![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > 3com12 | GIF version |
Description: Commutation in antecedent. Swap 1st and 3rd. (Contributed by NM, 28-Jan-1996.) (Proof shortened by Andrew Salmon, 13-May-2011.) |
Ref | Expression |
---|---|
3exp.1 | ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) |
Ref | Expression |
---|---|
3com12 | ⊢ ((𝜓 ∧ 𝜑 ∧ 𝜒) → 𝜃) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3ancoma 985 | . 2 ⊢ ((𝜓 ∧ 𝜑 ∧ 𝜒) ↔ (𝜑 ∧ 𝜓 ∧ 𝜒)) | |
2 | 3exp.1 | . 2 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) | |
3 | 1, 2 | sylbi 121 | 1 ⊢ ((𝜓 ∧ 𝜑 ∧ 𝜒) → 𝜃) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ w3a 978 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
This theorem depends on definitions: df-bi 117 df-3an 980 |
This theorem is referenced by: 3adant2l 1232 3adant2r 1233 brelrng 4859 iotam 5209 funimaexglem 5300 fvun2 5584 nnaordi 6509 nnmword 6519 fpmg 6674 prcdnql 7483 prcunqu 7484 prarloc 7502 ltaprg 7618 mul12 8086 add12 8115 addsub 8168 addsubeq4 8172 ppncan 8199 leadd1 8387 ltaddsub2 8394 leaddsub2 8396 lemul1 8550 reapmul1lem 8551 reapadd1 8553 reapcotr 8555 remulext1 8556 div23ap 8648 ltmulgt11 8821 lediv1 8826 lemuldiv 8838 zdiv 9341 iooneg 9988 icoshft 9990 fzaddel 10059 fzshftral 10108 facwordi 10720 abssubge0 11111 climshftlemg 11310 dvdsmul1 11820 divalgb 11930 lcmgcdeq 12083 pcfac 12348 mhmmulg 13024 rmodislmodlem 13440 cnmptcom 13801 hmeof1o2 13811 |
Copyright terms: Public domain | W3C validator |