ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ltexprlemfl GIF version

Theorem ltexprlemfl 7571
Description: Lemma for ltexpri 7575. One direction of our result for lower cuts. (Contributed by Jim Kingdon, 17-Dec-2019.)
Hypothesis
Ref Expression
ltexprlem.1 𝐶 = ⟨{𝑥Q ∣ ∃𝑦(𝑦 ∈ (2nd𝐴) ∧ (𝑦 +Q 𝑥) ∈ (1st𝐵))}, {𝑥Q ∣ ∃𝑦(𝑦 ∈ (1st𝐴) ∧ (𝑦 +Q 𝑥) ∈ (2nd𝐵))}⟩
Assertion
Ref Expression
ltexprlemfl (𝐴<P 𝐵 → (1st ‘(𝐴 +P 𝐶)) ⊆ (1st𝐵))
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝐵,𝑦   𝑥,𝐶,𝑦

Proof of Theorem ltexprlemfl
Dummy variables 𝑧 𝑤 𝑢 𝑓 𝑔 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ltrelpr 7467 . . . . . 6 <P ⊆ (P × P)
21brel 4663 . . . . 5 (𝐴<P 𝐵 → (𝐴P𝐵P))
32simpld 111 . . . 4 (𝐴<P 𝐵𝐴P)
4 ltexprlem.1 . . . . 5 𝐶 = ⟨{𝑥Q ∣ ∃𝑦(𝑦 ∈ (2nd𝐴) ∧ (𝑦 +Q 𝑥) ∈ (1st𝐵))}, {𝑥Q ∣ ∃𝑦(𝑦 ∈ (1st𝐴) ∧ (𝑦 +Q 𝑥) ∈ (2nd𝐵))}⟩
54ltexprlempr 7570 . . . 4 (𝐴<P 𝐵𝐶P)
6 df-iplp 7430 . . . . 5 +P = (𝑧P, 𝑦P ↦ ⟨{𝑓Q ∣ ∃𝑔QQ (𝑔 ∈ (1st𝑧) ∧ ∈ (1st𝑦) ∧ 𝑓 = (𝑔 +Q ))}, {𝑓Q ∣ ∃𝑔QQ (𝑔 ∈ (2nd𝑧) ∧ ∈ (2nd𝑦) ∧ 𝑓 = (𝑔 +Q ))}⟩)
7 addclnq 7337 . . . . 5 ((𝑔QQ) → (𝑔 +Q ) ∈ Q)
86, 7genpelvl 7474 . . . 4 ((𝐴P𝐶P) → (𝑧 ∈ (1st ‘(𝐴 +P 𝐶)) ↔ ∃𝑤 ∈ (1st𝐴)∃𝑢 ∈ (1st𝐶)𝑧 = (𝑤 +Q 𝑢)))
93, 5, 8syl2anc 409 . . 3 (𝐴<P 𝐵 → (𝑧 ∈ (1st ‘(𝐴 +P 𝐶)) ↔ ∃𝑤 ∈ (1st𝐴)∃𝑢 ∈ (1st𝐶)𝑧 = (𝑤 +Q 𝑢)))
10 simprr 527 . . . . . 6 ((𝐴<P 𝐵 ∧ ((𝑤 ∈ (1st𝐴) ∧ 𝑢 ∈ (1st𝐶)) ∧ 𝑧 = (𝑤 +Q 𝑢))) → 𝑧 = (𝑤 +Q 𝑢))
114ltexprlemell 7560 . . . . . . . . . . 11 (𝑢 ∈ (1st𝐶) ↔ (𝑢Q ∧ ∃𝑦(𝑦 ∈ (2nd𝐴) ∧ (𝑦 +Q 𝑢) ∈ (1st𝐵))))
1211biimpi 119 . . . . . . . . . 10 (𝑢 ∈ (1st𝐶) → (𝑢Q ∧ ∃𝑦(𝑦 ∈ (2nd𝐴) ∧ (𝑦 +Q 𝑢) ∈ (1st𝐵))))
