| Step | Hyp | Ref
| Expression |
| 1 | | imasrng.u |
. . 3
⊢ (𝜑 → 𝑈 = (𝐹 “s 𝑅)) |
| 2 | | imasrng.v |
. . 3
⊢ (𝜑 → 𝑉 = (Base‘𝑅)) |
| 3 | | imasrng.f |
. . 3
⊢ (𝜑 → 𝐹:𝑉–onto→𝐵) |
| 4 | | imasrng.r |
. . 3
⊢ (𝜑 → 𝑅 ∈ Rng) |
| 5 | 1, 2, 3, 4 | imasbas 12950 |
. 2
⊢ (𝜑 → 𝐵 = (Base‘𝑈)) |
| 6 | | eqidd 2197 |
. 2
⊢ (𝜑 → (+g‘𝑈) = (+g‘𝑈)) |
| 7 | | eqidd 2197 |
. 2
⊢ (𝜑 → (.r‘𝑈) = (.r‘𝑈)) |
| 8 | | imasrng.p |
. . . . 5
⊢ + =
(+g‘𝑅) |
| 9 | 8 | a1i 9 |
. . . 4
⊢ (𝜑 → + =
(+g‘𝑅)) |
| 10 | | imasrng.e1 |
. . . 4
⊢ ((𝜑 ∧ (𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉) ∧ (𝑝 ∈ 𝑉 ∧ 𝑞 ∈ 𝑉)) → (((𝐹‘𝑎) = (𝐹‘𝑝) ∧ (𝐹‘𝑏) = (𝐹‘𝑞)) → (𝐹‘(𝑎 + 𝑏)) = (𝐹‘(𝑝 + 𝑞)))) |
| 11 | | rngabl 13491 |
. . . . 5
⊢ (𝑅 ∈ Rng → 𝑅 ∈ Abel) |
| 12 | 4, 11 | syl 14 |
. . . 4
⊢ (𝜑 → 𝑅 ∈ Abel) |
| 13 | | eqid 2196 |
. . . 4
⊢
(0g‘𝑅) = (0g‘𝑅) |
| 14 | 1, 2, 9, 3, 10, 12, 13 | imasabl 13466 |
. . 3
⊢ (𝜑 → (𝑈 ∈ Abel ∧ (𝐹‘(0g‘𝑅)) = (0g‘𝑈))) |
| 15 | 14 | simpld 112 |
. 2
⊢ (𝜑 → 𝑈 ∈ Abel) |
| 16 | | imasrng.e2 |
. . . 4
⊢ ((𝜑 ∧ (𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉) ∧ (𝑝 ∈ 𝑉 ∧ 𝑞 ∈ 𝑉)) → (((𝐹‘𝑎) = (𝐹‘𝑝) ∧ (𝐹‘𝑏) = (𝐹‘𝑞)) → (𝐹‘(𝑎 · 𝑏)) = (𝐹‘(𝑝 · 𝑞)))) |
| 17 | | imasrng.t |
. . . 4
⊢ · =
(.r‘𝑅) |
| 18 | | eqid 2196 |
. . . 4
⊢
(.r‘𝑈) = (.r‘𝑈) |
| 19 | 4 | adantr 276 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑢 ∈ 𝑉 ∧ 𝑣 ∈ 𝑉)) → 𝑅 ∈ Rng) |
| 20 | | simprl 529 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑢 ∈ 𝑉 ∧ 𝑣 ∈ 𝑉)) → 𝑢 ∈ 𝑉) |
| 21 | 2 | adantr 276 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑢 ∈ 𝑉 ∧ 𝑣 ∈ 𝑉)) → 𝑉 = (Base‘𝑅)) |
| 22 | 20, 21 | eleqtrd 2275 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑢 ∈ 𝑉 ∧ 𝑣 ∈ 𝑉)) → 𝑢 ∈ (Base‘𝑅)) |
