| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 3com12 | GIF version | ||
| Description: Commutation in antecedent. Swap 1st and 3rd. (Contributed by NM, 28-Jan-1996.) (Proof shortened by Andrew Salmon, 13-May-2011.) |
| Ref | Expression |
|---|---|
| 3exp.1 | ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) |
| Ref | Expression |
|---|---|
| 3com12 | ⊢ ((𝜓 ∧ 𝜑 ∧ 𝜒) → 𝜃) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3ancoma 988 | . 2 ⊢ ((𝜓 ∧ 𝜑 ∧ 𝜒) ↔ (𝜑 ∧ 𝜓 ∧ 𝜒)) | |
| 2 | 3exp.1 | . 2 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) | |
| 3 | 1, 2 | sylbi 121 | 1 ⊢ ((𝜓 ∧ 𝜑 ∧ 𝜒) → 𝜃) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ w3a 981 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 df-3an 983 |
| This theorem is referenced by: 3adant2l 1235 3adant2r 1236 brelrng 4918 iotam 5272 funimaexglem 5366 fvun2 5659 nnaordi 6607 nnmword 6617 fpmg 6774 prcdnql 7617 prcunqu 7618 prarloc 7636 ltaprg 7752 mul12 8221 add12 8250 addsub 8303 addsubeq4 8307 ppncan 8334 leadd1 8523 ltaddsub2 8530 leaddsub2 8532 lemul1 8686 reapmul1lem 8687 reapadd1 8689 reapcotr 8691 remulext1 8692 div23ap 8784 ltmulgt11 8957 lediv1 8962 lemuldiv 8974 zdiv 9481 iooneg 10130 icoshft 10132 fzaddel 10201 fzshftral 10250 facwordi 10907 pfxeq 11172 abssubge0 11488 climshftlemg 11688 dvdsmul1 12199 divalgb 12311 lcmgcdeq 12480 pcfac 12748 mhmmulg 13574 rmodislmodlem 14187 cnmptcom 14845 hmeof1o2 14855 |
| Copyright terms: Public domain | W3C validator |