1312ad2antlr 486 . . . . . . . . 9 (((𝑤 ∈ (1st𝐴) ∧ 𝑢 ∈ (1st𝐶)) ∧ 𝑧 = (𝑤 +Q 𝑢)) → (𝑢Q ∧ ∃𝑦(𝑦 ∈ (2nd𝐴) ∧ (𝑦 +Q 𝑢) ∈ (1st𝐵))))
1413adantl 275 . . . . . . . 8 ((𝐴<P 𝐵 ∧ ((𝑤 ∈ (1st𝐴) ∧ 𝑢 ∈ (1st𝐶)) ∧ 𝑧 = (𝑤 +Q 𝑢))) → (𝑢Q ∧ ∃𝑦(𝑦 ∈ (2nd𝐴) ∧ (𝑦 +Q 𝑢) ∈ (1st𝐵))))
1514simprd 113 . . . . . . 7 ((𝐴<P 𝐵 ∧ ((𝑤 ∈ (1st𝐴) ∧ 𝑢 ∈ (1st𝐶)) ∧ 𝑧 = (𝑤 +Q 𝑢))) → ∃𝑦(𝑦 ∈ (2nd𝐴) ∧ (𝑦 +Q 𝑢) ∈ (1st𝐵)))
16 prop 7437 . . . . . . . . . . . . . 14 (𝐴P → ⟨(1st𝐴), (2nd𝐴)⟩ ∈ P)
173, 16syl 14 . . . . . . . . . . . . 13 (𝐴<P 𝐵 → ⟨(1st𝐴), (2nd𝐴)⟩ ∈ P)
18 prltlu 7449 . . . . . . . . . . . . 13 ((⟨(1st𝐴), (2nd𝐴)⟩ ∈ P𝑤 ∈ (1st𝐴) ∧ 𝑦 ∈ (2nd𝐴)) → 𝑤 <Q 𝑦)
1917, 18syl3an1 1266 . . . . . . . . . . . 12 ((𝐴<P 𝐵𝑤 ∈ (1st𝐴) ∧ 𝑦 ∈ (2nd𝐴)) → 𝑤 <Q 𝑦)
20193adant2r 1228 . . . . . . . . . . 11 ((𝐴<P 𝐵 ∧ (𝑤 ∈ (1st𝐴) ∧ 𝑢 ∈ (1st𝐶)) ∧ 𝑦 ∈ (2nd𝐴)) → 𝑤 <Q 𝑦)
21203adant2r 1228 . . . . . . . . . 10 ((𝐴<P 𝐵 ∧ ((𝑤 ∈ (1st𝐴) ∧ 𝑢 ∈ (1st𝐶)) ∧ 𝑧 = (𝑤 +Q 𝑢)) ∧ 𝑦 ∈ (2nd𝐴)) → 𝑤 <Q 𝑦)
22213adant3r 1230 . . . . . . . . 9 ((𝐴<P 𝐵 ∧ ((𝑤 ∈ (1st𝐴) ∧ 𝑢 ∈ (1st𝐶)) ∧ 𝑧 = (𝑤 +Q 𝑢)) ∧ (𝑦 ∈ (2nd𝐴) ∧ (𝑦 +Q 𝑢) ∈ (1st𝐵))) → 𝑤 <Q 𝑦)
23 ltanqg 7362 . . . . . . . . . . . 12 ((𝑓Q𝑔QQ) → (𝑓 <Q 𝑔 ↔ ( +Q 𝑓) <Q ( +Q 𝑔)))
2423adantl 275 . . . . . . . . . . 11 (((𝐴<P 𝐵 ∧ ((𝑤 ∈ (1st𝐴) ∧ 𝑢 ∈ (1st𝐶)) ∧ 𝑧 = (𝑤 +Q 𝑢)) ∧ (𝑦 ∈ (2nd𝐴) ∧ (𝑦 +Q 𝑢) ∈ (1st𝐵))) ∧ (𝑓Q𝑔QQ)) → (𝑓 <Q 𝑔 ↔ ( +Q 𝑓) <Q ( +Q 𝑔)))
25 ltrelnq 7327 . . . . . . . . . . . . . 14 <Q ⊆ (Q × Q)
2625brel 4663 . . . . . . . . . . . . 13 (𝑤 <Q 𝑦 → (𝑤Q𝑦Q))
2722, 26syl 14 . . . . . . . . . . . 12 ((𝐴<P 𝐵 ∧ ((𝑤 ∈ (1st𝐴) ∧ 𝑢 ∈ (1st𝐶)) ∧ 𝑧 = (𝑤 +Q 𝑢)) ∧ (𝑦 ∈ (2nd𝐴) ∧ (𝑦 +Q 𝑢) ∈ (1st𝐵))) → (𝑤Q𝑦Q))
