ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  3adant1r GIF version

Theorem 3adant1r 1233
Description: Deduction adding a conjunct to antecedent. (Contributed by NM, 8-Jan-2006.)
Hypothesis
Ref Expression
3adant1l.1 ((𝜑𝜓𝜒) → 𝜃)
Assertion
Ref Expression
3adant1r (((𝜑𝜏) ∧ 𝜓𝜒) → 𝜃)

Proof of Theorem 3adant1r
StepHypRef Expression
1 3adant1l.1 . . . 4 ((𝜑𝜓𝜒) → 𝜃)
213expb 1206 . . 3 ((𝜑 ∧ (𝜓𝜒)) → 𝜃)
32adantlr 477 . 2 (((𝜑𝜏) ∧ (𝜓𝜒)) → 𝜃)
433impb 1201 1 (((𝜑𝜏) ∧ 𝜓𝜒) → 𝜃)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  w3a 980
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108
This theorem depends on definitions:  df-bi 117  df-3an 982
This theorem is referenced by:  3adant2r  1235  3adant3r  1237  tfr1onlembacc  6397  tfr1onlembfn  6399  tfr1onlemaccex  6403  tfr1onlemres  6404  tfrcllembfn  6412  tfrcllemaccex  6416  tfrcllemres  6417  tfrcldm  6418  tfrcl  6419  mulassnqg  7446  prarloc  7565  prmuloc  7628  addasssrg  7818  axaddass  7934  ghmgrp  13191
  Copyright terms: Public domain W3C validator