| Step | Hyp | Ref
 | Expression | 
| 1 |   | ltrelpr 7572 | 
. . . . . 6
⊢
<P ⊆ (P ×
P) | 
| 2 | 1 | brel 4715 | 
. . . . 5
⊢ (𝐴<P
𝐵 → (𝐴 ∈ P ∧ 𝐵 ∈
P)) | 
| 3 | 2 | simpld 112 | 
. . . 4
⊢ (𝐴<P
𝐵 → 𝐴 ∈ P) | 
| 4 |   | ltexprlem.1 | 
. . . . 5
⊢ 𝐶 = 〈{𝑥 ∈ Q ∣ ∃𝑦(𝑦 ∈ (2nd ‘𝐴) ∧ (𝑦 +Q 𝑥) ∈ (1st
‘𝐵))}, {𝑥 ∈ Q ∣
∃𝑦(𝑦 ∈ (1st ‘𝐴) ∧ (𝑦 +Q 𝑥) ∈ (2nd
‘𝐵))}〉 | 
| 5 | 4 | ltexprlempr 7675 | 
. . . 4
⊢ (𝐴<P
𝐵 → 𝐶 ∈ P) | 
| 6 |   | df-iplp 7535 | 
. . . . 5
⊢ 
+P = (𝑧 ∈ P, 𝑦 ∈ P ↦ 〈{𝑓 ∈ Q ∣
∃𝑔 ∈
Q ∃ℎ
∈ Q (𝑔
∈ (1st ‘𝑧) ∧ ℎ ∈ (1st ‘𝑦) ∧ 𝑓 = (𝑔 +Q ℎ))}, {𝑓 ∈ Q ∣ ∃𝑔 ∈ Q
∃ℎ ∈
Q (𝑔 ∈
(2nd ‘𝑧)
∧ ℎ ∈
(2nd ‘𝑦)
∧ 𝑓 = (𝑔 +Q
ℎ))}〉) | 
| 7 |   | addclnq 7442 | 
. . . . 5
⊢ ((𝑔 ∈ Q ∧
ℎ ∈ Q)
→ (𝑔
+Q ℎ) ∈ Q) | 
| 8 | 6, 7 | genpelvl 7579 | 
. . . 4
⊢ ((𝐴 ∈ P ∧
𝐶 ∈ P)
→ (𝑧 ∈
(1st ‘(𝐴
+P 𝐶)) ↔ ∃𝑤 ∈ (1st ‘𝐴)∃𝑢 ∈ (1st ‘𝐶)𝑧 = (𝑤 +Q 𝑢))) | 
| 9 | 3, 5, 8 | syl2anc 411 | 
. . 3
⊢ (𝐴<P
𝐵 → (𝑧 ∈ (1st
‘(𝐴
+P 𝐶)) ↔ ∃𝑤 ∈ (1st ‘𝐴)∃𝑢 ∈ (1st ‘𝐶)𝑧 = (𝑤 +Q 𝑢))) | 
| 10 |   | simprr 531 | 
. . . . . 6
⊢ ((𝐴<P
𝐵 ∧ ((𝑤 ∈ (1st
‘𝐴) ∧ 𝑢 ∈ (1st
‘𝐶)) ∧ 𝑧 = (𝑤 +Q 𝑢))) → 𝑧 = (𝑤 +Q 𝑢)) | 
| 11 | 4 | ltexprlemell 7665 | 
. . . . . . . . . . 11
⊢ (𝑢 ∈ (1st
‘𝐶) ↔ (𝑢 ∈ Q ∧
∃𝑦(𝑦 ∈ (2nd ‘𝐴) ∧ (𝑦 +Q 𝑢) ∈ (1st
‘𝐵)))) | 
| 12 | 11 | biimpi 120 | 
. . . . . . . . . 10
⊢ (𝑢 ∈ (1st
‘𝐶) → (𝑢 ∈ Q ∧
∃𝑦(𝑦 ∈ (2nd ‘𝐴) ∧ (𝑦 +Q 𝑢) ∈ (1st
‘𝐵)))) | 
| 13 | 12 | ad2antlr 489 | 
. . . . . . . . 9
⊢ (((𝑤 ∈ (1st
‘𝐴) ∧ 𝑢 ∈ (1st