2827simpld 111 . . . . . . . . . . 11 ((𝐴<P 𝐵 ∧ ((𝑤 ∈ (1st𝐴) ∧ 𝑢 ∈ (1st𝐶)) ∧ 𝑧 = (𝑤 +Q 𝑢)) ∧ (𝑦 ∈ (2nd𝐴) ∧ (𝑦 +Q 𝑢) ∈ (1st𝐵))) → 𝑤Q)
2927simprd 113 . . . . . . . . . . 11 ((𝐴<P 𝐵 ∧ ((𝑤 ∈ (1st𝐴) ∧ 𝑢 ∈ (1st𝐶)) ∧ 𝑧 = (𝑤 +Q 𝑢)) ∧ (𝑦 ∈ (2nd𝐴) ∧ (𝑦 +Q 𝑢) ∈ (1st𝐵))) → 𝑦Q)
30 prop 7437 . . . . . . . . . . . . . . . 16 (𝐶P → ⟨(1st𝐶), (2nd𝐶)⟩ ∈ P)
315, 30syl 14 . . . . . . . . . . . . . . 15 (𝐴<P 𝐵 → ⟨(1st𝐶), (2nd𝐶)⟩ ∈ P)
32 elprnql 7443 . . . . . . . . . . . . . . 15 ((⟨(1st𝐶), (2nd𝐶)⟩ ∈ P𝑢 ∈ (1st𝐶)) → 𝑢Q)
3331, 32sylan 281 . . . . . . . . . . . . . 14 ((𝐴<P 𝐵𝑢 ∈ (1st𝐶)) → 𝑢Q)
3433adantrl 475 . . . . . . . . . . . . 13 ((𝐴<P 𝐵 ∧ (𝑤 ∈ (1st𝐴) ∧ 𝑢 ∈ (1st𝐶))) → 𝑢Q)
3534adantrr 476 . . . . . . . . . . . 12 ((𝐴<P 𝐵 ∧ ((𝑤 ∈ (1st𝐴) ∧ 𝑢 ∈ (1st𝐶)) ∧ 𝑧 = (𝑤 +Q 𝑢))) → 𝑢Q)
36353adant3 1012 . . . . . . . . . . 11 ((𝐴<P 𝐵 ∧ ((𝑤 ∈ (1st𝐴) ∧ 𝑢 ∈ (1st𝐶)) ∧ 𝑧 = (𝑤 +Q 𝑢)) ∧ (𝑦 ∈ (2nd𝐴) ∧ (𝑦 +Q 𝑢) ∈ (1st𝐵))) → 𝑢Q)
37 addcomnqg 7343 . . . . . . . . . . . 12 ((𝑓Q𝑔Q) → (𝑓 +Q 𝑔) = (𝑔 +Q 𝑓))
3837adantl 275 . . . . . . . . . . 11 (((𝐴<P 𝐵 ∧ ((𝑤 ∈ (1st𝐴) ∧ 𝑢 ∈ (1st𝐶)) ∧ 𝑧 = (𝑤 +Q 𝑢)) ∧ (𝑦 ∈ (2nd𝐴) ∧ (𝑦 +Q 𝑢) ∈ (1st𝐵))) ∧ (𝑓Q𝑔Q)) → (𝑓 +Q 𝑔) = (𝑔 +Q 𝑓))
3924, 28, 29, 36, 38caovord2d 6022 . . . . . . . . . 10 ((𝐴<P 𝐵 ∧ ((𝑤 ∈ (1st𝐴) ∧ 𝑢 ∈ (1st𝐶)) ∧ 𝑧 = (𝑤 +Q 𝑢)) ∧ (𝑦 ∈ (2nd𝐴) ∧ (𝑦 +Q 𝑢) ∈ (1st𝐵))) → (𝑤 <Q 𝑦 ↔ (𝑤 +Q 𝑢) <Q (𝑦 +Q 𝑢)))
402simprd 113 . . . . . . . . . . . . . 14 (𝐴<P 𝐵𝐵P)
41 prop 7437 . . . . . . . . . . . . . 14 (𝐵P → ⟨(1st𝐵), (2nd𝐵)⟩ ∈ P)
4240, 41syl 14 . . . . . . . . . . . . 13 (𝐴<P 𝐵 → ⟨(1st𝐵), (2nd𝐵)⟩ ∈ P)
43 prcdnql 7446 . . . . . . . . . . . . 13 ((⟨(1st𝐵), (2nd𝐵)⟩ ∈ P ∧ (𝑦 +Q 𝑢) ∈ (1st𝐵)) → ((𝑤 +Q 𝑢) <Q (𝑦 +Q 𝑢) → (𝑤 +Q 𝑢) ∈ (1st𝐵)))
