ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  imasring GIF version

Theorem imasring 13411
Description: The image structure of a ring is a ring. (Contributed by Mario Carneiro, 14-Jun-2015.)
Hypotheses
Ref Expression
imasring.u (𝜑𝑈 = (𝐹s 𝑅))
imasring.v (𝜑𝑉 = (Base‘𝑅))
imasring.p + = (+g𝑅)
imasring.t · = (.r𝑅)
imasring.o 1 = (1r𝑅)
imasring.f (𝜑𝐹:𝑉onto𝐵)
imasring.e1 ((𝜑 ∧ (𝑎𝑉𝑏𝑉) ∧ (𝑝𝑉𝑞𝑉)) → (((𝐹𝑎) = (𝐹𝑝) ∧ (𝐹𝑏) = (𝐹𝑞)) → (𝐹‘(𝑎 + 𝑏)) = (𝐹‘(𝑝 + 𝑞))))
imasring.e2 ((𝜑 ∧ (𝑎𝑉𝑏𝑉) ∧ (𝑝𝑉𝑞𝑉)) → (((𝐹𝑎) = (𝐹𝑝) ∧ (𝐹𝑏) = (𝐹𝑞)) → (𝐹‘(𝑎 · 𝑏)) = (𝐹‘(𝑝 · 𝑞))))
imasring.r (𝜑𝑅 ∈ Ring)
Assertion
Ref Expression
imasring (𝜑 → (𝑈 ∈ Ring ∧ (𝐹1 ) = (1r𝑈)))
Distinct variable groups:   𝑞,𝑝, +   𝑎,𝑏,𝑝,𝑞,𝜑   𝑈,𝑎,𝑏,𝑝,𝑞   1 ,𝑝,𝑞   𝐵,𝑝,𝑞   𝐹,𝑎,𝑏,𝑝,𝑞   𝑅,𝑝,𝑞   𝑉,𝑎,𝑏,𝑝,𝑞   · ,𝑝,𝑞
Allowed substitution hints:   𝐵(𝑎,𝑏)   + (𝑎,𝑏)   𝑅(𝑎,𝑏)   · (𝑎,𝑏)   1 (𝑎,𝑏)

Proof of Theorem imasring
Dummy variables 𝑢 𝑣 𝑤 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 imasring.u . . . 4 (𝜑𝑈 = (𝐹s 𝑅))
2 imasring.v . . . 4 (𝜑𝑉 = (Base‘𝑅))
3 imasring.f . . . 4 (𝜑𝐹:𝑉onto𝐵)
4 imasring.r . . . 4 (𝜑𝑅 ∈ Ring)
51, 2, 3, 4imasbas 12781 . . 3 (𝜑𝐵 = (Base‘𝑈))
6 eqidd 2190 . . 3 (𝜑 → (+g𝑈) = (+g𝑈))
7 eqidd 2190 . . 3 (𝜑 → (.r𝑈) = (.r𝑈))
8 imasring.p . . . . . 6 + = (+g𝑅)
98a1i 9 . . . . 5 (𝜑+ = (+g𝑅))
10 imasring.e1 . . . . 5 ((𝜑 ∧ (𝑎𝑉𝑏𝑉) ∧ (𝑝𝑉𝑞𝑉)) → (((𝐹𝑎) = (𝐹𝑝) ∧ (𝐹𝑏) = (𝐹𝑞)) → (𝐹‘(𝑎 + 𝑏)) = (𝐹‘(𝑝 + 𝑞))))
11 ringgrp 13352 . . . . . 6 (𝑅 ∈ Ring → 𝑅 ∈ Grp)
124, 11syl 14 . . . . 5 (𝜑𝑅 ∈ Grp)
13 eqid 2189 . . . . 5 (0g𝑅) = (0g𝑅)
141, 2, 9, 3, 10, 12, 13imasgrp 13050 . . . 4 (𝜑 → (𝑈 ∈ Grp ∧ (𝐹‘(0g𝑅)) = (0g𝑈)))
1514simpld 112 . . 3 (𝜑𝑈 ∈ Grp)
16 imasring.e2 . . . . 5 ((𝜑 ∧ (𝑎𝑉𝑏𝑉) ∧ (𝑝𝑉𝑞𝑉)) → (((𝐹𝑎) = (𝐹𝑝) ∧ (𝐹𝑏) = (𝐹𝑞)) → (𝐹‘(𝑎 · 𝑏)) = (𝐹‘(𝑝 · 𝑞))))
17 imasring.t . . . . 5 · = (.r𝑅)
18 eqid 2189 . . . . 5 (.r𝑈) = (.r𝑈)
194adantr 276 . . . . . . . 8 ((𝜑 ∧ (𝑢𝑉𝑣𝑉)) → 𝑅 ∈ Ring)
20 simprl 529 . . . . . . . . 9 ((𝜑 ∧ (𝑢𝑉𝑣𝑉)) → 𝑢𝑉)
212adantr 276 . . . . . . . . 9 ((𝜑 ∧ (𝑢𝑉𝑣𝑉)) → 𝑉 = (Base‘𝑅))
2220, 21eleqtrd 2268 . . . . . . . 8 ((𝜑 ∧ (𝑢𝑉𝑣𝑉)) → 𝑢 ∈ (Base‘𝑅))
23 simprr 531 . . . . . . . . 9 ((𝜑 ∧ (𝑢𝑉𝑣𝑉)) → 𝑣𝑉)
2423, 21eleqtrd 2268 . . . . . . . 8 ((𝜑 ∧ (𝑢𝑉𝑣𝑉)) → 𝑣 ∈ (Base‘𝑅))
25 eqid 2189 . . . . . . . . 9 (Base‘𝑅) = (Base‘𝑅)
2625, 17ringcl 13364 . . . . . . . 8 ((𝑅 ∈ Ring ∧ 𝑢 ∈ (Base‘𝑅) ∧ 𝑣 ∈ (Base‘𝑅)) → (𝑢 · 𝑣) ∈ (Base‘𝑅))
2719, 22, 24, 26syl3anc 1249 . . . . . . 7 ((𝜑 ∧ (𝑢𝑉𝑣𝑉)) → (𝑢 · 𝑣) ∈ (Base‘𝑅))
2827, 21eleqtrrd 2269 . . . . . 6 ((𝜑 ∧ (𝑢𝑉𝑣𝑉)) → (𝑢 · 𝑣) ∈ 𝑉)
2928caovclg 6048 . . . . 5 ((𝜑 ∧ (𝑝𝑉𝑞𝑉)) → (𝑝 · 𝑞) ∈ 𝑉)
303, 16, 1, 2, 4, 17, 18, 29imasmulf 12796 . . . 4 (𝜑 → (.r𝑈):(𝐵 × 𝐵)⟶𝐵)
31 fovcdm 6038 . . . 4 (((.r𝑈):(𝐵 × 𝐵)⟶𝐵𝑢𝐵𝑣𝐵) → (𝑢(.r𝑈)𝑣) ∈ 𝐵)
3230, 31syl3an1 1282 . . 3 ((𝜑𝑢𝐵𝑣𝐵) → (𝑢(.r𝑈)𝑣) ∈ 𝐵)
33 forn 5460 . . . . . . . . . 10 (𝐹:𝑉onto𝐵 → ran 𝐹 = 𝐵)
343, 33syl 14 . . . . . . . . 9 (𝜑 → ran 𝐹 = 𝐵)
