ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ltexprlemfl GIF version

Theorem ltexprlemfl 7607
Description: Lemma for ltexpri 7611. One direction of our result for lower cuts. (Contributed by Jim Kingdon, 17-Dec-2019.)
Hypothesis
Ref Expression
ltexprlem.1 𝐶 = ⟨{𝑥Q ∣ ∃𝑦(𝑦 ∈ (2nd𝐴) ∧ (𝑦 +Q 𝑥) ∈ (1st𝐵))}, {𝑥Q ∣ ∃𝑦(𝑦 ∈ (1st𝐴) ∧ (𝑦 +Q 𝑥) ∈ (2nd𝐵))}⟩
Assertion
Ref Expression
ltexprlemfl (𝐴<P 𝐵 → (1st ‘(𝐴 +P 𝐶)) ⊆ (1st𝐵))
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝐵,𝑦   𝑥,𝐶,𝑦

Proof of Theorem ltexprlemfl
Dummy variables 𝑧 𝑤 𝑢 𝑓 𝑔 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ltrelpr 7503 . . . . . 6 <P ⊆ (P × P)
21brel 4678 . . . . 5 (𝐴<P 𝐵 → (𝐴P𝐵P))
32simpld 112 . . . 4 (𝐴<P 𝐵𝐴P)
4 ltexprlem.1 . . . . 5 𝐶 = ⟨{𝑥Q ∣ ∃𝑦(𝑦 ∈ (2nd𝐴) ∧ (𝑦 +Q 𝑥) ∈ (1st𝐵))}, {𝑥Q ∣ ∃𝑦(𝑦 ∈ (1st𝐴) ∧ (𝑦 +Q 𝑥) ∈ (2nd𝐵))}⟩
54ltexprlempr 7606 . . . 4 (𝐴<P 𝐵𝐶P)
6 df-iplp 7466 . . . . 5 +P = (𝑧P, 𝑦P ↦ ⟨{𝑓Q ∣ ∃𝑔QQ (𝑔 ∈ (1st𝑧) ∧ ∈ (1st𝑦) ∧ 𝑓 = (𝑔 +Q ))}, {𝑓Q ∣ ∃𝑔QQ (𝑔 ∈ (2nd𝑧) ∧ ∈ (2nd𝑦) ∧ 𝑓 = (𝑔 +Q ))}⟩)
7 addclnq 7373 . . . . 5 ((𝑔QQ) → (𝑔 +Q ) ∈ Q)
86, 7genpelvl 7510 . . . 4 ((𝐴P𝐶P) → (𝑧 ∈ (1st ‘(𝐴 +P 𝐶)) ↔ ∃𝑤 ∈ (1st𝐴)∃𝑢 ∈ (1st𝐶)𝑧 = (𝑤 +Q 𝑢)))
93, 5, 8syl2anc 411 . . 3 (𝐴<P 𝐵 → (𝑧 ∈ (1st ‘(𝐴 +P 𝐶)) ↔ ∃𝑤 ∈ (1st𝐴)∃𝑢 ∈ (1st𝐶)𝑧 = (𝑤 +Q 𝑢)))
10 simprr 531 . . . . . 6 ((𝐴<P 𝐵 ∧ ((𝑤 ∈ (1st𝐴) ∧ 𝑢 ∈ (1st𝐶)) ∧ 𝑧 = (𝑤 +Q 𝑢))) → 𝑧 = (𝑤 +Q 𝑢))
114ltexprlemell 7596 . . . . . . . . . . 11 (𝑢 ∈ (1st𝐶) ↔ (𝑢Q ∧ ∃𝑦(𝑦 ∈ (2nd𝐴) ∧ (𝑦 +Q 𝑢) ∈ (1st𝐵))))
1211biimpi 120 . . . . . . . . . 10 (𝑢 ∈ (1st𝐶) → (𝑢Q ∧ ∃𝑦(𝑦 ∈ (2nd𝐴) ∧ (𝑦 +Q 𝑢) ∈ (1st𝐵))))
