 3adant2l 1234 3adant2r 1235 brelrng 4898 iotam 5251 funimaexglem 5342 fvun2 5631 nnaordi 6575 nnmword 6585 fpmg 6742 prcdnql 7570 prcunqu 7571 prarloc 7589 ltaprg 7705 mul12 8174 add12 8203 addsub 8256 addsubeq4 8260 ppncan 8287 leadd1 8476 ltaddsub2 8483 leaddsub2 8485 lemul1 8639 reapmul1lem 8640 reapadd1 8642 reapcotr 8644 remulext1 8645 div23ap 8737 ltmulgt11 8910 lediv1 8915 lemuldiv 8927 zdiv 9433 iooneg 10082 icoshft 10084 fzaddel 10153 fzshftral 10202 facwordi 10851 abssubge0 11286 climshftlemg 11486 dvdsmul1 11997 divalgb 12109 lcmgcdeq 12278 pcfac 12546 mhmmulg 13371 rmodislmodlem 13984 cnmptcom 14642 hmeof1o2 14652 |
| Copyright terms: Public domain | W3C validator |