3534eleq2d 2259 . . . . . . . 8 (𝜑 → (𝑢 ∈ ran 𝐹𝑢𝐵))
3634eleq2d 2259 . . . . . . . 8 (𝜑 → (𝑣 ∈ ran 𝐹𝑣𝐵))
3734eleq2d 2259 . . . . . . . 8 (𝜑 → (𝑤 ∈ ran 𝐹𝑤𝐵))
3835, 36, 373anbi123d 1323 . . . . . . 7 (𝜑 → ((𝑢 ∈ ran 𝐹𝑣 ∈ ran 𝐹𝑤 ∈ ran 𝐹) ↔ (𝑢𝐵𝑣𝐵𝑤𝐵)))
39 fofn 5459 . . . . . . . . 9 (𝐹:𝑉onto𝐵𝐹 Fn 𝑉)
403, 39syl 14 . . . . . . . 8 (𝜑𝐹 Fn 𝑉)
41 fvelrnb 5583 . . . . . . . . 9 (𝐹 Fn 𝑉 → (𝑢 ∈ ran 𝐹 ↔ ∃𝑥𝑉 (𝐹𝑥) = 𝑢))
42 fvelrnb 5583 . . . . . . . . 9 (𝐹 Fn 𝑉 → (𝑣 ∈ ran 𝐹 ↔ ∃𝑦𝑉 (𝐹𝑦) = 𝑣))
43 fvelrnb 5583 . . . . . . . . 9 (𝐹 Fn 𝑉 → (𝑤 ∈ ran 𝐹 ↔ ∃𝑧𝑉 (𝐹𝑧) = 𝑤))
4441, 42, 433anbi123d 1323 . . . . . . . 8 (𝐹 Fn 𝑉 → ((𝑢 ∈ ran 𝐹𝑣 ∈ ran 𝐹𝑤 ∈ ran 𝐹) ↔ (∃𝑥𝑉 (𝐹𝑥) = 𝑢 ∧ ∃𝑦𝑉 (𝐹𝑦) = 𝑣 ∧ ∃𝑧𝑉 (𝐹𝑧) = 𝑤)))
4540, 44syl 14 . . . . . . 7 (𝜑 → ((𝑢 ∈ ran 𝐹𝑣 ∈ ran 𝐹𝑤 ∈ ran 𝐹) ↔ (∃𝑥𝑉 (𝐹𝑥) = 𝑢 ∧ ∃𝑦𝑉 (𝐹𝑦) = 𝑣 ∧ ∃𝑧𝑉 (𝐹𝑧) = 𝑤)))
4638, 45bitr3d 190 . . . . . 6 (𝜑 → ((𝑢𝐵𝑣𝐵𝑤𝐵) ↔ (∃𝑥𝑉 (𝐹𝑥) = 𝑢 ∧ ∃𝑦𝑉 (𝐹𝑦) = 𝑣 ∧ ∃𝑧𝑉 (𝐹𝑧) = 𝑤)))
47 3reeanv 2661 . . . . . 6 (∃𝑥𝑉𝑦𝑉𝑧𝑉 ((𝐹𝑥) = 𝑢 ∧ (𝐹𝑦) = 𝑣 ∧ (𝐹𝑧) = 𝑤) ↔ (∃𝑥𝑉 (𝐹𝑥) = 𝑢 ∧ ∃𝑦𝑉 (𝐹𝑦) = 𝑣 ∧ ∃𝑧𝑉 (𝐹𝑧) = 𝑤))
4846, 47bitr4di 198 . . . . 5 (𝜑 → ((𝑢𝐵𝑣𝐵𝑤𝐵) ↔ ∃𝑥𝑉𝑦𝑉𝑧𝑉 ((𝐹𝑥) = 𝑢 ∧ (𝐹𝑦) = 𝑣 ∧ (𝐹𝑧) = 𝑤)))
494adantr 276 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑥𝑉𝑦𝑉𝑧𝑉)) → 𝑅 ∈ Ring)
50 simp2 1000 . . . . . . . . . . . . . . . 16 ((𝜑𝑥𝑉𝑦𝑉) → 𝑥𝑉)
5123ad2ant1 1020 . . . . . . . . . . . . . . . 16 ((𝜑𝑥𝑉𝑦𝑉) → 𝑉 = (Base‘𝑅))
5250, 51eleqtrd 2268 . . . . . . . . . . . . . . 15 ((𝜑𝑥𝑉𝑦𝑉) → 𝑥 ∈ (Base‘𝑅))
53523adant3r3 1216 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑥𝑉𝑦𝑉𝑧𝑉)) → 𝑥 ∈ (Base‘𝑅))
54 simp3 1001 . . . . . . . . . . . . . . . 16 ((𝜑𝑥𝑉𝑦𝑉) → 𝑦𝑉)
5554, 51eleqtrd 2268 . . . . . . . . . . . . . . 15 ((𝜑𝑥𝑉𝑦𝑉) → 𝑦 ∈ (Base‘𝑅))
56553adant3r3 1216 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑥𝑉𝑦𝑉𝑧𝑉)) → 𝑦 ∈ (Base‘𝑅))
57 simpr3 1007 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑥𝑉𝑦𝑉𝑧𝑉)) → 𝑧𝑉)
582adantr 276 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑥𝑉𝑦𝑉𝑧𝑉)) → 𝑉 = (Base‘𝑅))
5957, 58eleqtrd 2268 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑥𝑉𝑦𝑉𝑧𝑉)) → 𝑧 ∈ (Base‘𝑅))
6025, 17ringass 13367 . . . . . . . . . . . . . 14 ((𝑅 ∈ Ring ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅) ∧ 𝑧 ∈ (Base‘𝑅))) → ((𝑥 · 𝑦) · 𝑧) = (𝑥 · (𝑦 · 𝑧)))
6149, 53, 56, 59, 60syl13anc 1251 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑥𝑉𝑦𝑉𝑧𝑉)) → ((𝑥 · 𝑦) · 𝑧) = (𝑥 · (𝑦 · 𝑧)))
6261fveq2d 5538 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑥𝑉𝑦𝑉𝑧𝑉)) → (𝐹‘((𝑥 · 𝑦) · 𝑧)) = (𝐹‘(𝑥 · (𝑦 · 𝑧))))
63 simpl 109 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑥𝑉𝑦𝑉𝑧𝑉)) → 𝜑)
6428caovclg 6048 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑥𝑉𝑦𝑉)) → (𝑥 · 𝑦) ∈ 𝑉)
65643adantr3 1160 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑥𝑉𝑦𝑉𝑧𝑉)) → (𝑥 · 𝑦) ∈ 𝑉)