1312ad2antlr 489 . . . . . . . . 9 (((𝑤 ∈ (1st𝐴) ∧ 𝑢 ∈ (1st𝐶)) ∧ 𝑧 = (𝑤 +Q 𝑢)) → (𝑢Q ∧ ∃𝑦(𝑦 ∈ (2nd𝐴) ∧ (𝑦 +Q 𝑢) ∈ (1st𝐵))))
1413adantl 277 . . . . . . . 8 ((𝐴<P 𝐵 ∧ ((𝑤 ∈ (1st𝐴) ∧ 𝑢 ∈ (1st𝐶)) ∧ 𝑧 = (𝑤 +Q 𝑢))) → (𝑢Q ∧ ∃𝑦(𝑦 ∈ (2nd𝐴) ∧ (𝑦 +Q 𝑢) ∈ (1st𝐵))))
1514simprd 114 . . . . . . 7 ((𝐴<P 𝐵 ∧ ((𝑤 ∈ (1st𝐴) ∧ 𝑢 ∈ (1st𝐶)) ∧ 𝑧 = (𝑤 +Q 𝑢))) → ∃𝑦(𝑦 ∈ (2nd𝐴) ∧ (𝑦 +Q 𝑢) ∈ (1st𝐵)))
16 prop 7473 . . . . . . . . . . . . . 14 (𝐴P → ⟨(1st𝐴), (2nd𝐴)⟩ ∈ P)
173, 16syl 14 . . . . . . . . . . . . 13 (𝐴<P 𝐵 → ⟨(1st𝐴), (2nd𝐴)⟩ ∈ P)
18 prltlu 7485 . . . . . . . . . . . . 13 ((⟨(1st𝐴), (2nd𝐴)⟩ ∈ P𝑤 ∈ (1st𝐴) ∧ 𝑦 ∈ (2nd𝐴)) → 𝑤 <Q 𝑦)
1917, 18syl3an1 1271 . . . . . . . . . . . 12 ((𝐴<P 𝐵𝑤 ∈ (1st𝐴) ∧ 𝑦 ∈ (2nd𝐴)) → 𝑤 <Q 𝑦)
20193adant2r 1233 . . . . . . . . . . 11 ((𝐴<P 𝐵 ∧ (𝑤 ∈ (1st𝐴) ∧ 𝑢 ∈ (1st𝐶)) ∧ 𝑦 ∈ (2nd𝐴)) → 𝑤 <Q 𝑦)
21203adant2r 1233 . . . . . . . . . 10 ((𝐴<P 𝐵 ∧ ((𝑤 ∈ (1st𝐴) ∧ 𝑢 ∈ (1st𝐶)) ∧ 𝑧 = (𝑤 +Q 𝑢)) ∧ 𝑦 ∈ (2nd𝐴)) → 𝑤 <Q 𝑦)
22213adant3r 1235 . . . . . . . . 9 ((𝐴<P 𝐵 ∧ ((𝑤 ∈ (1st𝐴) ∧ 𝑢 ∈ (1st𝐶)) ∧ 𝑧 = (𝑤 +Q 𝑢)) ∧ (𝑦 ∈ (2nd𝐴) ∧ (𝑦 +Q 𝑢) ∈ (1st𝐵))) → 𝑤 <Q 𝑦)
23 ltanqg 7398 . . . . . . . . . . . 12 ((𝑓Q𝑔QQ) → (𝑓 <Q 𝑔 ↔ ( +Q 𝑓) <Q ( +Q 𝑔)))
2423adantl 277 . . . . . . . . . . 11 (((𝐴<P 𝐵 ∧ ((𝑤 ∈ (1st𝐴) ∧ 𝑢 ∈ (1st𝐶)) ∧ 𝑧 = (𝑤 +Q 𝑢)) ∧ (𝑦 ∈ (2nd𝐴) ∧ (𝑦 +Q 𝑢) ∈ (1st𝐵))) ∧ (𝑓Q𝑔QQ)) → (𝑓 <Q 𝑔 ↔ ( +Q 𝑓) <Q ( +Q 𝑔)))
25 ltrelnq 7363 . . . . . . . . . . . . . 14 <Q ⊆ (Q × Q)
2625brel 4678 . . . . . . . . . . . . 13 (𝑤 <Q 𝑦 → (𝑤Q𝑦Q))
2722, 26syl 14 . . . . . . . . . . . 12 ((𝐴<P 𝐵 ∧ ((𝑤 ∈ (1st𝐴) ∧ 𝑢 ∈ (1st𝐶)) ∧ 𝑧 = (𝑤 +Q 𝑢)) ∧ (𝑦 ∈ (2nd𝐴) ∧ (𝑦 +Q 𝑢) ∈ (1st𝐵))) → (𝑤Q𝑦Q))
