| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 3adant1r | GIF version | ||
| Description: Deduction adding a conjunct to antecedent. (Contributed by NM, 8-Jan-2006.) |
| Ref | Expression |
|---|---|
| 3adant1l.1 | ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) |
| Ref | Expression |
|---|---|
| 3adant1r | ⊢ (((𝜑 ∧ 𝜏) ∧ 𝜓 ∧ 𝜒) → 𝜃) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3adant1l.1 | . . . 4 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) | |
| 2 | 1 | 3expb 1228 | . . 3 ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒)) → 𝜃) |
| 3 | 2 | adantlr 477 | . 2 ⊢ (((𝜑 ∧ 𝜏) ∧ (𝜓 ∧ 𝜒)) → 𝜃) |
| 4 | 3 | 3impb 1223 | 1 ⊢ (((𝜑 ∧ 𝜏) ∧ 𝜓 ∧ 𝜒) → 𝜃) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ∧ w3a 1002 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 |
| This theorem is referenced by: 3adant2r 1257 3adant3r 1259 tfr1onlembacc 6486 tfr1onlembfn 6488 tfr1onlemaccex 6492 tfr1onlemres 6493 tfrcllembfn 6501 tfrcllemaccex 6505 tfrcllemres 6506 tfrcldm 6507 tfrcl 6508 mulassnqg 7567 prarloc 7686 prmuloc 7749 addasssrg 7939 axaddass 8055 ghmgrp 13650 |
| Copyright terms: Public domain | W3C validator |