4442, 43sylan 281 . . . . . . . . . . . 12 ((𝐴<P 𝐵 ∧ (𝑦 +Q 𝑢) ∈ (1st𝐵)) → ((𝑤 +Q 𝑢) <Q (𝑦 +Q 𝑢) → (𝑤 +Q 𝑢) ∈ (1st𝐵)))
4544adantrl 475 . . . . . . . . . . 11 ((𝐴<P 𝐵 ∧ (𝑦 ∈ (2nd𝐴) ∧ (𝑦 +Q 𝑢) ∈ (1st𝐵))) → ((𝑤 +Q 𝑢) <Q (𝑦 +Q 𝑢) → (𝑤 +Q 𝑢) ∈ (1st𝐵)))
46453adant2 1011 . . . . . . . . . 10 ((𝐴<P 𝐵 ∧ ((𝑤 ∈ (1st𝐴) ∧ 𝑢 ∈ (1st𝐶)) ∧ 𝑧 = (𝑤 +Q 𝑢)) ∧ (𝑦 ∈ (2nd𝐴) ∧ (𝑦 +Q 𝑢) ∈ (1st𝐵))) → ((𝑤 +Q 𝑢) <Q (𝑦 +Q 𝑢) → (𝑤 +Q 𝑢) ∈ (1st𝐵)))
4739, 46sylbid 149 . . . . . . . . 9 ((𝐴<P 𝐵 ∧ ((𝑤 ∈ (1st𝐴) ∧ 𝑢 ∈ (1st𝐶)) ∧ 𝑧 = (𝑤 +Q 𝑢)) ∧ (𝑦 ∈ (2nd𝐴) ∧ (𝑦 +Q 𝑢) ∈ (1st𝐵))) → (𝑤 <Q 𝑦 → (𝑤 +Q 𝑢) ∈ (1st𝐵)))
4822, 47mpd 13 . . . . . . . 8 ((𝐴<P 𝐵 ∧ ((𝑤 ∈ (1st𝐴) ∧ 𝑢 ∈ (1st𝐶)) ∧ 𝑧 = (𝑤 +Q 𝑢)) ∧ (𝑦 ∈ (2nd𝐴) ∧ (𝑦 +Q 𝑢) ∈ (1st𝐵))) → (𝑤 +Q 𝑢) ∈ (1st𝐵))
49483expa 1198 . . . . . . 7 (((𝐴<P 𝐵 ∧ ((𝑤 ∈ (1st𝐴) ∧ 𝑢 ∈ (1st𝐶)) ∧ 𝑧 = (𝑤 +Q 𝑢))) ∧ (𝑦 ∈ (2nd𝐴) ∧ (𝑦 +Q 𝑢) ∈ (1st𝐵))) → (𝑤 +Q 𝑢) ∈ (1st𝐵))
5015, 49exlimddv 1891 . . . . . 6 ((𝐴<P 𝐵 ∧ ((𝑤 ∈ (1st𝐴) ∧ 𝑢 ∈ (1st𝐶)) ∧ 𝑧 = (𝑤 +Q 𝑢))) → (𝑤 +Q 𝑢) ∈ (1st𝐵))
5110, 50eqeltrd 2247 . . . . 5 ((𝐴<P 𝐵 ∧ ((𝑤 ∈ (1st𝐴) ∧ 𝑢 ∈ (1st𝐶)) ∧ 𝑧 = (𝑤 +Q 𝑢))) → 𝑧 ∈ (1st𝐵))
5251expr 373 . . . 4 ((𝐴<P 𝐵 ∧ (𝑤 ∈ (1st𝐴) ∧ 𝑢 ∈ (1st𝐶))) → (𝑧 = (𝑤 +Q 𝑢) → 𝑧 ∈ (1st𝐵)))
5352rexlimdvva 2595 . . 3 (𝐴<P 𝐵 → (∃𝑤 ∈ (1st𝐴)∃𝑢 ∈ (1st𝐶)𝑧 = (𝑤 +Q 𝑢) → 𝑧 ∈ (1st𝐵)))
549, 53sylbid 149 . 2 (𝐴<P 𝐵 → (𝑧 ∈ (1st ‘(𝐴 +P 𝐶)) → 𝑧 ∈ (1st𝐵)))
5554ssrdv 3153 1 (𝐴<P 𝐵 → (1st ‘(𝐴 +P 𝐶)) ⊆ (1st𝐵))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104  w3a 973   = wceq 1348  wex 1485  wcel 2141  wrex 2449  {crab 2452  wss 3121  cop 3586   class class class wbr 3989  cfv 5198  (class class class)co 5853  1st c1st 6117  2nd c2nd 6118  Qcnq 7242   +Q cplq 7244   <Q cltq 7247  Pcnp 7253   +P cpp 7255  <P cltp 7257
