ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ltexprlemfl GIF version

Theorem ltexprlemfl 7676
Description: Lemma for ltexpri 7680. One direction of our result for lower cuts. (Contributed by Jim Kingdon, 17-Dec-2019.)
Hypothesis
Ref Expression
ltexprlem.1 𝐶 = ⟨{𝑥Q ∣ ∃𝑦(𝑦 ∈ (2nd𝐴) ∧ (𝑦 +Q 𝑥) ∈ (1st𝐵))}, {𝑥Q ∣ ∃𝑦(𝑦 ∈ (1st𝐴) ∧ (𝑦 +Q 𝑥) ∈ (2nd𝐵))}⟩
Assertion
Ref Expression
ltexprlemfl (𝐴<P 𝐵 → (1st ‘(𝐴 +P 𝐶)) ⊆ (1st𝐵))
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝐵,𝑦   𝑥,𝐶,𝑦

Proof of Theorem ltexprlemfl
Dummy variables 𝑧 𝑤 𝑢 𝑓 𝑔 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ltrelpr 7572 . . . . . 6 <P ⊆ (P × P)
21brel 4715 . . . . 5 (𝐴<P 𝐵 → (𝐴P𝐵P))
32simpld 112 . . . 4 (𝐴<P 𝐵𝐴P)
4 ltexprlem.1 . . . . 5 𝐶 = ⟨{𝑥Q ∣ ∃𝑦(𝑦 ∈ (2nd𝐴) ∧ (𝑦 +Q 𝑥) ∈ (1st𝐵))}, {𝑥Q ∣ ∃𝑦(𝑦 ∈ (1st𝐴) ∧ (𝑦 +Q 𝑥) ∈ (2nd𝐵))}⟩
54ltexprlempr 7675 . . . 4 (𝐴<P 𝐵𝐶P)
6 df-iplp 7535 . . . . 5 +P = (𝑧P, 𝑦P ↦ ⟨{𝑓Q ∣ ∃𝑔QQ (𝑔 ∈ (1st𝑧) ∧ ∈ (1st𝑦) ∧ 𝑓 = (𝑔 +Q ))}, {𝑓Q ∣ ∃𝑔QQ (𝑔 ∈ (2nd𝑧) ∧ ∈ (2nd𝑦) ∧ 𝑓 = (𝑔 +Q ))}⟩)
7 addclnq 7442 . . . . 5 ((𝑔QQ) → (𝑔 +Q ) ∈ Q)
86, 7genpelvl 7579 . . . 4 ((𝐴P𝐶P) → (𝑧 ∈ (1st ‘(𝐴 +P 𝐶)) ↔ ∃𝑤 ∈ (1st𝐴)∃𝑢 ∈ (1st𝐶)𝑧 = (𝑤 +Q 𝑢)))
93, 5, 8syl2anc 411 . . 3 (𝐴<P 𝐵 → (𝑧 ∈ (1st ‘(𝐴 +P 𝐶)) ↔ ∃𝑤 ∈ (1st𝐴)∃𝑢 ∈ (1st𝐶)𝑧 = (𝑤 +Q 𝑢)))
10 simprr 531 . . . . . 6 ((𝐴<P 𝐵 ∧ ((𝑤 ∈ (1st𝐴) ∧ 𝑢 ∈ (1st𝐶)) ∧ 𝑧 = (𝑤 +Q 𝑢))) → 𝑧 = (𝑤 +Q 𝑢))
114ltexprlemell 7665 . . . . . . . . . . 11 (𝑢 ∈ (1st𝐶) ↔ (𝑢Q ∧ ∃𝑦(𝑦 ∈ (2nd𝐴) ∧ (𝑦 +Q 𝑢) ∈ (1st𝐵))))
1211biimpi 120 . . . . . . . . . 10 (𝑢 ∈ (1st𝐶) → (𝑢Q ∧ ∃𝑦(𝑦 ∈ (2nd𝐴) ∧ (𝑦 +Q 𝑢) ∈ (1st𝐵))))
