| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 3com12 | GIF version | ||
| Description: Commutation in antecedent. Swap 1st and 3rd. (Contributed by NM, 28-Jan-1996.) (Proof shortened by Andrew Salmon, 13-May-2011.) |
| Ref | Expression |
|---|---|
| 3exp.1 | ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) |
| Ref | Expression |
|---|---|
| 3com12 | ⊢ ((𝜓 ∧ 𝜑 ∧ 𝜒) → 𝜃) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3ancoma 987 | . 2 ⊢ ((𝜓 ∧ 𝜑 ∧ 𝜒) ↔ (𝜑 ∧ 𝜓 ∧ 𝜒)) | |
| 2 | 3exp.1 | . 2 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) | |
| 3 | 1, 2 | sylbi 121 | 1 ⊢ ((𝜓 ∧ 𝜑 ∧ 𝜒) → 𝜃) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ w3a 980 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 df-3an 982 |
| This theorem is referenced by: 3adant2l 1234 3adant2r 1235 brelrng 4907 iotam 5260 funimaexglem 5351 fvun2 5640 nnaordi 6584 nnmword 6594 fpmg 6751 prcdnql 7579 prcunqu 7580 prarloc 7598 ltaprg 7714 mul12 8183 add12 8212 addsub 8265 addsubeq4 8269 ppncan 8296 leadd1 8485 ltaddsub2 8492 leaddsub2 8494 lemul1 8648 reapmul1lem 8649 reapadd1 8651 reapcotr 8653 remulext1 8654 div23ap 8746 ltmulgt11 8919 lediv1 8924 lemuldiv 8936 zdiv 9443 iooneg 10092 icoshft 10094 fzaddel 10163 fzshftral 10212 facwordi 10866 abssubge0 11332 climshftlemg 11532 dvdsmul1 12043 divalgb 12155 lcmgcdeq 12324 pcfac 12592 mhmmulg 13417 rmodislmodlem 14030 cnmptcom 14688 hmeof1o2 14698 |
| Copyright terms: Public domain | W3C validator |