ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  3adant1r GIF version

Theorem 3adant1r 1255
Description: Deduction adding a conjunct to antecedent. (Contributed by NM, 8-Jan-2006.)
Hypothesis
Ref Expression
3adant1l.1 ((𝜑𝜓𝜒) → 𝜃)
Assertion
Ref Expression
3adant1r (((𝜑𝜏) ∧ 𝜓𝜒) → 𝜃)

Proof of Theorem 3adant1r
StepHypRef Expression
1 3adant1l.1 . . . 4 ((𝜑𝜓𝜒) → 𝜃)
213expb 1228 . . 3 ((𝜑 ∧ (𝜓𝜒)) → 𝜃)
32adantlr 477 . 2 (((𝜑𝜏) ∧ (𝜓𝜒)) → 𝜃)
433impb 1223 1 (((𝜑𝜏) ∧ 𝜓𝜒) → 𝜃)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  w3a 1002
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108
This theorem depends on definitions:  df-bi 117  df-3an 1004
This theorem is referenced by:  3adant2r  1257  3adant3r  1259  tfr1onlembacc  6486  tfr1onlembfn  6488  tfr1onlemaccex  6492  tfr1onlemres  6493  tfrcllembfn  6501  tfrcllemaccex  6505  tfrcllemres  6506  tfrcldm  6507  tfrcl  6508  mulassnqg  7567  prarloc  7686  prmuloc  7749  addasssrg  7939  axaddass  8055  ghmgrp  13650
  Copyright terms: Public domain W3C validator