1312ad2antlr 489 . . . . . . . . 9 (((𝑤 ∈ (1st𝐴) ∧ 𝑢 ∈ (1st𝐶)) ∧ 𝑧 = (𝑤 +Q 𝑢)) → (𝑢Q ∧ ∃𝑦(𝑦 ∈ (2nd𝐴) ∧ (𝑦 +Q 𝑢) ∈ (1st𝐵))))
1413adantl 277 . . . . . . . 8 ((𝐴<P 𝐵 ∧ ((𝑤 ∈ (1st𝐴) ∧ 𝑢 ∈ (1st𝐶)) ∧ 𝑧 = (𝑤 +Q 𝑢))) → (𝑢Q ∧ ∃𝑦(𝑦 ∈ (2nd𝐴) ∧ (𝑦 +Q 𝑢) ∈ (1st𝐵))))
1514simprd 114 . . . . . . 7 ((𝐴<P 𝐵 ∧ ((𝑤 ∈ (1st𝐴) ∧ 𝑢 ∈ (1st𝐶)) ∧ 𝑧 = (𝑤 +Q 𝑢))) → ∃𝑦(𝑦 ∈ (2nd𝐴) ∧ (𝑦 +Q 𝑢) ∈ (1st𝐵)))
16 prop 7542 . . . . . . . . . . . . . 14 (𝐴P → ⟨(1st𝐴), (2nd𝐴)⟩ ∈ P)
173, 16syl 14 . . . . . . . . . . . . 13 (𝐴<P 𝐵 → ⟨(1st𝐴), (2nd𝐴)⟩ ∈ P)
18 prltlu 7554 . . . . . . . . . . . . 13 ((⟨(1st𝐴), (2nd𝐴)⟩ ∈ P𝑤 ∈ (1st𝐴) ∧ 𝑦 ∈ (2nd𝐴)) → 𝑤 <Q 𝑦)
1917, 18syl3an1 1282 . . . . . . . . . . . 12 ((𝐴<P 𝐵𝑤 ∈ (1st𝐴) ∧ 𝑦 ∈ (2nd𝐴)) → 𝑤 <Q 𝑦)
20193adant2r 1235 . . . . . . . . . . 11 ((𝐴<P 𝐵 ∧ (𝑤 ∈ (1st𝐴) ∧ 𝑢 ∈ (1st𝐶)) ∧ 𝑦 ∈ (2nd𝐴)) → 𝑤 <Q 𝑦)
21203adant2r 1235 . . . . . . . . . 10 ((𝐴<P 𝐵 ∧ ((𝑤 ∈ (1st𝐴) ∧ 𝑢 ∈ (1st𝐶)) ∧ 𝑧 = (𝑤 +Q 𝑢)) ∧ 𝑦 ∈ (2nd𝐴)) → 𝑤 <Q 𝑦)
22213adant3r 1237 . . . . . . . . 9 ((𝐴<P 𝐵 ∧ ((𝑤 ∈ (1st𝐴) ∧ 𝑢 ∈ (1st𝐶)) ∧ 𝑧 = (𝑤 +Q 𝑢)) ∧ (𝑦 ∈ (2nd𝐴) ∧ (𝑦 +Q 𝑢) ∈ (1st𝐵))) → 𝑤 <Q 𝑦)
23 ltanqg 7467 . . . . . . . . . . . 12 ((𝑓Q𝑔QQ) → (𝑓 <Q 𝑔 ↔ ( +Q 𝑓) <Q ( +Q 𝑔)))
2423adantl 277 . . . . . . . . . . 11 (((𝐴<P 𝐵 ∧ ((𝑤 ∈ (1st𝐴) ∧ 𝑢 ∈ (1st𝐶)) ∧ 𝑧 = (𝑤 +Q 𝑢)) ∧ (𝑦 ∈ (2nd𝐴) ∧ (𝑦 +Q 𝑢) ∈ (1st𝐵))) ∧ (𝑓Q𝑔QQ)) → (𝑓 <Q 𝑔 ↔ ( +Q 𝑓) <Q ( +Q 𝑔)))
25 ltrelnq 7432 . . . . . . . . . . . . . 14 <Q ⊆ (Q × Q)
2625brel 4715 . . . . . . . . . . . . 13 (𝑤 <Q 𝑦 → (𝑤Q𝑦Q))
2722, 26syl 14 . . . . . . . . . . . 12 ((𝐴<P 𝐵 ∧ ((𝑤 ∈ (1st𝐴) ∧ 𝑢 ∈ (1st𝐶)) ∧ 𝑧 = (𝑤 +Q 𝑢)) ∧ (𝑦 ∈ (2nd𝐴) ∧ (𝑦 +Q 𝑢) ∈ (1st𝐵))) → (𝑤Q𝑦Q))