663, 16, 1, 2, 4, 17, 18imasmulval 12795 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑥 · 𝑦) ∈ 𝑉𝑧𝑉) → ((𝐹‘(𝑥 · 𝑦))(.r𝑈)(𝐹𝑧)) = (𝐹‘((𝑥 · 𝑦) · 𝑧)))
6763, 65, 57, 66syl3anc 1249 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑥𝑉𝑦𝑉𝑧𝑉)) → ((𝐹‘(𝑥 · 𝑦))(.r𝑈)(𝐹𝑧)) = (𝐹‘((𝑥 · 𝑦) · 𝑧)))
68 simpr1 1005 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑥𝑉𝑦𝑉𝑧𝑉)) → 𝑥𝑉)
6928caovclg 6048 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑦𝑉𝑧𝑉)) → (𝑦 · 𝑧) ∈ 𝑉)
70693adantr1 1158 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑥𝑉𝑦𝑉𝑧𝑉)) → (𝑦 · 𝑧) ∈ 𝑉)
713, 16, 1, 2, 4, 17, 18imasmulval 12795 . . . . . . . . . . . . 13 ((𝜑𝑥𝑉 ∧ (𝑦 · 𝑧) ∈ 𝑉) → ((𝐹𝑥)(.r𝑈)(𝐹‘(𝑦 · 𝑧))) = (𝐹‘(𝑥 · (𝑦 · 𝑧))))
7263, 68, 70, 71syl3anc 1249 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑥𝑉𝑦𝑉𝑧𝑉)) → ((𝐹𝑥)(.r𝑈)(𝐹‘(𝑦 · 𝑧))) = (𝐹‘(𝑥 · (𝑦 · 𝑧))))
7362, 67, 723eqtr4d 2232 . . . . . . . . . . 11 ((𝜑 ∧ (𝑥𝑉𝑦𝑉𝑧𝑉)) → ((𝐹‘(𝑥 · 𝑦))(.r𝑈)(𝐹𝑧)) = ((𝐹𝑥)(.r𝑈)(𝐹‘(𝑦 · 𝑧))))
743, 16, 1, 2, 4, 17, 18imasmulval 12795 . . . . . . . . . . . . 13 ((𝜑𝑥𝑉𝑦𝑉) → ((𝐹𝑥)(.r𝑈)(𝐹𝑦)) = (𝐹‘(𝑥 · 𝑦)))
75743adant3r3 1216 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑥𝑉𝑦𝑉𝑧𝑉)) → ((𝐹𝑥)(.r𝑈)(𝐹𝑦)) = (𝐹‘(𝑥 · 𝑦)))
7675oveq1d 5910 . . . . . . . . . . 11 ((𝜑 ∧ (𝑥𝑉𝑦𝑉𝑧𝑉)) → (((𝐹𝑥)(.r𝑈)(𝐹𝑦))(.r𝑈)(𝐹𝑧)) = ((𝐹‘(𝑥 · 𝑦))(.r𝑈)(𝐹𝑧)))
773, 16, 1, 2, 4, 17, 18imasmulval 12795 . . . . . . . . . . . . 13 ((𝜑𝑦𝑉𝑧𝑉) → ((𝐹𝑦)(.r𝑈)(𝐹𝑧)) = (𝐹‘(𝑦 · 𝑧)))
78773adant3r1 1214 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑥𝑉𝑦𝑉𝑧𝑉)) → ((𝐹𝑦)(.r𝑈)(𝐹𝑧)) = (𝐹‘(𝑦 · 𝑧)))
7978oveq2d 5911 . . . . . . . . . . 11 ((𝜑 ∧ (𝑥𝑉𝑦𝑉𝑧𝑉)) → ((𝐹𝑥)(.r𝑈)((𝐹𝑦)(.r𝑈)(𝐹𝑧))) = ((𝐹𝑥)(.r𝑈)(𝐹‘(𝑦 · 𝑧))))
8073, 76, 793eqtr4d 2232 . . . . . . . . . 10 ((𝜑 ∧ (𝑥𝑉𝑦𝑉𝑧𝑉)) → (((𝐹𝑥)(.r𝑈)(𝐹𝑦))(.r𝑈)(𝐹𝑧)) = ((𝐹𝑥)(.r𝑈)((𝐹𝑦)(.r𝑈)(𝐹𝑧))))
81 simp1 999 . . . . . . . . . . . . 13 (((𝐹𝑥) = 𝑢 ∧ (𝐹𝑦) = 𝑣 ∧ (𝐹𝑧) = 𝑤) → (𝐹𝑥) = 𝑢)
82 simp2 1000 . . . . . . . . . . . . 13 (((𝐹𝑥) = 𝑢 ∧ (𝐹𝑦) = 𝑣 ∧ (𝐹𝑧) = 𝑤) → (𝐹𝑦) = 𝑣)
8381, 82oveq12d 5913 . . . . . . . . . . . 12 (((𝐹𝑥) = 𝑢 ∧ (𝐹𝑦) = 𝑣 ∧ (𝐹𝑧) = 𝑤) → ((𝐹𝑥)(.r𝑈)(𝐹𝑦)) = (𝑢(.r𝑈)𝑣))
84 simp3 1001 . . . . . . . . . . . 12 (((𝐹𝑥) = 𝑢 ∧ (𝐹𝑦) = 𝑣 ∧ (𝐹𝑧) = 𝑤) → (𝐹𝑧) = 𝑤)
8583, 84oveq12d 5913 . . . . . . . . . . 11 (((𝐹𝑥) = 𝑢 ∧ (𝐹𝑦) = 𝑣 ∧ (𝐹𝑧) = 𝑤) → (((𝐹𝑥)(.r𝑈)(𝐹𝑦))(.r𝑈)(𝐹𝑧)) = ((𝑢(.r𝑈)𝑣)(.r𝑈)𝑤))
8682, 84oveq12d 5913 . . . . . . . . . . . 12 (((𝐹𝑥) = 𝑢 ∧ (𝐹𝑦) = 𝑣 ∧ (𝐹𝑧) = 𝑤) → ((𝐹𝑦)(.r𝑈)(𝐹𝑧)) = (𝑣(.r𝑈)𝑤))
8781, 86oveq12d 5913 . . . . . . . . . . 11 (((𝐹𝑥) = 𝑢 ∧ (𝐹𝑦) = 𝑣 ∧ (𝐹𝑧) = 𝑤) → ((𝐹𝑥)(.r𝑈)((𝐹𝑦)(.r𝑈)(𝐹𝑧))) = (𝑢(.r𝑈)(𝑣(.r𝑈)𝑤)))
8885, 87eqeq12d 2204 . . . . . . . . . 10 (((𝐹𝑥) = 𝑢 ∧ (𝐹𝑦) = 𝑣 ∧ (𝐹𝑧) = 𝑤) → ((((𝐹𝑥)(.r𝑈)(𝐹𝑦))(.r𝑈)(𝐹𝑧)) = ((𝐹𝑥)(.r𝑈)((𝐹𝑦)(.r𝑈)(𝐹𝑧))) ↔ ((𝑢(.r𝑈)𝑣)(.r𝑈)𝑤) = (𝑢(.r𝑈)(𝑣(.r𝑈)𝑤))))
8980, 88syl5ibcom 155 . . . . . . . . 9 ((𝜑 ∧ (𝑥𝑉𝑦𝑉𝑧𝑉)) → (((𝐹𝑥) = 𝑢 ∧ (𝐹𝑦) = 𝑣 ∧ (𝐹𝑧) = 𝑤) → ((𝑢(.r𝑈)𝑣)(.r𝑈)𝑤) = (𝑢(.r𝑈)(𝑣(.r𝑈)𝑤))))