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-coll 4104  ax-sep 4107  ax-nul 4115  ax-pow 4160  ax-pr 4194  ax-un 4418  ax-setind 4521  ax-iinf 4572
This theorem depends on definitions:  df-bi 116  df-dc 830  df-3or 974  df-3an 975  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ne 2341  df-ral 2453  df-rex 2454  df-reu 2455  df-rab 2457  df-v 2732  df-sbc 2956  df-csb 3050  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-nul 3415  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-int 3832  df-iun 3875  df-br 3990  df-opab 4051  df-mpt 4052  df-tr 4088  df-eprel 4274  df-id 4278  df-po 4281  df-iso 4282  df-iord 4351  df-on 4353  df-suc 4356  df-iom 4575  df-xp 4617  df-rel 4618  df-cnv 4619  df-co 4620  df-dm 4621  df-rn 4622  df-res 4623  df-ima 4624  df-iota 5160  df-fun 5200  df-fn 5201  df-f 5202  df-f1 5203  df-fo 5204  df-f1o 5205  df-fv 5206  df-ov 5856  df-oprab 5857  df-mpo 5858  df-1st 6119  df-2nd 6120  df-recs 6284  df-irdg 6349  df-1o 6395  df-2o 6396  df-oadd 6399  df-omul 6400  df-er 6513  df-ec 6515  df-qs 6519  df-ni 7266  df-pli 7267  df-mi 7268  df-lti 7269  df-plpq 7306  df-mpq 7307  df-enq 7309  df-nqqs 7310  df-plqqs 7311  df-mqqs 7312  df-1nqqs 7313  df-rq 7314  df-ltnqqs 7315  df-enq0 7386  df-nq0 7387  df-0nq0 7388  df-plq0 7389  df-mq0 7390  df-inp 7428  df-iplp 7430  df-iltp 7432
This theorem is referenced by:  ltexpri  7575
  Copyright terms: Public domain W3C validator