‘𝐶)) ∧ 𝑧 = (𝑤 +Q 𝑢)) → (𝑢 ∈ Q ∧ ∃𝑦(𝑦 ∈ (2nd ‘𝐴) ∧ (𝑦 +Q 𝑢) ∈ (1st
‘𝐵)))) | 
| 14 | 13 | adantl 277 | 
. . . . . . . 8
⊢ ((𝐴<P
𝐵 ∧ ((𝑤 ∈ (1st
‘𝐴) ∧ 𝑢 ∈ (1st
‘𝐶)) ∧ 𝑧 = (𝑤 +Q 𝑢))) → (𝑢 ∈ Q ∧ ∃𝑦(𝑦 ∈ (2nd ‘𝐴) ∧ (𝑦 +Q 𝑢) ∈ (1st
‘𝐵)))) | 
| 15 | 14 | simprd 114 | 
. . . . . . 7
⊢ ((𝐴<P
𝐵 ∧ ((𝑤 ∈ (1st
‘𝐴) ∧ 𝑢 ∈ (1st
‘𝐶)) ∧ 𝑧 = (𝑤 +Q 𝑢))) → ∃𝑦(𝑦 ∈ (2nd ‘𝐴) ∧ (𝑦 +Q 𝑢) ∈ (1st
‘𝐵))) | 
| 16 |   | prop 7542 | 
. . . . . . . . . . . . . 14
⊢ (𝐴 ∈ P →
〈(1st ‘𝐴), (2nd ‘𝐴)〉 ∈
P) | 
| 17 | 3, 16 | syl 14 | 
. . . . . . . . . . . . 13
⊢ (𝐴<P
𝐵 →
〈(1st ‘𝐴), (2nd ‘𝐴)〉 ∈
P) | 
| 18 |   | prltlu 7554 | 
. . . . . . . . . . . . 13
⊢
((〈(1st ‘𝐴), (2nd ‘𝐴)〉 ∈ P ∧ 𝑤 ∈ (1st
‘𝐴) ∧ 𝑦 ∈ (2nd
‘𝐴)) → 𝑤 <Q
𝑦) | 
| 19 | 17, 18 | syl3an1 1282 | 
. . . . . . . . . . . 12
⊢ ((𝐴<P
𝐵 ∧ 𝑤 ∈ (1st ‘𝐴) ∧ 𝑦 ∈ (2nd ‘𝐴)) → 𝑤 <Q 𝑦) | 
| 20 | 19 | 3adant2r 1235 | 
. . . . . . . . . . 11
⊢ ((𝐴<P
𝐵 ∧ (𝑤 ∈ (1st ‘𝐴) ∧ 𝑢 ∈ (1st ‘𝐶)) ∧ 𝑦 ∈ (2nd ‘𝐴)) → 𝑤 <Q 𝑦) | 
| 21 | 20 | 3adant2r 1235 | 
. . . . . . . . . 10
⊢ ((𝐴<P
𝐵 ∧ ((𝑤 ∈ (1st
‘𝐴) ∧ 𝑢 ∈ (1st
‘𝐶)) ∧ 𝑧 = (𝑤 +Q 𝑢)) ∧ 𝑦 ∈ (2nd ‘𝐴)) → 𝑤 <Q 𝑦) | 
| 22 | 21 | 3adant3r 1237 | 
. . . . . . . . 9
⊢ ((𝐴<P
𝐵 ∧ ((𝑤 ∈ (1st
‘𝐴) ∧ 𝑢 ∈ (1st
‘𝐶)) ∧ 𝑧 = (𝑤 +Q 𝑢)) ∧ (𝑦 ∈ (2nd ‘𝐴) ∧ (𝑦 +Q 𝑢) ∈ (1st
‘𝐵))) → 𝑤 <Q
𝑦) | 
| 23 |   | ltanqg 7467 | 
. . . . . . . . . . . 12
⊢ ((𝑓 ∈ Q ∧
𝑔 ∈ Q
∧ ℎ ∈
Q) → (𝑓
<Q 𝑔 ↔ (ℎ +Q 𝑓) <Q
(ℎ
+Q 𝑔))) | 
| 24 | 23 | adantl 277 | 
. . . . . . . . . . 11
⊢ (((𝐴<P