90893exp2 1227 . . . . . . . 8 (𝜑 → (𝑥𝑉 → (𝑦𝑉 → (𝑧𝑉 → (((𝐹𝑥) = 𝑢 ∧ (𝐹𝑦) = 𝑣 ∧ (𝐹𝑧) = 𝑤) → ((𝑢(.r𝑈)𝑣)(.r𝑈)𝑤) = (𝑢(.r𝑈)(𝑣(.r𝑈)𝑤)))))))
9190imp32 257 . . . . . . 7 ((𝜑 ∧ (𝑥𝑉𝑦𝑉)) → (𝑧𝑉 → (((𝐹𝑥) = 𝑢 ∧ (𝐹𝑦) = 𝑣 ∧ (𝐹𝑧) = 𝑤) → ((𝑢(.r𝑈)𝑣)(.r𝑈)𝑤) = (𝑢(.r𝑈)(𝑣(.r𝑈)𝑤)))))
9291rexlimdv 2606 . . . . . 6 ((𝜑 ∧ (𝑥𝑉𝑦𝑉)) → (∃𝑧𝑉 ((𝐹𝑥) = 𝑢 ∧ (𝐹𝑦) = 𝑣 ∧ (𝐹𝑧) = 𝑤) → ((𝑢(.r𝑈)𝑣)(.r𝑈)𝑤) = (𝑢(.r𝑈)(𝑣(.r𝑈)𝑤))))
9392rexlimdvva 2615 . . . . 5 (𝜑 → (∃𝑥𝑉𝑦𝑉𝑧𝑉 ((𝐹𝑥) = 𝑢 ∧ (𝐹𝑦) = 𝑣 ∧ (𝐹𝑧) = 𝑤) → ((𝑢(.r𝑈)𝑣)(.r𝑈)𝑤) = (𝑢(.r𝑈)(𝑣(.r𝑈)𝑤))))
9448, 93sylbid 150 . . . 4 (𝜑 → ((𝑢𝐵𝑣𝐵𝑤𝐵) → ((𝑢(.r𝑈)𝑣)(.r𝑈)𝑤) = (𝑢(.r𝑈)(𝑣(.r𝑈)𝑤))))
9594imp 124 . . 3 ((𝜑 ∧ (𝑢𝐵𝑣𝐵𝑤𝐵)) → ((𝑢(.r𝑈)𝑣)(.r𝑈)𝑤) = (𝑢(.r𝑈)(𝑣(.r𝑈)𝑤)))
9625, 8, 17ringdi 13369 . . . . . . . . . . . . . 14 ((𝑅 ∈ Ring ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅) ∧ 𝑧 ∈ (Base‘𝑅))) → (𝑥 · (𝑦 + 𝑧)) = ((𝑥 · 𝑦) + (𝑥 · 𝑧)))
9749, 53, 56, 59, 96syl13anc 1251 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑥𝑉𝑦𝑉𝑧𝑉)) → (𝑥 · (𝑦 + 𝑧)) = ((𝑥 · 𝑦) + (𝑥 · 𝑧)))
9897fveq2d 5538 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑥𝑉𝑦𝑉𝑧𝑉)) → (𝐹‘(𝑥 · (𝑦 + 𝑧))) = (𝐹‘((𝑥 · 𝑦) + (𝑥 · 𝑧))))
9925, 8ringacl 13381 . . . . . . . . . . . . . . . . 17 ((𝑅 ∈ Ring ∧ 𝑢 ∈ (Base‘𝑅) ∧ 𝑣 ∈ (Base‘𝑅)) → (𝑢 + 𝑣) ∈ (Base‘𝑅))
10019, 22, 24, 99syl3anc 1249 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝑢𝑉𝑣𝑉)) → (𝑢 + 𝑣) ∈ (Base‘𝑅))
101100, 21eleqtrrd 2269 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑢𝑉𝑣𝑉)) → (𝑢 + 𝑣) ∈ 𝑉)
102101caovclg 6048 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑦𝑉𝑧𝑉)) → (𝑦 + 𝑧) ∈ 𝑉)
1031023adantr1 1158 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑥𝑉𝑦𝑉𝑧𝑉)) → (𝑦 + 𝑧) ∈ 𝑉)
1043, 16, 1, 2, 4, 17, 18imasmulval 12795 . . . . . . . . . . . . 13 ((𝜑𝑥𝑉 ∧ (𝑦 + 𝑧) ∈ 𝑉) → ((𝐹𝑥)(.r𝑈)(𝐹‘(𝑦 + 𝑧))) = (𝐹‘(𝑥 · (𝑦 + 𝑧))))
10563, 68, 103, 104syl3anc 1249 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑥𝑉𝑦𝑉𝑧𝑉)) → ((𝐹𝑥)(.r𝑈)(𝐹‘(𝑦 + 𝑧))) = (𝐹‘(𝑥 · (𝑦 + 𝑧))))
10628caovclg 6048 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑥𝑉𝑧𝑉)) → (𝑥 · 𝑧) ∈ 𝑉)
1071063adantr2 1159 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑥𝑉𝑦𝑉𝑧𝑉)) → (𝑥 · 𝑧) ∈ 𝑉)
108 eqid 2189 . . . . . . . . . . . . . 14 (+g𝑈) = (+g𝑈)
1093, 10, 1, 2, 4, 8, 108imasaddval 12792 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑥 · 𝑦) ∈ 𝑉 ∧ (𝑥 · 𝑧) ∈ 𝑉) → ((𝐹‘(𝑥 · 𝑦))(+g𝑈)(𝐹‘(𝑥 · 𝑧))) = (𝐹‘((𝑥 · 𝑦) + (𝑥 · 𝑧))))
11063, 65, 107, 109syl3anc 1249 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑥𝑉𝑦𝑉𝑧𝑉)) → ((𝐹‘(𝑥 · 𝑦))(+g𝑈)(𝐹‘(𝑥 · 𝑧))) = (𝐹‘((𝑥 · 𝑦) + (𝑥 · 𝑧))))
11198, 105, 1103eqtr4d 2232 . . . . . . . . . . 11 ((𝜑 ∧ (𝑥𝑉𝑦𝑉𝑧𝑉)) → ((𝐹𝑥)(.r𝑈)(𝐹‘(𝑦 + 𝑧))) = ((𝐹‘(𝑥 · 𝑦))(+g𝑈)(𝐹‘(𝑥 · 𝑧))))
1123, 10, 1, 2, 4, 8, 108imasaddval 12792 . . . . . . . . . . . . 13 ((𝜑𝑦𝑉𝑧𝑉) → ((𝐹𝑦)(+g𝑈)(𝐹𝑧)) = (𝐹‘(𝑦 + 𝑧)))
1131123adant3r1 1214 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑥𝑉𝑦𝑉𝑧𝑉)) → ((𝐹𝑦)(+g𝑈)(𝐹𝑧)) = (𝐹‘(𝑦 + 𝑧)))