2827simpld 112 . . . . . . . . . . 11 ((𝐴<P 𝐵 ∧ ((𝑤 ∈ (1st𝐴) ∧ 𝑢 ∈ (1st𝐶)) ∧ 𝑧 = (𝑤 +Q 𝑢)) ∧ (𝑦 ∈ (2nd𝐴) ∧ (𝑦 +Q 𝑢) ∈ (1st𝐵))) → 𝑤Q)
2927simprd 114 . . . . . . . . . . 11 ((𝐴<P 𝐵 ∧ ((𝑤 ∈ (1st𝐴) ∧ 𝑢 ∈ (1st𝐶)) ∧ 𝑧 = (𝑤 +Q 𝑢)) ∧ (𝑦 ∈ (2nd𝐴) ∧ (𝑦 +Q 𝑢) ∈ (1st𝐵))) → 𝑦Q)
30 prop 7542 . . . . . . . . . . . . . . . 16 (𝐶P → ⟨(1st𝐶), (2nd𝐶)⟩ ∈ P)
315, 30syl 14 . . . . . . . . . . . . . . 15 (𝐴<P 𝐵 → ⟨(1st𝐶), (2nd𝐶)⟩ ∈ P)
32 elprnql 7548 . . . . . . . . . . . . . . 15 ((⟨(1st𝐶), (2nd𝐶)⟩ ∈ P𝑢 ∈ (1st𝐶)) → 𝑢Q)
3331, 32sylan 283 . . . . . . . . . . . . . 14 ((𝐴<P 𝐵𝑢 ∈ (1st𝐶)) → 𝑢Q)
3433adantrl 478 . . . . . . . . . . . . 13 ((𝐴<P 𝐵 ∧ (𝑤 ∈ (1st𝐴) ∧ 𝑢 ∈ (1st𝐶))) → 𝑢Q)
3534adantrr 479 . . . . . . . . . . . 12 ((𝐴<P 𝐵 ∧ ((𝑤 ∈ (1st𝐴) ∧ 𝑢 ∈ (1st𝐶)) ∧ 𝑧 = (𝑤 +Q 𝑢))) → 𝑢Q)
36353adant3 1019 . . . . . . . . . . 11 ((𝐴<P 𝐵 ∧ ((𝑤 ∈ (1st𝐴) ∧ 𝑢 ∈ (1st𝐶)) ∧ 𝑧 = (𝑤 +Q 𝑢)) ∧ (𝑦 ∈ (2nd𝐴) ∧ (𝑦 +Q 𝑢) ∈ (1st𝐵))) → 𝑢Q)
37 addcomnqg 7448 . . . . . . . . . . . 12 ((𝑓Q𝑔Q) → (𝑓 +Q 𝑔) = (𝑔 +Q 𝑓))
3837adantl 277 . . . . . . . . . . 11 (((𝐴<P 𝐵 ∧ ((𝑤 ∈ (1st𝐴) ∧ 𝑢 ∈ (1st𝐶)) ∧ 𝑧 = (𝑤 +Q 𝑢)) ∧ (𝑦 ∈ (2nd𝐴) ∧ (𝑦 +Q 𝑢) ∈ (1st𝐵))) ∧ (𝑓Q𝑔Q)) → (𝑓 +Q 𝑔) = (𝑔 +Q 𝑓))
3924, 28, 29, 36, 38caovord2d 6093 . . . . . . . . . 10 ((𝐴<P 𝐵 ∧ ((𝑤 ∈ (1st𝐴) ∧ 𝑢 ∈ (1st𝐶)) ∧ 𝑧 = (𝑤 +Q 𝑢)) ∧ (𝑦 ∈ (2nd𝐴) ∧ (𝑦 +Q 𝑢) ∈ (1st𝐵))) → (𝑤 <Q 𝑦 ↔ (𝑤 +Q 𝑢) <Q (𝑦 +Q 𝑢)))
402simprd 114 . . . . . . . . . . . . . 14 (𝐴<P 𝐵𝐵P)
41 prop 7542 . . . . . . . . . . . . . 14 (𝐵P → ⟨(1st𝐵), (2nd𝐵)⟩ ∈ P)
4240, 41syl 14 . . . . . . . . . . . . 13 (𝐴<P 𝐵 → ⟨(1st𝐵), (2nd𝐵)⟩ ∈ P)
