Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > 3com12 | GIF version |
Description: Commutation in antecedent. Swap 1st and 3rd. (Contributed by NM, 28-Jan-1996.) (Proof shortened by Andrew Salmon, 13-May-2011.) |
Ref | Expression |
---|---|
3exp.1 | ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) |
Ref | Expression |
---|---|
3com12 | ⊢ ((𝜓 ∧ 𝜑 ∧ 𝜒) → 𝜃) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3ancoma 975 | . 2 ⊢ ((𝜓 ∧ 𝜑 ∧ 𝜒) ↔ (𝜑 ∧ 𝜓 ∧ 𝜒)) | |
2 | 3exp.1 | . 2 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) | |
3 | 1, 2 | sylbi 120 | 1 ⊢ ((𝜓 ∧ 𝜑 ∧ 𝜒) → 𝜃) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ w3a 968 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 |
This theorem depends on definitions: df-bi 116 df-3an 970 |
This theorem is referenced by: 3adant2l 1222 3adant2r 1223 brelrng 4835 funimaexglem 5271 fvun2 5553 nnaordi 6476 nnmword 6486 fpmg 6640 prcdnql 7425 prcunqu 7426 prarloc 7444 ltaprg 7560 mul12 8027 add12 8056 addsub 8109 addsubeq4 8113 ppncan 8140 leadd1 8328 ltaddsub2 8335 leaddsub2 8337 lemul1 8491 reapmul1lem 8492 reapadd1 8494 reapcotr 8496 remulext1 8497 div23ap 8587 ltmulgt11 8759 lediv1 8764 lemuldiv 8776 zdiv 9279 iooneg 9924 icoshft 9926 fzaddel 9994 fzshftral 10043 facwordi 10653 abssubge0 11044 climshftlemg 11243 dvdsmul1 11753 divalgb 11862 lcmgcdeq 12015 pcfac 12280 cnmptcom 12948 hmeof1o2 12958 |
Copyright terms: Public domain | W3C validator |