114113oveq2d 5911 . . . . . . . . . . 11 ((𝜑 ∧ (𝑥𝑉𝑦𝑉𝑧𝑉)) → ((𝐹𝑥)(.r𝑈)((𝐹𝑦)(+g𝑈)(𝐹𝑧))) = ((𝐹𝑥)(.r𝑈)(𝐹‘(𝑦 + 𝑧))))
1153, 16, 1, 2, 4, 17, 18imasmulval 12795 . . . . . . . . . . . . 13 ((𝜑𝑥𝑉𝑧𝑉) → ((𝐹𝑥)(.r𝑈)(𝐹𝑧)) = (𝐹‘(𝑥 · 𝑧)))
1161153adant3r2 1215 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑥𝑉𝑦𝑉𝑧𝑉)) → ((𝐹𝑥)(.r𝑈)(𝐹𝑧)) = (𝐹‘(𝑥 · 𝑧)))
11775, 116oveq12d 5913 . . . . . . . . . . 11 ((𝜑 ∧ (𝑥𝑉𝑦𝑉𝑧𝑉)) → (((𝐹𝑥)(.r𝑈)(𝐹𝑦))(+g𝑈)((𝐹𝑥)(.r𝑈)(𝐹𝑧))) = ((𝐹‘(𝑥 · 𝑦))(+g𝑈)(𝐹‘(𝑥 · 𝑧))))
118111, 114, 1173eqtr4d 2232 . . . . . . . . . 10 ((𝜑 ∧ (𝑥𝑉𝑦𝑉𝑧𝑉)) → ((𝐹𝑥)(.r𝑈)((𝐹𝑦)(+g𝑈)(𝐹𝑧))) = (((𝐹𝑥)(.r𝑈)(𝐹𝑦))(+g𝑈)((𝐹𝑥)(.r𝑈)(𝐹𝑧))))
11982, 84oveq12d 5913 . . . . . . . . . . . 12 (((𝐹𝑥) = 𝑢 ∧ (𝐹𝑦) = 𝑣 ∧ (𝐹𝑧) = 𝑤) → ((𝐹𝑦)(+g𝑈)(𝐹𝑧)) = (𝑣(+g𝑈)𝑤))
12081, 119oveq12d 5913 . . . . . . . . . . 11 (((𝐹𝑥) = 𝑢 ∧ (𝐹𝑦) = 𝑣 ∧ (𝐹𝑧) = 𝑤) → ((𝐹𝑥)(.r𝑈)((𝐹𝑦)(+g𝑈)(𝐹𝑧))) = (𝑢(.r𝑈)(𝑣(+g𝑈)𝑤)))
12181, 84oveq12d 5913 . . . . . . . . . . . 12 (((𝐹𝑥) = 𝑢 ∧ (𝐹𝑦) = 𝑣 ∧ (𝐹𝑧) = 𝑤) → ((𝐹𝑥)(.r𝑈)(𝐹𝑧)) = (𝑢(.r𝑈)𝑤))
12283, 121oveq12d 5913 . . . . . . . . . . 11 (((𝐹𝑥) = 𝑢 ∧ (𝐹𝑦) = 𝑣 ∧ (𝐹𝑧) = 𝑤) → (((𝐹𝑥)(.r𝑈)(𝐹𝑦))(+g𝑈)((𝐹𝑥)(.r𝑈)(𝐹𝑧))) = ((𝑢(.r𝑈)𝑣)(+g𝑈)(𝑢(.r𝑈)𝑤)))
123120, 122eqeq12d 2204 . . . . . . . . . 10 (((𝐹𝑥) = 𝑢 ∧ (𝐹𝑦) = 𝑣 ∧ (𝐹𝑧) = 𝑤) → (((𝐹𝑥)(.r𝑈)((𝐹𝑦)(+g𝑈)(𝐹𝑧))) = (((𝐹𝑥)(.r𝑈)(𝐹𝑦))(+g𝑈)((𝐹𝑥)(.r𝑈)(𝐹𝑧))) ↔ (𝑢(.r𝑈)(𝑣(+g𝑈)𝑤)) = ((𝑢(.r𝑈)𝑣)(+g𝑈)(𝑢(.r𝑈)𝑤))))
124118, 123syl5ibcom 155 . . . . . . . . 9 ((𝜑 ∧ (𝑥𝑉𝑦𝑉𝑧𝑉)) → (((𝐹𝑥) = 𝑢 ∧ (𝐹𝑦) = 𝑣 ∧ (𝐹𝑧) = 𝑤) → (𝑢(.r𝑈)(𝑣(+g𝑈)𝑤)) = ((𝑢(.r𝑈)𝑣)(+g𝑈)(𝑢(.r𝑈)𝑤))))
1251243exp2 1227 . . . . . . . 8 (𝜑 → (𝑥𝑉 → (𝑦𝑉 → (𝑧𝑉 → (((𝐹𝑥) = 𝑢 ∧ (𝐹𝑦) = 𝑣 ∧ (𝐹𝑧) = 𝑤) → (𝑢(.r𝑈)(𝑣(+g𝑈)𝑤)) = ((𝑢(.r𝑈)𝑣)(+g𝑈)(𝑢(.r𝑈)𝑤)))))))
126125imp32 257 . . . . . . 7 ((𝜑 ∧ (𝑥𝑉𝑦𝑉)) → (𝑧𝑉 → (((𝐹𝑥) = 𝑢 ∧ (𝐹𝑦) = 𝑣 ∧ (𝐹𝑧) = 𝑤) → (𝑢(.r𝑈)(𝑣(+g𝑈)𝑤)) = ((𝑢(.r𝑈)𝑣)(+g𝑈)(𝑢(.r𝑈)𝑤)))))
127126rexlimdv 2606 . . . . . 6 ((𝜑 ∧ (𝑥𝑉𝑦𝑉)) → (∃𝑧𝑉 ((𝐹𝑥) = 𝑢 ∧ (𝐹𝑦) = 𝑣 ∧ (𝐹𝑧) = 𝑤) → (𝑢(.r𝑈)(𝑣(+g𝑈)𝑤)) = ((𝑢(.r𝑈)𝑣)(+g𝑈)(𝑢(.r𝑈)𝑤))))
128127rexlimdvva 2615 . . . . 5 (𝜑 → (∃𝑥𝑉𝑦𝑉𝑧𝑉 ((𝐹𝑥) = 𝑢 ∧ (𝐹𝑦) = 𝑣 ∧ (𝐹𝑧) = 𝑤) → (𝑢(.r𝑈)(𝑣(+g𝑈)𝑤)) = ((𝑢(.r𝑈)𝑣)(+g𝑈)(𝑢(.r𝑈)𝑤))))
12948, 128sylbid 150 . . . 4 (𝜑 → ((𝑢𝐵𝑣𝐵𝑤𝐵) → (𝑢(.r𝑈)(𝑣(+g𝑈)𝑤)) = ((𝑢(.r𝑈)𝑣)(+g𝑈)(𝑢(.r𝑈)𝑤))))
130129imp 124 . . 3 ((𝜑 ∧ (𝑢𝐵𝑣𝐵𝑤𝐵)) → (𝑢(.r𝑈)(𝑣(+g𝑈)𝑤)) = ((𝑢(.r𝑈)𝑣)(+g𝑈)(𝑢(.r𝑈)𝑤)))
13125, 8, 17ringdir 13370 . . . . . . . . . . . . . 14 ((𝑅 ∈ Ring ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅) ∧ 𝑧 ∈ (Base‘𝑅))) → ((𝑥 + 𝑦) · 𝑧) = ((𝑥 · 𝑧) + (𝑦 · 𝑧)))
13249, 53, 56, 59, 131syl13anc 1251 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑥𝑉𝑦𝑉𝑧𝑉)) → ((𝑥 + 𝑦) · 𝑧) = ((𝑥 · 𝑧) + (𝑦 · 𝑧)))
133132fveq2d 5538 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑥𝑉𝑦𝑉𝑧𝑉)) → (𝐹‘((𝑥 + 𝑦) · 𝑧)) = (𝐹‘((𝑥 · 𝑧) + (𝑦 · 𝑧))))
134101caovclg 6048 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑥𝑉𝑦𝑉)) → (𝑥 + 𝑦) ∈ 𝑉)
