| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 3adant1r | GIF version | ||
| Description: Deduction adding a conjunct to antecedent. (Contributed by NM, 8-Jan-2006.) |
| Ref | Expression |
|---|---|
| 3adant1l.1 | ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) |
| Ref | Expression |
|---|---|
| 3adant1r | ⊢ (((𝜑 ∧ 𝜏) ∧ 𝜓 ∧ 𝜒) → 𝜃) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3adant1l.1 | . . . 4 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) | |
| 2 | 1 | 3expb 1206 | . . 3 ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒)) → 𝜃) |
| 3 | 2 | adantlr 477 | . 2 ⊢ (((𝜑 ∧ 𝜏) ∧ (𝜓 ∧ 𝜒)) → 𝜃) |
| 4 | 3 | 3impb 1201 | 1 ⊢ (((𝜑 ∧ 𝜏) ∧ 𝜓 ∧ 𝜒) → 𝜃) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ∧ w3a 980 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 df-3an 982 |
| This theorem is referenced by: 3adant2r 1235 3adant3r 1237 tfr1onlembacc 6400 tfr1onlembfn 6402 tfr1onlemaccex 6406 tfr1onlemres 6407 tfrcllembfn 6415 tfrcllemaccex 6419 tfrcllemres 6420 tfrcldm 6421 tfrcl 6422 mulassnqg 7451 prarloc 7570 prmuloc 7633 addasssrg 7823 axaddass 7939 ghmgrp 13248 |
| Copyright terms: Public domain | W3C validator |