43 prcdnql 7551 . . . . . . . . . . . . 13 ((⟨(1st𝐵), (2nd𝐵)⟩ ∈ P ∧ (𝑦 +Q 𝑢) ∈ (1st𝐵)) → ((𝑤 +Q 𝑢) <Q (𝑦 +Q 𝑢) → (𝑤 +Q 𝑢) ∈ (1st𝐵)))
4442, 43sylan 283 . . . . . . . . . . . 12 ((𝐴<P 𝐵 ∧ (𝑦 +Q 𝑢) ∈ (1st𝐵)) → ((𝑤 +Q 𝑢) <Q (𝑦 +Q 𝑢) → (𝑤 +Q 𝑢) ∈ (1st𝐵)))
4544adantrl 478 . . . . . . . . . . 11 ((𝐴<P 𝐵 ∧ (𝑦 ∈ (2nd𝐴) ∧ (𝑦 +Q 𝑢) ∈ (1st𝐵))) → ((𝑤 +Q 𝑢) <Q (𝑦 +Q 𝑢) → (𝑤 +Q 𝑢) ∈ (1st𝐵)))
46453adant2 1018 . . . . . . . . . 10 ((𝐴<P 𝐵 ∧ ((𝑤 ∈ (1st𝐴) ∧ 𝑢 ∈ (1st𝐶)) ∧ 𝑧 = (𝑤 +Q 𝑢)) ∧ (𝑦 ∈ (2nd𝐴) ∧ (𝑦 +Q 𝑢) ∈ (1st𝐵))) → ((𝑤 +Q 𝑢) <Q (𝑦 +Q 𝑢) → (𝑤 +Q 𝑢) ∈ (1st𝐵)))
4739, 46sylbid 150 . . . . . . . . 9 ((𝐴<P 𝐵 ∧ ((𝑤 ∈ (1st𝐴) ∧ 𝑢 ∈ (1st𝐶)) ∧ 𝑧 = (𝑤 +Q 𝑢)) ∧ (𝑦 ∈ (2nd𝐴) ∧ (𝑦 +Q 𝑢) ∈ (1st𝐵))) → (𝑤 <Q 𝑦 → (𝑤 +Q 𝑢) ∈ (1st𝐵)))
4822, 47mpd 13 . . . . . . . 8 ((𝐴<P 𝐵 ∧ ((𝑤 ∈ (1st𝐴) ∧ 𝑢 ∈ (1st𝐶)) ∧ 𝑧 = (𝑤 +Q 𝑢)) ∧ (𝑦 ∈ (2nd𝐴) ∧ (𝑦 +Q 𝑢) ∈ (1st𝐵))) → (𝑤 +Q 𝑢) ∈ (1st𝐵))
49483expa 1205 . . . . . . 7 (((𝐴<P 𝐵 ∧ ((𝑤 ∈ (1st𝐴) ∧ 𝑢 ∈ (1st𝐶)) ∧ 𝑧 = (𝑤 +Q 𝑢))) ∧ (𝑦 ∈ (2nd𝐴) ∧ (𝑦 +Q 𝑢) ∈ (1st𝐵))) → (𝑤 +Q 𝑢) ∈ (1st𝐵))
5015, 49exlimddv 1913 . . . . . 6 ((𝐴<P 𝐵 ∧ ((𝑤 ∈ (1st𝐴) ∧ 𝑢 ∈ (1st𝐶)) ∧ 𝑧 = (𝑤 +Q 𝑢))) → (𝑤 +Q 𝑢) ∈ (1st𝐵))
5110, 50eqeltrd 2273 . . . . 5 ((𝐴<P 𝐵 ∧ ((𝑤 ∈ (1st𝐴) ∧ 𝑢 ∈ (1st𝐶)) ∧ 𝑧 = (𝑤 +Q 𝑢))) → 𝑧 ∈ (1st𝐵))
5251expr 375 . . . 4 ((𝐴<P 𝐵 ∧ (𝑤 ∈ (1st𝐴) ∧ 𝑢 ∈ (1st𝐶))) → (𝑧 = (𝑤 +Q 𝑢) → 𝑧 ∈ (1st𝐵)))
5352rexlimdvva 2622 . . 3 (𝐴<P 𝐵 → (∃𝑤 ∈ (1st𝐴)∃𝑢 ∈ (1st𝐶)𝑧 = (𝑤 +Q 𝑢) → 𝑧 ∈ (1st𝐵)))
549, 53sylbid 150 . 2 (𝐴<P 𝐵 → (𝑧 ∈ (1st ‘(𝐴 +P 𝐶)) → 𝑧 ∈ (1st𝐵)))