1351343adantr3 1160 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑥𝑉𝑦𝑉𝑧𝑉)) → (𝑥 + 𝑦) ∈ 𝑉)
1363, 16, 1, 2, 4, 17, 18imasmulval 12795 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑥 + 𝑦) ∈ 𝑉𝑧𝑉) → ((𝐹‘(𝑥 + 𝑦))(.r𝑈)(𝐹𝑧)) = (𝐹‘((𝑥 + 𝑦) · 𝑧)))
13763, 135, 57, 136syl3anc 1249 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑥𝑉𝑦𝑉𝑧𝑉)) → ((𝐹‘(𝑥 + 𝑦))(.r𝑈)(𝐹𝑧)) = (𝐹‘((𝑥 + 𝑦) · 𝑧)))
1383, 10, 1, 2, 4, 8, 108imasaddval 12792 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑥 · 𝑧) ∈ 𝑉 ∧ (𝑦 · 𝑧) ∈ 𝑉) → ((𝐹‘(𝑥 · 𝑧))(+g𝑈)(𝐹‘(𝑦 · 𝑧))) = (𝐹‘((𝑥 · 𝑧) + (𝑦 · 𝑧))))
13963, 107, 70, 138syl3anc 1249 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑥𝑉𝑦𝑉𝑧𝑉)) → ((𝐹‘(𝑥 · 𝑧))(+g𝑈)(𝐹‘(𝑦 · 𝑧))) = (𝐹‘((𝑥 · 𝑧) + (𝑦 · 𝑧))))
140133, 137, 1393eqtr4d 2232 . . . . . . . . . . 11 ((𝜑 ∧ (𝑥𝑉𝑦𝑉𝑧𝑉)) → ((𝐹‘(𝑥 + 𝑦))(.r𝑈)(𝐹𝑧)) = ((𝐹‘(𝑥 · 𝑧))(+g𝑈)(𝐹‘(𝑦 · 𝑧))))
1413, 10, 1, 2, 4, 8, 108imasaddval 12792 . . . . . . . . . . . . 13 ((𝜑𝑥𝑉𝑦𝑉) → ((𝐹𝑥)(+g𝑈)(𝐹𝑦)) = (𝐹‘(𝑥 + 𝑦)))
1421413adant3r3 1216 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑥𝑉𝑦𝑉𝑧𝑉)) → ((𝐹𝑥)(+g𝑈)(𝐹𝑦)) = (𝐹‘(𝑥 + 𝑦)))
143142oveq1d 5910 . . . . . . . . . . 11 ((𝜑 ∧ (𝑥𝑉𝑦𝑉𝑧𝑉)) → (((𝐹𝑥)(+g𝑈)(𝐹𝑦))(.r𝑈)(𝐹𝑧)) = ((𝐹‘(𝑥 + 𝑦))(.r𝑈)(𝐹𝑧)))
144116, 78oveq12d 5913 . . . . . . . . . . 11 ((𝜑 ∧ (𝑥𝑉𝑦𝑉𝑧𝑉)) → (((𝐹𝑥)(.r𝑈)(𝐹𝑧))(+g𝑈)((𝐹𝑦)(.r𝑈)(𝐹𝑧))) = ((𝐹‘(𝑥 · 𝑧))(+g𝑈)(𝐹‘(𝑦 · 𝑧))))
145140, 143, 1443eqtr4d 2232 . . . . . . . . . 10 ((𝜑 ∧ (𝑥𝑉𝑦𝑉𝑧𝑉)) → (((𝐹𝑥)(+g𝑈)(𝐹𝑦))(.r𝑈)(𝐹𝑧)) = (((𝐹𝑥)(.r𝑈)(𝐹𝑧))(+g𝑈)((𝐹𝑦)(.r𝑈)(𝐹𝑧))))
14681, 82oveq12d 5913 . . . . . . . . . . . 12 (((𝐹𝑥) = 𝑢 ∧ (𝐹𝑦) = 𝑣 ∧ (𝐹𝑧) = 𝑤) → ((𝐹𝑥)(+g𝑈)(𝐹𝑦)) = (𝑢(+g𝑈)𝑣))
147146, 84oveq12d 5913 . . . . . . . . . . 11 (((𝐹𝑥) = 𝑢 ∧ (𝐹𝑦) = 𝑣 ∧ (𝐹𝑧) = 𝑤) → (((𝐹𝑥)(+g𝑈)(𝐹𝑦))(.r𝑈)(𝐹𝑧)) = ((𝑢(+g𝑈)𝑣)(.r𝑈)𝑤))
148121, 86oveq12d 5913 . . . . . . . . . . 11 (((𝐹𝑥) = 𝑢 ∧ (𝐹𝑦) = 𝑣 ∧ (𝐹𝑧) = 𝑤) → (((𝐹𝑥)(.r𝑈)(𝐹𝑧))(+g𝑈)((𝐹𝑦)(.r𝑈)(𝐹𝑧))) = ((𝑢(.r𝑈)𝑤)(+g𝑈)(𝑣(.r𝑈)𝑤)))
149147, 148eqeq12d 2204 . . . . . . . . . 10 (((𝐹𝑥) = 𝑢 ∧ (𝐹𝑦) = 𝑣 ∧ (𝐹𝑧) = 𝑤) → ((((𝐹𝑥)(+g𝑈)(𝐹𝑦))(.r𝑈)(𝐹𝑧)) = (((𝐹𝑥)(.r𝑈)(𝐹𝑧))(+g𝑈)((𝐹𝑦)(.r𝑈)(𝐹𝑧))) ↔ ((𝑢(+g𝑈)𝑣)(.r𝑈)𝑤) = ((𝑢(.r𝑈)𝑤)(+g𝑈)(𝑣(.r𝑈)𝑤))))
150145, 149syl5ibcom 155 . . . . . . . . 9 ((𝜑 ∧ (𝑥𝑉𝑦𝑉𝑧𝑉)) → (((𝐹𝑥) = 𝑢 ∧ (𝐹𝑦) = 𝑣 ∧ (𝐹𝑧) = 𝑤) → ((𝑢(+g𝑈)𝑣)(.r𝑈)𝑤) = ((𝑢(.r𝑈)𝑤)(+g𝑈)(𝑣(.r𝑈)𝑤))))
1511503exp2 1227 . . . . . . . 8 (𝜑 → (𝑥𝑉 → (𝑦𝑉 → (𝑧𝑉 → (((𝐹𝑥) = 𝑢 ∧ (𝐹𝑦) = 𝑣 ∧ (𝐹𝑧) = 𝑤) → ((𝑢(+g𝑈)𝑣)(.r𝑈)𝑤) = ((𝑢(.r𝑈)𝑤)(+g𝑈)(𝑣(.r𝑈)𝑤)))))))
152151imp32 257 . . . . . . 7 ((𝜑 ∧ (𝑥𝑉𝑦𝑉)) → (𝑧𝑉 → (((𝐹𝑥) = 𝑢 ∧ (𝐹𝑦) = 𝑣 ∧ (𝐹𝑧) = 𝑤) → ((𝑢(+g𝑈)𝑣)(.r𝑈)𝑤) = ((𝑢(.r𝑈)𝑤)(+g𝑈)(𝑣(.r𝑈)𝑤)))))
153152rexlimdv 2606 . . . . . 6 ((𝜑 ∧ (𝑥𝑉𝑦𝑉)) → (∃𝑧𝑉 ((𝐹𝑥) = 𝑢 ∧ (𝐹𝑦) = 𝑣 ∧ (𝐹𝑧) = 𝑤) → ((𝑢(+g𝑈)𝑣)(.r𝑈)𝑤) = ((𝑢(.r𝑈)𝑤)(+g𝑈)(𝑣(.r𝑈)𝑤))))
154153rexlimdvva 2615 . . . . 5 (𝜑 → (∃𝑥𝑉𝑦𝑉𝑧𝑉 ((𝐹𝑥) = 𝑢 ∧ (𝐹𝑦) = 𝑣 ∧ (𝐹𝑧) = 𝑤) → ((𝑢(+g𝑈)𝑣)(.r𝑈)𝑤) = ((𝑢(.r𝑈)𝑤)(+g𝑈)(𝑣(.r𝑈)𝑤))))
15548, 154sylbid 150 . . . 4 (𝜑 → ((𝑢𝐵𝑣𝐵𝑤𝐵) → ((𝑢(+g𝑈)𝑣)(.r𝑈)𝑤) = ((𝑢(.r𝑈)𝑤)(+g𝑈)(𝑣(.r𝑈)𝑤))))
