ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  3adant1r GIF version

Theorem 3adant1r 1231
Description: Deduction adding a conjunct to antecedent. (Contributed by NM, 8-Jan-2006.)
Hypothesis
Ref Expression
3adant1l.1 ((𝜑𝜓𝜒) → 𝜃)
Assertion
Ref Expression
3adant1r (((𝜑𝜏) ∧ 𝜓𝜒) → 𝜃)

Proof of Theorem 3adant1r
StepHypRef Expression
1 3adant1l.1 . . . 4 ((𝜑𝜓𝜒) → 𝜃)
213expb 1204 . . 3 ((𝜑 ∧ (𝜓𝜒)) → 𝜃)
32adantlr 477 . 2 (((𝜑𝜏) ∧ (𝜓𝜒)) → 𝜃)
433impb 1199 1 (((𝜑𝜏) ∧ 𝜓𝜒) → 𝜃)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  w3a 978
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108
This theorem depends on definitions:  df-bi 117  df-3an 980
This theorem is referenced by:  3adant2r  1233  3adant3r  1235  tfr1onlembacc  6345  tfr1onlembfn  6347  tfr1onlemaccex  6351  tfr1onlemres  6352  tfrcllembfn  6360  tfrcllemaccex  6364  tfrcllemres  6365  tfrcldm  6366  tfrcl  6367  mulassnqg  7385  prarloc  7504  prmuloc  7567  addasssrg  7757  axaddass  7873  ghmgrp  12987
  Copyright terms: Public domain W3C validator