| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 3com12 | GIF version | ||
| Description: Commutation in antecedent. Swap 1st and 3rd. (Contributed by NM, 28-Jan-1996.) (Proof shortened by Andrew Salmon, 13-May-2011.) |
| Ref | Expression |
|---|---|
| 3exp.1 | ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) |
| Ref | Expression |
|---|---|
| 3com12 | ⊢ ((𝜓 ∧ 𝜑 ∧ 𝜒) → 𝜃) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3ancoma 987 | . 2 ⊢ ((𝜓 ∧ 𝜑 ∧ 𝜒) ↔ (𝜑 ∧ 𝜓 ∧ 𝜒)) | |
| 2 | 3exp.1 | . 2 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) | |
| 3 | 1, 2 | sylbi 121 | 1 ⊢ ((𝜓 ∧ 𝜑 ∧ 𝜒) → 𝜃) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ w3a 980 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 df-3an 982 |
| This theorem is referenced by: 3adant2l 1234 3adant2r 1235 brelrng 4898 iotam 5251 funimaexglem 5342 fvun2 5631 nnaordi 6575 nnmword 6585 fpmg 6742 prcdnql 7568 prcunqu 7569 prarloc 7587 ltaprg 7703 mul12 8172 add12 8201 addsub 8254 addsubeq4 8258 ppncan 8285 leadd1 8474 ltaddsub2 8481 leaddsub2 8483 lemul1 8637 reapmul1lem 8638 reapadd1 8640 reapcotr 8642 remulext1 8643 div23ap 8735 ltmulgt11 8908 lediv1 8913 lemuldiv 8925 zdiv 9431 iooneg 10080 icoshft 10082 fzaddel 10151 fzshftral 10200 facwordi 10849 abssubge0 11284 climshftlemg 11484 dvdsmul1 11995 divalgb 12107 lcmgcdeq 12276 pcfac 12544 mhmmulg 13369 rmodislmodlem 13982 cnmptcom 14618 hmeof1o2 14628 |
| Copyright terms: Public domain | W3C validator |