156155imp 124 . . 3 ((𝜑 ∧ (𝑢𝐵𝑣𝐵𝑤𝐵)) → ((𝑢(+g𝑈)𝑣)(.r𝑈)𝑤) = ((𝑢(.r𝑈)𝑤)(+g𝑈)(𝑣(.r𝑈)𝑤)))
157 fof 5457 . . . . 5 (𝐹:𝑉onto𝐵𝐹:𝑉𝐵)
1583, 157syl 14 . . . 4 (𝜑𝐹:𝑉𝐵)
159 imasring.o . . . . . . 7 1 = (1r𝑅)
16025, 159ringidcl 13371 . . . . . 6 (𝑅 ∈ Ring → 1 ∈ (Base‘𝑅))
1614, 160syl 14 . . . . 5 (𝜑1 ∈ (Base‘𝑅))
162161, 2eleqtrrd 2269 . . . 4 (𝜑1𝑉)
163158, 162ffvelcdmd 5672 . . 3 (𝜑 → (𝐹1 ) ∈ 𝐵)
16440, 41syl 14 . . . . . 6 (𝜑 → (𝑢 ∈ ran 𝐹 ↔ ∃𝑥𝑉 (𝐹𝑥) = 𝑢))
16535, 164bitr3d 190 . . . . 5 (𝜑 → (𝑢𝐵 ↔ ∃𝑥𝑉 (𝐹𝑥) = 𝑢))
166 simpl 109 . . . . . . . . 9 ((𝜑𝑥𝑉) → 𝜑)
167162adantr 276 . . . . . . . . 9 ((𝜑𝑥𝑉) → 1𝑉)
168 simpr 110 . . . . . . . . 9 ((𝜑𝑥𝑉) → 𝑥𝑉)
1693, 16, 1, 2, 4, 17, 18imasmulval 12795 . . . . . . . . 9 ((𝜑1𝑉𝑥𝑉) → ((𝐹1 )(.r𝑈)(𝐹𝑥)) = (𝐹‘( 1 · 𝑥)))
170166, 167, 168, 169syl3anc 1249 . . . . . . . 8 ((𝜑𝑥𝑉) → ((𝐹1 )(.r𝑈)(𝐹𝑥)) = (𝐹‘( 1 · 𝑥)))
1712eleq2d 2259 . . . . . . . . . . 11 (𝜑 → (𝑥𝑉𝑥 ∈ (Base‘𝑅)))
172171biimpa 296 . . . . . . . . . 10 ((𝜑𝑥𝑉) → 𝑥 ∈ (Base‘𝑅))
17325, 17, 159ringlidm 13374 . . . . . . . . . 10 ((𝑅 ∈ Ring ∧ 𝑥 ∈ (Base‘𝑅)) → ( 1 · 𝑥) = 𝑥)
1744, 172, 173syl2an2r 595 . . . . . . . . 9 ((𝜑𝑥𝑉) → ( 1 · 𝑥) = 𝑥)
175174fveq2d 5538 . . . . . . . 8 ((𝜑𝑥𝑉) → (𝐹‘( 1 · 𝑥)) = (𝐹𝑥))
176170, 175eqtrd 2222 . . . . . . 7 ((𝜑𝑥𝑉) → ((𝐹1 )(.r𝑈)(𝐹𝑥)) = (𝐹𝑥))
177 oveq2 5903 . . . . . . . 8 ((𝐹𝑥) = 𝑢 → ((𝐹1 )(.r𝑈)(𝐹𝑥)) = ((𝐹1 )(.r𝑈)𝑢))
178 id 19 . . . . . . . 8 ((𝐹𝑥) = 𝑢 → (𝐹𝑥) = 𝑢)
179177, 178eqeq12d 2204 . . . . . . 7 ((𝐹𝑥) = 𝑢 → (((𝐹1 )(.r𝑈)(𝐹𝑥)) = (𝐹𝑥) ↔ ((𝐹1 )(.r𝑈)𝑢) = 𝑢))
180176, 179syl5ibcom 155 . . . . . 6 ((𝜑𝑥𝑉) → ((𝐹𝑥) = 𝑢 → ((𝐹1 )(.r𝑈)𝑢) = 𝑢))
181180rexlimdva 2607 . . . . 5 (𝜑 → (∃𝑥𝑉 (𝐹𝑥) = 𝑢 → ((𝐹1 )(.r𝑈)𝑢) = 𝑢))
182165, 181sylbid 150 . . . 4 (𝜑 → (𝑢𝐵 → ((𝐹1 )(.r𝑈)𝑢) = 𝑢))
183182imp 124 . . 3 ((𝜑𝑢𝐵) → ((𝐹1 )(.r𝑈)𝑢) = 𝑢)
1843, 16, 1, 2, 4, 17, 18imasmulval 12795 . . . . . . . . 9 ((𝜑𝑥𝑉1𝑉) → ((𝐹𝑥)(.r𝑈)(𝐹1 )) = (𝐹‘(𝑥 · 1 )))
185167, 184mpd3an3 1349 . . . . . . . 8 ((𝜑𝑥𝑉) → ((𝐹𝑥)(.r𝑈)(𝐹1 )) = (𝐹‘(𝑥 · 1 )))
18625, 17, 159ringridm 13375 . . . . . . . . . 10 ((𝑅 ∈ Ring ∧ 𝑥 ∈ (Base‘𝑅)) → (𝑥 · 1 ) = 𝑥)
1874, 172, 186syl2an2r 595 . . . . . . . . 9 ((𝜑𝑥𝑉) → (𝑥 · 1 ) = 𝑥)
188187fveq2d 5538 . . . . . . . 8 ((𝜑𝑥𝑉) → (𝐹‘(𝑥 · 1 )) = (𝐹𝑥))
189185, 188eqtrd 2222 . . . . . . 7 ((𝜑𝑥𝑉) → ((𝐹𝑥)(.r𝑈)(𝐹1 )) = (𝐹𝑥))
190 oveq1 5902 . . . . . . . 8 ((𝐹𝑥) = 𝑢 → ((𝐹𝑥)(.r𝑈)(𝐹1 )) = (𝑢(.r𝑈)(𝐹1 )))
191190, 178eqeq12d 2204 . . . . . . 7 ((𝐹𝑥) = 𝑢 → (((𝐹𝑥)(.r𝑈)(𝐹1 )) = (𝐹𝑥) ↔ (𝑢(.r𝑈)(𝐹1 )) = 𝑢))
192189, 191syl5ibcom 155 . . . . . 6 ((𝜑𝑥𝑉) → ((𝐹𝑥) = 𝑢 → (𝑢(.r𝑈)(𝐹1 )) = 𝑢))
193192rexlimdva 2607 . . . . 5 (𝜑 → (∃𝑥𝑉 (𝐹𝑥) = 𝑢 → (𝑢(.r𝑈)(𝐹1 )) = 𝑢))
194165, 193sylbid 150 . . . 4 (𝜑 → (𝑢𝐵 → (𝑢(.r𝑈)(𝐹1 )) = 𝑢))
195194imp 124 . . 3 ((𝜑𝑢𝐵) → (𝑢(.r𝑈)(𝐹1 )) = 𝑢)
1965, 6, 7, 15, 32, 95, 130, 156, 163, 183, 195isringd 13392 . 2 (𝜑𝑈 ∈ Ring)
197163, 5eleqtrd 2268 . . . 4 (𝜑 → (𝐹1 ) ∈ (Base‘𝑈))
