Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > 3adant1r | GIF version |
Description: Deduction adding a conjunct to antecedent. (Contributed by NM, 8-Jan-2006.) |
Ref | Expression |
---|---|
3adant1l.1 | ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) |
Ref | Expression |
---|---|
3adant1r | ⊢ (((𝜑 ∧ 𝜏) ∧ 𝜓 ∧ 𝜒) → 𝜃) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3adant1l.1 | . . . 4 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) | |
2 | 1 | 3expb 1194 | . . 3 ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒)) → 𝜃) |
3 | 2 | adantlr 469 | . 2 ⊢ (((𝜑 ∧ 𝜏) ∧ (𝜓 ∧ 𝜒)) → 𝜃) |
4 | 3 | 3impb 1189 | 1 ⊢ (((𝜑 ∧ 𝜏) ∧ 𝜓 ∧ 𝜒) → 𝜃) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 ∧ w3a 968 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 |
This theorem depends on definitions: df-bi 116 df-3an 970 |
This theorem is referenced by: 3adant2r 1223 3adant3r 1225 tfr1onlembacc 6310 tfr1onlembfn 6312 tfr1onlemaccex 6316 tfr1onlemres 6317 tfrcllembfn 6325 tfrcllemaccex 6329 tfrcllemres 6330 tfrcldm 6331 tfrcl 6332 mulassnqg 7325 prarloc 7444 prmuloc 7507 addasssrg 7697 axaddass 7813 |
Copyright terms: Public domain | W3C validator |