𝐵 ∧ ((𝑤 ∈ (1st
‘𝐴) ∧ 𝑢 ∈ (1st
‘𝐶)) ∧ 𝑧 = (𝑤 +Q 𝑢)) ∧ (𝑦 ∈ (2nd ‘𝐴) ∧ (𝑦 +Q 𝑢) ∈ (1st
‘𝐵))) ∧ (𝑓 ∈ Q ∧
𝑔 ∈ Q
∧ ℎ ∈
Q)) → (𝑓
<Q 𝑔 ↔ (ℎ +Q 𝑓) <Q
(ℎ
+Q 𝑔))) | 
| 25 |   | ltrelnq 7432 | 
. . . . . . . . . . . . . 14
⊢ 
<Q ⊆ (Q ×
Q) | 
| 26 | 25 | brel 4715 | 
. . . . . . . . . . . . 13
⊢ (𝑤 <Q
𝑦 → (𝑤 ∈ Q ∧
𝑦 ∈
Q)) | 
| 27 | 22, 26 | syl 14 | 
. . . . . . . . . . . 12
⊢ ((𝐴<P
𝐵 ∧ ((𝑤 ∈ (1st
‘𝐴) ∧ 𝑢 ∈ (1st
‘𝐶)) ∧ 𝑧 = (𝑤 +Q 𝑢)) ∧ (𝑦 ∈ (2nd ‘𝐴) ∧ (𝑦 +Q 𝑢) ∈ (1st
‘𝐵))) → (𝑤 ∈ Q ∧
𝑦 ∈
Q)) | 
| 28 | 27 | simpld 112 | 
. . . . . . . . . . 11
⊢ ((𝐴<P
𝐵 ∧ ((𝑤 ∈ (1st
‘𝐴) ∧ 𝑢 ∈ (1st
‘𝐶)) ∧ 𝑧 = (𝑤 +Q 𝑢)) ∧ (𝑦 ∈ (2nd ‘𝐴) ∧ (𝑦 +Q 𝑢) ∈ (1st
‘𝐵))) → 𝑤 ∈
Q) | 
| 29 | 27 | simprd 114 | 
. . . . . . . . . . 11
⊢ ((𝐴<P
𝐵 ∧ ((𝑤 ∈ (1st
‘𝐴) ∧ 𝑢 ∈ (1st
‘𝐶)) ∧ 𝑧 = (𝑤 +Q 𝑢)) ∧ (𝑦 ∈ (2nd ‘𝐴) ∧ (𝑦 +Q 𝑢) ∈ (1st
‘𝐵))) → 𝑦 ∈
Q) | 
| 30 |   | prop 7542 | 
. . . . . . . . . . . . . . . 16
⊢ (𝐶 ∈ P →
〈(1st ‘𝐶), (2nd ‘𝐶)〉 ∈
P) | 
| 31 | 5, 30 | syl 14 | 
. . . . . . . . . . . . . . 15
⊢ (𝐴<P
𝐵 →
〈(1st ‘𝐶), (2nd ‘𝐶)〉 ∈
P) | 
| 32 |   | elprnql 7548 | 
. . . . . . . . . . . . . . 15
⊢
((〈(1st ‘𝐶), (2nd ‘𝐶)〉 ∈ P ∧ 𝑢 ∈ (1st
‘𝐶)) → 𝑢 ∈
Q) | 
| 33 | 31, 32 | sylan 283 | 
. . . . . . . . . . . . . 14
⊢ ((𝐴<P
𝐵 ∧ 𝑢 ∈ (1st ‘𝐶)) → 𝑢 ∈ Q) | 
| 34 | 33 | adantrl 478 | 
. . . . . . . . . . . . 13
⊢ ((𝐴<P
𝐵 ∧ (𝑤 ∈ (1st ‘𝐴) ∧ 𝑢 ∈ (1st ‘𝐶))) → 𝑢 ∈ Q) | 
| 35 | 34 | adantrr 479 | 
. . . . . . . . . . . 12
⊢ ((𝐴<P
