Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > 3com12 | GIF version |
Description: Commutation in antecedent. Swap 1st and 3rd. (Contributed by NM, 28-Jan-1996.) (Proof shortened by Andrew Salmon, 13-May-2011.) |
Ref | Expression |
---|---|
3exp.1 | ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) |
Ref | Expression |
---|---|
3com12 | ⊢ ((𝜓 ∧ 𝜑 ∧ 𝜒) → 𝜃) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3ancoma 985 | . 2 ⊢ ((𝜓 ∧ 𝜑 ∧ 𝜒) ↔ (𝜑 ∧ 𝜓 ∧ 𝜒)) | |
2 | 3exp.1 | . 2 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) | |
3 | 1, 2 | sylbi 121 | 1 ⊢ ((𝜓 ∧ 𝜑 ∧ 𝜒) → 𝜃) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ w3a 978 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
This theorem depends on definitions: df-bi 117 df-3an 980 |
This theorem is referenced by: 3adant2l 1232 3adant2r 1233 brelrng 4851 iotam 5200 funimaexglem 5291 fvun2 5575 nnaordi 6499 nnmword 6509 fpmg 6664 prcdnql 7458 prcunqu 7459 prarloc 7477 ltaprg 7593 mul12 8060 add12 8089 addsub 8142 addsubeq4 8146 ppncan 8173 leadd1 8361 ltaddsub2 8368 leaddsub2 8370 lemul1 8524 reapmul1lem 8525 reapadd1 8527 reapcotr 8529 remulext1 8530 div23ap 8621 ltmulgt11 8794 lediv1 8799 lemuldiv 8811 zdiv 9314 iooneg 9959 icoshft 9961 fzaddel 10029 fzshftral 10078 facwordi 10688 abssubge0 11079 climshftlemg 11278 dvdsmul1 11788 divalgb 11897 lcmgcdeq 12050 pcfac 12315 mhmmulg 12884 cnmptcom 13369 hmeof1o2 13379 |
Copyright terms: Public domain | W3C validator |