5554ssrdv 3189 1 (𝐴<P 𝐵 → (1st ‘(𝐴 +P 𝐶)) ⊆ (1st𝐵))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  w3a 980   = wceq 1364  wex 1506  wcel 2167  wrex 2476  {crab 2479  wss 3157  cop 3625   class class class wbr 4033  cfv 5258  (class class class)co 5922  1st c1st 6196  2nd c2nd 6197  Qcnq 7347   +Q cplq 7349   <Q cltq 7352  Pcnp 7358   +P cpp 7360  <P cltp 7362
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4148  ax-sep 4151  ax-nul 4159  ax-pow 4207  ax-pr 4242  ax-un 4468  ax-setind 4573  ax-iinf 4624
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-ral 2480  df-rex 2481  df-reu 2482  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3451  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-int 3875  df-iun 3918  df-br 4034  df-opab 4095  df-mpt 4096  df-tr 4132  df-eprel 4324  df-id 4328  df-po 4331  df-iso 4332  df-iord 4401  df-on 4403  df-suc 4406  df-iom 4627  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-rn 4674  df-res 4675  df-ima 4676  df-iota 5219  df-fun 5260  df-fn 5261  df-f 5262  df-f1 5263  df-fo 5264  df-f1o 5265  df-fv 5266  df-ov 5925  df-oprab 5926  df-mpo 5927  df-1st 6198  df-2nd 6199  df-recs 6363  df-irdg 6428  df-1o 6474  df-2o 6475  df-oadd 6478  df-omul 6479  df-er 6592  df-ec 6594  df-qs 6598  df-ni 7371  df-pli 7372  df-mi 7373  df-lti 7374  df-plpq 7411  df-mpq 7412  df-enq 7414  df-nqqs 7415  df-plqqs 7416  df-mqqs 7417  df-1nqqs 7418  df-rq 7419  df-ltnqqs 7420  df-enq0 7491  df-nq0 7492  df-0nq0 7493  df-plq0 7494  df-mq0 7495  df-inp 7533  df-iplp 7535  df-iltp 7537
This theorem is referenced by:  ltexpri  7680
  Copyright terms: Public domain W3C validator