![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > 3adant1r | GIF version |
Description: Deduction adding a conjunct to antecedent. (Contributed by NM, 8-Jan-2006.) |
Ref | Expression |
---|---|
3adant1l.1 | ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) |
Ref | Expression |
---|---|
3adant1r | ⊢ (((𝜑 ∧ 𝜏) ∧ 𝜓 ∧ 𝜒) → 𝜃) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3adant1l.1 | . . . 4 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) | |
2 | 1 | 3expb 1145 | . . 3 ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒)) → 𝜃) |
3 | 2 | adantlr 462 | . 2 ⊢ (((𝜑 ∧ 𝜏) ∧ (𝜓 ∧ 𝜒)) → 𝜃) |
4 | 3 | 3impb 1140 | 1 ⊢ (((𝜑 ∧ 𝜏) ∧ 𝜓 ∧ 𝜒) → 𝜃) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 ∧ w3a 925 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 |
This theorem depends on definitions: df-bi 116 df-3an 927 |
This theorem is referenced by: 3adant2r 1170 3adant3r 1172 tfr1onlembacc 6121 tfr1onlembfn 6123 tfr1onlemaccex 6127 tfr1onlemres 6128 tfrcllembfn 6136 tfrcllemaccex 6140 tfrcllemres 6141 tfrcldm 6142 tfrcl 6143 mulassnqg 7004 prarloc 7123 prmuloc 7186 addasssrg 7363 axaddass 7468 |
Copyright terms: Public domain | W3C validator |