ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  3adant1r GIF version

Theorem 3adant1r 1221
Description: Deduction adding a conjunct to antecedent. (Contributed by NM, 8-Jan-2006.)
Hypothesis
Ref Expression
3adant1l.1 ((𝜑𝜓𝜒) → 𝜃)
Assertion
Ref Expression
3adant1r (((𝜑𝜏) ∧ 𝜓𝜒) → 𝜃)

Proof of Theorem 3adant1r
StepHypRef Expression
1 3adant1l.1 . . . 4 ((𝜑𝜓𝜒) → 𝜃)
213expb 1194 . . 3 ((𝜑 ∧ (𝜓𝜒)) → 𝜃)
32adantlr 469 . 2 (((𝜑𝜏) ∧ (𝜓𝜒)) → 𝜃)
433impb 1189 1 (((𝜑𝜏) ∧ 𝜓𝜒) → 𝜃)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  w3a 968
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107
This theorem depends on definitions:  df-bi 116  df-3an 970
This theorem is referenced by:  3adant2r  1223  3adant3r  1225  tfr1onlembacc  6310  tfr1onlembfn  6312  tfr1onlemaccex  6316  tfr1onlemres  6317  tfrcllembfn  6325  tfrcllemaccex  6329  tfrcllemres  6330  tfrcldm  6331  tfrcl  6332  mulassnqg  7325  prarloc  7444  prmuloc  7507  addasssrg  7697  axaddass  7813
  Copyright terms: Public domain W3C validator