ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  3adant1r GIF version

Theorem 3adant1r 1234
Description: Deduction adding a conjunct to antecedent. (Contributed by NM, 8-Jan-2006.)
Hypothesis
Ref Expression
3adant1l.1 ((𝜑𝜓𝜒) → 𝜃)
Assertion
Ref Expression
3adant1r (((𝜑𝜏) ∧ 𝜓𝜒) → 𝜃)

Proof of Theorem 3adant1r
StepHypRef Expression
1 3adant1l.1 . . . 4 ((𝜑𝜓𝜒) → 𝜃)
213expb 1207 . . 3 ((𝜑 ∧ (𝜓𝜒)) → 𝜃)
32adantlr 477 . 2 (((𝜑𝜏) ∧ (𝜓𝜒)) → 𝜃)
433impb 1202 1 (((𝜑𝜏) ∧ 𝜓𝜒) → 𝜃)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  w3a 981
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108
This theorem depends on definitions:  df-bi 117  df-3an 983
This theorem is referenced by:  3adant2r  1236  3adant3r  1238  tfr1onlembacc  6440  tfr1onlembfn  6442  tfr1onlemaccex  6446  tfr1onlemres  6447  tfrcllembfn  6455  tfrcllemaccex  6459  tfrcllemres  6460  tfrcldm  6461  tfrcl  6462  mulassnqg  7512  prarloc  7631  prmuloc  7694  addasssrg  7884  axaddass  8000  ghmgrp  13524
  Copyright terms: Public domain W3C validator