| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 3com12 | GIF version | ||
| Description: Commutation in antecedent. Swap 1st and 3rd. (Contributed by NM, 28-Jan-1996.) (Proof shortened by Andrew Salmon, 13-May-2011.) |
| Ref | Expression |
|---|---|
| 3exp.1 | ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) |
| Ref | Expression |
|---|---|
| 3com12 | ⊢ ((𝜓 ∧ 𝜑 ∧ 𝜒) → 𝜃) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3ancoma 1009 | . 2 ⊢ ((𝜓 ∧ 𝜑 ∧ 𝜒) ↔ (𝜑 ∧ 𝜓 ∧ 𝜒)) | |
| 2 | 3exp.1 | . 2 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) | |
| 3 | 1, 2 | sylbi 121 | 1 ⊢ ((𝜓 ∧ 𝜑 ∧ 𝜒) → 𝜃) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ w3a 1002 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 |
| This theorem is referenced by: 3adant2l 1256 3adant2r 1257 brelrng 4954 iotam 5309 funimaexglem 5403 fvun2 5700 nnaordi 6652 nnmword 6662 fpmg 6819 prcdnql 7667 prcunqu 7668 prarloc 7686 ltaprg 7802 mul12 8271 add12 8300 addsub 8353 addsubeq4 8357 ppncan 8384 leadd1 8573 ltaddsub2 8580 leaddsub2 8582 lemul1 8736 reapmul1lem 8737 reapadd1 8739 reapcotr 8741 remulext1 8742 div23ap 8834 ltmulgt11 9007 lediv1 9012 lemuldiv 9024 zdiv 9531 iooneg 10180 icoshft 10182 fzaddel 10251 fzshftral 10300 facwordi 10957 pfxeq 11223 abssubge0 11608 climshftlemg 11808 dvdsmul1 12319 divalgb 12431 lcmgcdeq 12600 pcfac 12868 mhmmulg 13695 rmodislmodlem 14308 cnmptcom 14966 hmeof1o2 14976 |
| Copyright terms: Public domain | W3C validator |