2827simpld 112 . . . . . . . . . . 11 ((𝐴<P 𝐵 ∧ ((𝑤 ∈ (1st𝐴) ∧ 𝑢 ∈ (1st𝐶)) ∧ 𝑧 = (𝑤 +Q 𝑢)) ∧ (𝑦 ∈ (2nd𝐴) ∧ (𝑦 +Q 𝑢) ∈ (1st𝐵))) → 𝑤Q)
2927simprd 114 . . . . . . . . . . 11 ((𝐴<P 𝐵 ∧ ((𝑤 ∈ (1st𝐴) ∧ 𝑢 ∈ (1st𝐶)) ∧ 𝑧 = (𝑤 +Q 𝑢)) ∧ (𝑦 ∈ (2nd𝐴) ∧ (𝑦 +Q 𝑢) ∈ (1st𝐵))) → 𝑦Q)
30 prop 7473 . . . . . . . . . . . . . . . 16 (𝐶P → ⟨(1st𝐶), (2nd𝐶)⟩ ∈ P)
315, 30syl 14 . . . . . . . . . . . . . . 15 (𝐴<P 𝐵 → ⟨(1st𝐶), (2nd𝐶)⟩ ∈ P)
32 elprnql 7479 . . . . . . . . . . . . . . 15 ((⟨(1st𝐶), (2nd𝐶)⟩ ∈ P𝑢 ∈ (1st𝐶)) → 𝑢Q)
3331, 32sylan 283 . . . . . . . . . . . . . 14 ((𝐴<P 𝐵𝑢 ∈ (1st𝐶)) → 𝑢Q)
3433adantrl 478 . . . . . . . . . . . . 13 ((𝐴<P 𝐵 ∧ (𝑤 ∈ (1st𝐴) ∧ 𝑢 ∈ (1st𝐶))) → 𝑢Q)
3534adantrr 479 . . . . . . . . . . . 12 ((𝐴<P 𝐵 ∧ ((𝑤 ∈ (1st𝐴) ∧ 𝑢 ∈ (1st𝐶)) ∧ 𝑧 = (𝑤 +Q 𝑢))) → 𝑢Q)
36353adant3 1017 . . . . . . . . . . 11 ((𝐴<P 𝐵 ∧ ((𝑤 ∈ (1st𝐴) ∧ 𝑢 ∈ (1st𝐶)) ∧ 𝑧 = (𝑤 +Q 𝑢)) ∧ (𝑦 ∈ (2nd𝐴) ∧ (𝑦 +Q 𝑢) ∈ (1st𝐵))) → 𝑢Q)
37 addcomnqg 7379 . . . . . . . . . . . 12 ((𝑓Q𝑔Q) → (𝑓 +Q 𝑔) = (𝑔 +Q 𝑓))
3837adantl 277 . . . . . . . . . . 11 (((𝐴<P 𝐵 ∧ ((𝑤 ∈ (1st𝐴) ∧ 𝑢 ∈ (1st𝐶)) ∧ 𝑧 = (𝑤 +Q 𝑢)) ∧ (𝑦 ∈ (2nd𝐴) ∧ (𝑦 +Q 𝑢) ∈ (1st𝐵))) ∧ (𝑓Q𝑔Q)) → (𝑓 +Q 𝑔) = (𝑔 +Q 𝑓))
3924, 28, 29, 36, 38caovord2d 6043 . . . . . . . . . 10 ((𝐴<P 𝐵 ∧ ((𝑤 ∈ (1st𝐴) ∧ 𝑢 ∈ (1st𝐶)) ∧ 𝑧 = (𝑤 +Q 𝑢)) ∧ (𝑦 ∈ (2nd𝐴) ∧ (𝑦 +Q 𝑢) ∈ (1st𝐵))) → (𝑤 <Q 𝑦 ↔ (𝑤 +Q 𝑢) <Q (𝑦 +Q 𝑢)))
402simprd 114 . . . . . . . . . . . . . 14 (𝐴<P 𝐵𝐵P)
41 prop 7473 . . . . . . . . . . . . . 14 (𝐵P → ⟨(1st𝐵), (2nd𝐵)⟩ ∈ P)
4240, 41syl 14 . . . . . . . . . . . . 13 (𝐴<P 𝐵 → ⟨(1st𝐵), (2nd𝐵)⟩ ∈ P)
43 prcdnql 7482 . . . . . . . . . . . . 13 ((⟨(1st𝐵), (2nd𝐵)⟩ ∈ P ∧ (𝑦 +Q 𝑢) ∈ (1st𝐵)) → ((𝑤 +Q 𝑢) <Q (𝑦 +Q 𝑢) → (𝑤 +Q 𝑢) ∈ (1st𝐵)))