1985eleq2d 2259 . . . . . 6 (𝜑 → (𝑢𝐵𝑢 ∈ (Base‘𝑈)))
199182, 194jcad 307 . . . . . 6 (𝜑 → (𝑢𝐵 → (((𝐹1 )(.r𝑈)𝑢) = 𝑢 ∧ (𝑢(.r𝑈)(𝐹1 )) = 𝑢)))
200198, 199sylbird 170 . . . . 5 (𝜑 → (𝑢 ∈ (Base‘𝑈) → (((𝐹1 )(.r𝑈)𝑢) = 𝑢 ∧ (𝑢(.r𝑈)(𝐹1 )) = 𝑢)))
201200ralrimiv 2562 . . . 4 (𝜑 → ∀𝑢 ∈ (Base‘𝑈)(((𝐹1 )(.r𝑈)𝑢) = 𝑢 ∧ (𝑢(.r𝑈)(𝐹1 )) = 𝑢))
202 eqid 2189 . . . . . 6 (Base‘𝑈) = (Base‘𝑈)
203 eqid 2189 . . . . . 6 (1r𝑈) = (1r𝑈)
204202, 18, 203isringid 13376 . . . . 5 (𝑈 ∈ Ring → (((𝐹1 ) ∈ (Base‘𝑈) ∧ ∀𝑢 ∈ (Base‘𝑈)(((𝐹1 )(.r𝑈)𝑢) = 𝑢 ∧ (𝑢(.r𝑈)(𝐹1 )) = 𝑢)) ↔ (1r𝑈) = (𝐹1 )))
205196, 204syl 14 . . . 4 (𝜑 → (((𝐹1 ) ∈ (Base‘𝑈) ∧ ∀𝑢 ∈ (Base‘𝑈)(((𝐹1 )(.r𝑈)𝑢) = 𝑢 ∧ (𝑢(.r𝑈)(𝐹1 )) = 𝑢)) ↔ (1r𝑈) = (𝐹1 )))
206197, 201, 205mpbi2and 945 . . 3 (𝜑 → (1r𝑈) = (𝐹1 ))
207206eqcomd 2195 . 2 (𝜑 → (𝐹1 ) = (1r𝑈))
208196, 207jca 306 1 (𝜑 → (𝑈 ∈ Ring ∧ (𝐹1 ) = (1r𝑈)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  w3a 980   = wceq 1364  wcel 2160  wral 2468  wrex 2469   × cxp 4642  ran crn 4645   Fn wfn 5230  wf 5231  ontowfo 5233  cfv 5235  (class class class)co 5895  Basecbs 12511  +gcplusg 12586  .rcmulr 12587  0gc0g 12758  s cimas 12773  Grpcgrp 12942  1rcur 13310  Ringcrg 13347
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2162  ax-14 2163  ax-ext 2171  ax-coll 4133  ax-sep 4136  ax-pow 4192  ax-pr 4227  ax-un 4451  ax-setind 4554  ax-cnex 7931  ax-resscn 7932  ax-1cn 7933  ax-1re 7934  ax-icn 7935  ax-addcl 7936  ax-addrcl 7937  ax-mulcl 7938  ax-addcom 7940  ax-addass 7942  ax-i2m1 7945  ax-0lt1 7946  ax-0id 7948  ax-rnegex 7949  ax-pre-ltirr 7952  ax-pre-lttrn 7954  ax-pre-ltadd 7956
This theorem depends on definitions:  df-bi 117  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2041  df-mo 2042  df-clab 2176  df-cleq 2182  df-clel 2185  df-nfc 2321  df-ne 2361  df-nel 2456  df-ral 2473  df-rex 2474  df-reu 2475  df-rmo 2476  df-rab 2477  df-v 2754  df-sbc 2978  df-csb 3073  df-dif 3146  df-un 3148  df-in 3150  df-ss 3157  df-nul 3438  df-pw 3592  df-sn 3613  df-pr 3614  df-tp 3615  df-op 3616  df-uni 3825  df-int 3860  df-iun 3903  df-br 4019  df-opab 4080  df-mpt 4081  df-id 4311  df-xp 4650  df-rel 4651  df-cnv 4652  df-co 4653  df-dm 4654  df-rn 4655  df-res 4656  df-ima 4657  df-iota 5196  df-fun 5237  df-fn 5238  df-f 5239  df-f1 5240  df-fo 5241  df-f1o 5242  df-fv 5243  df-riota 5851  df-ov 5898  df-oprab 5899  df-mpo 5900  df-pnf 8023  df-mnf 8024  df-ltxr 8026  df-inn 8949  df-2 9007  df-3 9008  df-ndx 12514  df-slot 12515  df-base 12517  df-sets 12518  df-plusg 12599  df-mulr 12600  df-0g 12760  df-iimas 12776  df-mgm 12829  df-sgrp 12862  df-mnd 12875  df-grp 12945  df-minusg 12946  df-mgp 13272  df-ur 13311  df-ring 13349
This theorem is referenced by:  imasringf1  13412  qusring2  13413
  Copyright terms: Public domain W3C validator