𝐵 ∧ ((𝑤 ∈ (1st
‘𝐴) ∧ 𝑢 ∈ (1st
‘𝐶)) ∧ 𝑧 = (𝑤 +Q 𝑢))) → 𝑢 ∈ Q) | 
| 36 | 35 | 3adant3 1019 | 
. . . . . . . . . . 11
⊢ ((𝐴<P
𝐵 ∧ ((𝑤 ∈ (1st
‘𝐴) ∧ 𝑢 ∈ (1st
‘𝐶)) ∧ 𝑧 = (𝑤 +Q 𝑢)) ∧ (𝑦 ∈ (2nd ‘𝐴) ∧ (𝑦 +Q 𝑢) ∈ (1st
‘𝐵))) → 𝑢 ∈
Q) | 
| 37 |   | addcomnqg 7448 | 
. . . . . . . . . . . 12
⊢ ((𝑓 ∈ Q ∧
𝑔 ∈ Q)
→ (𝑓
+Q 𝑔) = (𝑔 +Q 𝑓)) | 
| 38 | 37 | adantl 277 | 
. . . . . . . . . . 11
⊢ (((𝐴<P
𝐵 ∧ ((𝑤 ∈ (1st
‘𝐴) ∧ 𝑢 ∈ (1st
‘𝐶)) ∧ 𝑧 = (𝑤 +Q 𝑢)) ∧ (𝑦 ∈ (2nd ‘𝐴) ∧ (𝑦 +Q 𝑢) ∈ (1st
‘𝐵))) ∧ (𝑓 ∈ Q ∧
𝑔 ∈ Q))
→ (𝑓
+Q 𝑔) = (𝑔 +Q 𝑓)) | 
| 39 | 24, 28, 29, 36, 38 | caovord2d 6093 | 
. . . . . . . . . 10
⊢ ((𝐴<P
𝐵 ∧ ((𝑤 ∈ (1st
‘𝐴) ∧ 𝑢 ∈ (1st
‘𝐶)) ∧ 𝑧 = (𝑤 +Q 𝑢)) ∧ (𝑦 ∈ (2nd ‘𝐴) ∧ (𝑦 +Q 𝑢) ∈ (1st
‘𝐵))) → (𝑤 <Q
𝑦 ↔ (𝑤 +Q
𝑢)
<Q (𝑦 +Q 𝑢))) | 
| 40 | 2 | simprd 114 | 
. . . . . . . . . . . . . 14
⊢ (𝐴<P
𝐵 → 𝐵 ∈ P) | 
| 41 |   | prop 7542 | 
. . . . . . . . . . . . . 14
⊢ (𝐵 ∈ P →
〈(1st ‘𝐵), (2nd ‘𝐵)〉 ∈
P) | 
| 42 | 40, 41 | syl 14 | 
. . . . . . . . . . . . 13
⊢ (𝐴<P
𝐵 →
〈(1st ‘𝐵), (2nd ‘𝐵)〉 ∈
P) | 
| 43 |   | prcdnql 7551 | 
. . . . . . . . . . . . 13
⊢
((〈(1st ‘𝐵), (2nd ‘𝐵)〉 ∈ P ∧ (𝑦 +Q
𝑢) ∈ (1st
‘𝐵)) → ((𝑤 +Q
𝑢)
<Q (𝑦 +Q 𝑢) → (𝑤 +Q 𝑢) ∈ (1st
‘𝐵))) | 
| 44 | 42, 43 | sylan 283 | 
. . . . . . . . . . . 12
⊢ ((𝐴<P
𝐵 ∧ (𝑦 +Q 𝑢) ∈ (1st
‘𝐵)) → ((𝑤 +Q
𝑢)
<Q (𝑦 +Q 𝑢) → (𝑤 +Q 𝑢) ∈ (1st
‘𝐵))) | 
| 45 | 44 | adantrl 478 | 
. . . . . . . . . . 11
⊢ ((𝐴<P
𝐵 ∧ (𝑦 ∈ (2nd ‘𝐴) ∧ (𝑦 +Q 𝑢) ∈ (1st
‘𝐵))) → ((𝑤 +Q