4442, 43sylan 283 . . . . . . . . . . . 12 ((𝐴<P 𝐵 ∧ (𝑦 +Q 𝑢) ∈ (1st𝐵)) → ((𝑤 +Q 𝑢) <Q (𝑦 +Q 𝑢) → (𝑤 +Q 𝑢) ∈ (1st𝐵)))
4544adantrl 478 . . . . . . . . . . 11 ((𝐴<P 𝐵 ∧ (𝑦 ∈ (2nd𝐴) ∧ (𝑦 +Q 𝑢) ∈ (1st𝐵))) → ((𝑤 +Q 𝑢) <Q (𝑦 +Q 𝑢) → (𝑤 +Q 𝑢) ∈ (1st𝐵)))
46453adant2 1016 . . . . . . . . . 10 ((𝐴<P 𝐵 ∧ ((𝑤 ∈ (1st𝐴) ∧ 𝑢 ∈ (1st𝐶)) ∧ 𝑧 = (𝑤 +Q 𝑢)) ∧ (𝑦 ∈ (2nd𝐴) ∧ (𝑦 +Q 𝑢) ∈ (1st𝐵))) → ((𝑤 +Q 𝑢) <Q (𝑦 +Q 𝑢) → (𝑤 +Q 𝑢) ∈ (1st𝐵)))
4739, 46sylbid 150 . . . . . . . . 9 ((𝐴<P 𝐵 ∧ ((𝑤 ∈ (1st𝐴) ∧ 𝑢 ∈ (1st𝐶)) ∧ 𝑧 = (𝑤 +Q 𝑢)) ∧ (𝑦 ∈ (2nd𝐴) ∧ (𝑦 +Q 𝑢) ∈ (1st𝐵))) → (𝑤 <Q 𝑦 → (𝑤 +Q 𝑢) ∈ (1st𝐵)))
4822, 47mpd 13 . . . . . . . 8 ((𝐴<P 𝐵 ∧ ((𝑤 ∈ (1st𝐴) ∧ 𝑢 ∈ (1st𝐶)) ∧ 𝑧 = (𝑤 +Q 𝑢)) ∧ (𝑦 ∈ (2nd𝐴) ∧ (𝑦 +Q 𝑢) ∈ (1st𝐵))) → (𝑤 +Q 𝑢) ∈ (1st𝐵))
49483expa 1203 . . . . . . 7 (((𝐴<P 𝐵 ∧ ((𝑤 ∈ (1st𝐴) ∧ 𝑢 ∈ (1st𝐶)) ∧ 𝑧 = (𝑤 +Q 𝑢))) ∧ (𝑦 ∈ (2nd𝐴) ∧ (𝑦 +Q 𝑢) ∈ (1st𝐵))) → (𝑤 +Q 𝑢) ∈ (1st𝐵))
5015, 49exlimddv 1898 . . . . . 6 ((𝐴<P 𝐵 ∧ ((𝑤 ∈ (1st𝐴) ∧ 𝑢 ∈ (1st𝐶)) ∧ 𝑧 = (𝑤 +Q 𝑢))) → (𝑤 +Q 𝑢) ∈ (1st𝐵))
5110, 50eqeltrd 2254 . . . . 5 ((𝐴<P 𝐵 ∧ ((𝑤 ∈ (1st𝐴) ∧ 𝑢 ∈ (1st𝐶)) ∧ 𝑧 = (𝑤 +Q 𝑢))) → 𝑧 ∈ (1st𝐵))
5251expr 375 . . . 4 ((𝐴<P 𝐵 ∧ (𝑤 ∈ (1st𝐴) ∧ 𝑢 ∈ (1st𝐶))) → (𝑧 = (𝑤 +Q 𝑢) → 𝑧 ∈ (1st𝐵)))
5352rexlimdvva 2602 . . 3 (𝐴<P 𝐵 → (∃𝑤 ∈ (1st𝐴)∃𝑢 ∈ (1st𝐶)𝑧 = (𝑤 +Q 𝑢) → 𝑧 ∈ (1st𝐵)))
549, 53sylbid 150 . 2 (𝐴<P 𝐵 → (𝑧 ∈ (1st ‘(𝐴 +P 𝐶)) → 𝑧 ∈ (1st𝐵)))
5554ssrdv 3161 1 (𝐴<P 𝐵 → (1st ‘(𝐴 +P 𝐶)) ⊆ (1st𝐵))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  w3a 978   = wceq 1353  wex 1492  wcel 2148  wrex 2456  {crab 2459  wss 3129  cop 3595   class class class wbr 4003  cfv 5216  (class class class)co 5874  1st c1st 6138  2nd c2nd 6139  Qcnq 7278   +Q cplq 7280   <Q cltq 7283  Pcnp 7289   +P cpp 7291  <P cltp 7293
