![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > 3com12 | GIF version |
Description: Commutation in antecedent. Swap 1st and 3rd. (Contributed by NM, 28-Jan-1996.) (Proof shortened by Andrew Salmon, 13-May-2011.) |
Ref | Expression |
---|---|
3exp.1 | ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) |
Ref | Expression |
---|---|
3com12 | ⊢ ((𝜓 ∧ 𝜑 ∧ 𝜒) → 𝜃) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3ancoma 931 | . 2 ⊢ ((𝜓 ∧ 𝜑 ∧ 𝜒) ↔ (𝜑 ∧ 𝜓 ∧ 𝜒)) | |
2 | 3exp.1 | . 2 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) | |
3 | 1, 2 | sylbi 119 | 1 ⊢ ((𝜓 ∧ 𝜑 ∧ 𝜒) → 𝜃) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ w3a 924 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 |
This theorem depends on definitions: df-bi 115 df-3an 926 |
This theorem is referenced by: 3adant2l 1168 3adant2r 1169 brelrng 4666 funimaexglem 5097 fvun2 5371 nnaordi 6267 nnmword 6277 fpmg 6431 prcdnql 7043 prcunqu 7044 prarloc 7062 ltaprg 7178 mul12 7611 add12 7640 addsub 7693 addsubeq4 7697 ppncan 7724 leadd1 7908 ltaddsub2 7915 leaddsub2 7917 lemul1 8070 reapmul1lem 8071 reapadd1 8073 reapcotr 8075 remulext1 8076 div23ap 8158 ltmulgt11 8325 lediv1 8330 lemuldiv 8342 zdiv 8834 iooneg 9405 icoshft 9407 fzaddel 9473 fzshftral 9522 facwordi 10148 abssubge0 10535 climshftlemg 10690 dvdsmul1 11096 divalgb 11203 lcmgcdeq 11343 |
Copyright terms: Public domain | W3C validator |