𝑢)
<Q (𝑦 +Q 𝑢) → (𝑤 +Q 𝑢) ∈ (1st
‘𝐵))) | 
| 46 | 45 | 3adant2 1018 | 
. . . . . . . . . 10
⊢ ((𝐴<P
𝐵 ∧ ((𝑤 ∈ (1st
‘𝐴) ∧ 𝑢 ∈ (1st
‘𝐶)) ∧ 𝑧 = (𝑤 +Q 𝑢)) ∧ (𝑦 ∈ (2nd ‘𝐴) ∧ (𝑦 +Q 𝑢) ∈ (1st
‘𝐵))) → ((𝑤 +Q
𝑢)
<Q (𝑦 +Q 𝑢) → (𝑤 +Q 𝑢) ∈ (1st
‘𝐵))) | 
| 47 | 39, 46 | sylbid 150 | 
. . . . . . . . 9
⊢ ((𝐴<P
𝐵 ∧ ((𝑤 ∈ (1st
‘𝐴) ∧ 𝑢 ∈ (1st
‘𝐶)) ∧ 𝑧 = (𝑤 +Q 𝑢)) ∧ (𝑦 ∈ (2nd ‘𝐴) ∧ (𝑦 +Q 𝑢) ∈ (1st
‘𝐵))) → (𝑤 <Q
𝑦 → (𝑤 +Q
𝑢) ∈ (1st
‘𝐵))) | 
| 48 | 22, 47 | mpd 13 | 
. . . . . . . 8
⊢ ((𝐴<P
𝐵 ∧ ((𝑤 ∈ (1st
‘𝐴) ∧ 𝑢 ∈ (1st
‘𝐶)) ∧ 𝑧 = (𝑤 +Q 𝑢)) ∧ (𝑦 ∈ (2nd ‘𝐴) ∧ (𝑦 +Q 𝑢) ∈ (1st
‘𝐵))) → (𝑤 +Q
𝑢) ∈ (1st
‘𝐵)) | 
| 49 | 48 | 3expa 1205 | 
. . . . . . 7
⊢ (((𝐴<P
𝐵 ∧ ((𝑤 ∈ (1st
‘𝐴) ∧ 𝑢 ∈ (1st
‘𝐶)) ∧ 𝑧 = (𝑤 +Q 𝑢))) ∧ (𝑦 ∈ (2nd ‘𝐴) ∧ (𝑦 +Q 𝑢) ∈ (1st
‘𝐵))) → (𝑤 +Q
𝑢) ∈ (1st
‘𝐵)) | 
| 50 | 15, 49 | exlimddv 1913 | 
. . . . . 6
⊢ ((𝐴<P
𝐵 ∧ ((𝑤 ∈ (1st
‘𝐴) ∧ 𝑢 ∈ (1st
‘𝐶)) ∧ 𝑧 = (𝑤 +Q 𝑢))) → (𝑤 +Q 𝑢) ∈ (1st
‘𝐵)) | 
| 51 | 10, 50 | eqeltrd 2273 | 
. . . . 5
⊢ ((𝐴<P
𝐵 ∧ ((𝑤 ∈ (1st
‘𝐴) ∧ 𝑢 ∈ (1st
‘𝐶)) ∧ 𝑧 = (𝑤 +Q 𝑢))) → 𝑧 ∈ (1st ‘𝐵)) | 
| 52 | 51 | expr 375 | 
. . . 4
⊢ ((𝐴<P
𝐵 ∧ (𝑤 ∈ (1st ‘𝐴) ∧ 𝑢 ∈ (1st ‘𝐶))) → (𝑧 = (𝑤 +Q 𝑢) → 𝑧 ∈ (1st ‘𝐵))) | 
| 53 | 52 | rexlimdvva 2622 | 
. . 3
⊢ (𝐴<P
𝐵 → (∃𝑤 ∈ (1st
‘𝐴)∃𝑢 ∈ (1st
‘𝐶)𝑧 = (𝑤 +Q 𝑢) → 𝑧 ∈ (1st ‘𝐵))) | 
| 54 | 9, 53 | sylbid 150 | 
. 2
⊢ (𝐴<P
𝐵 → (𝑧 ∈ (1st
‘(𝐴
+P 𝐶)) → 𝑧 ∈ (1st ‘𝐵))) | 
| 55 | 54 | ssrdv 3189 | 
1
⊢ (𝐴<P
𝐵 → (1st
‘(𝐴
+P 𝐶)) ⊆ (1st ‘𝐵)) |