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-coll 4118  ax-sep 4121  ax-nul 4129  ax-pow 4174  ax-pr 4209  ax-un 4433  ax-setind 4536  ax-iinf 4587
This theorem depends on definitions:  df-bi 117  df-dc 835  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-ral 2460  df-rex 2461  df-reu 2462  df-rab 2464  df-v 2739  df-sbc 2963  df-csb 3058  df-dif 3131  df-un 3133  df-in 3135  df-ss 3142  df-nul 3423  df-pw 3577  df-sn 3598  df-pr 3599  df-op 3601  df-uni 3810  df-int 3845  df-iun 3888  df-br 4004  df-opab 4065  df-mpt 4066  df-tr 4102  df-eprel 4289  df-id 4293  df-po 4296  df-iso 4297  df-iord 4366  df-on 4368  df-suc 4371  df-iom 4590  df-xp 4632  df-rel 4633  df-cnv 4634  df-co 4635  df-dm 4636  df-rn 4637  df-res 4638  df-ima 4639  df-iota 5178  df-fun 5218  df-fn 5219  df-f 5220  df-f1 5221  df-fo 5222  df-f1o 5223  df-fv 5224  df-ov 5877  df-oprab 5878  df-mpo 5879  df-1st 6140  df-2nd 6141  df-recs 6305  df-irdg 6370  df-1o 6416  df-2o 6417  df-oadd 6420  df-omul 6421  df-er 6534  df-ec 6536  df-qs 6540  df-ni 7302  df-pli 7303  df-mi 7304  df-lti 7305  df-plpq 7342  df-mpq 7343  df-enq 7345  df-nqqs 7346  df-plqqs 7347  df-mqqs 7348  df-1nqqs 7349  df-rq 7350  df-ltnqqs 7351  df-enq0 7422  df-nq0 7423  df-0nq0 7424  df-plq0 7425  df-mq0 7426  df-inp 7464  df-iplp 7466  df-iltp 7468
This theorem is referenced by:  ltexpri  7611
  Copyright terms: Public domain W3C validator