| 23 | | simprr 531 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑢 ∈ 𝑉 ∧ 𝑣 ∈ 𝑉)) → 𝑣 ∈ 𝑉) |
| 24 | 23, 21 | eleqtrd 2275 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑢 ∈ 𝑉 ∧ 𝑣 ∈ 𝑉)) → 𝑣 ∈ (Base‘𝑅)) |
| 25 | | eqid 2196 |
. . . . . . . 8
⊢
(Base‘𝑅) =
(Base‘𝑅) |
| 26 | 25, 17 | rngcl 13500 |
. . . . . . 7
⊢ ((𝑅 ∈ Rng ∧ 𝑢 ∈ (Base‘𝑅) ∧ 𝑣 ∈ (Base‘𝑅)) → (𝑢 · 𝑣) ∈ (Base‘𝑅)) |
| 27 | 19, 22, 24, 26 | syl3anc 1249 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑢 ∈ 𝑉 ∧ 𝑣 ∈ 𝑉)) → (𝑢 · 𝑣) ∈ (Base‘𝑅)) |
| 28 | 27, 21 | eleqtrrd 2276 |
. . . . 5
⊢ ((𝜑 ∧ (𝑢 ∈ 𝑉 ∧ 𝑣 ∈ 𝑉)) → (𝑢 · 𝑣) ∈ 𝑉) |
| 29 | 28 | caovclg 6076 |
. . . 4
⊢ ((𝜑 ∧ (𝑝 ∈ 𝑉 ∧ 𝑞 ∈ 𝑉)) → (𝑝 · 𝑞) ∈ 𝑉) |
| 30 | 3, 16, 1, 2, 4, 17,
18, 29 | imasmulf 12965 |
. . 3
⊢ (𝜑 → (.r‘𝑈):(𝐵 × 𝐵)⟶𝐵) |
| 31 | 30 | fovcld 6027 |
. 2
⊢ ((𝜑 ∧ 𝑢 ∈ 𝐵 ∧ 𝑣 ∈ 𝐵) → (𝑢(.r‘𝑈)𝑣) ∈ 𝐵) |
| 32 | | forn 5483 |
. . . . . . . . 9
⊢ (𝐹:𝑉–onto→𝐵 → ran 𝐹 = 𝐵) |
| 33 | 3, 32 | syl 14 |
. . . . . . . 8
⊢ (𝜑 → ran 𝐹 = 𝐵) |
| 34 | 33 | eleq2d 2266 |
. . . . . . 7
⊢ (𝜑 → (𝑢 ∈ ran 𝐹 ↔ 𝑢 ∈ 𝐵)) |
| 35 | 33 | eleq2d 2266 |
. . . . . . 7
⊢ (𝜑 → (𝑣 ∈ ran 𝐹 ↔ 𝑣 ∈ 𝐵)) |
| 36 | 33 | eleq2d 2266 |
. . . . . . 7
⊢ (𝜑 → (𝑤 ∈ ran 𝐹 ↔ 𝑤 ∈ 𝐵)) |
| 37 | 34, 35, 36 | 3anbi123d 1323 |
. . . . . 6
⊢ (𝜑 → ((𝑢 ∈ ran 𝐹 ∧ 𝑣 ∈ ran 𝐹 ∧ 𝑤 ∈ ran 𝐹) ↔ (𝑢 ∈ 𝐵 ∧ 𝑣 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵))) |
| 38 | | fofn 5482 |
. . . . . . 7
⊢ (𝐹:𝑉–onto→𝐵 → 𝐹 Fn 𝑉) |
| 39 | | fvelrnb 5608 |
. . . . . . . 8
⊢ (𝐹 Fn 𝑉 → (𝑢 ∈ ran 𝐹 ↔ ∃𝑥 ∈ 𝑉 (𝐹‘𝑥) = 𝑢)) |
| 40 | | fvelrnb 5608 |
. . . . . . . 8
⊢ (𝐹 Fn 𝑉 → (𝑣 ∈ ran 𝐹 ↔ ∃𝑦 ∈ 𝑉 (𝐹‘𝑦) = 𝑣)) |
| 41 | | fvelrnb 5608 |
. . . . . . . 8
⊢ (𝐹 Fn 𝑉 → (𝑤 ∈ ran 𝐹 ↔ ∃𝑧 ∈ 𝑉 (𝐹‘𝑧) = 𝑤)) |
| 42 | 39, 40, 41 | 3anbi123d 1323 |
. . . . . . 7
⊢ (𝐹 Fn 𝑉 → ((𝑢 ∈ ran 𝐹 ∧ 𝑣 ∈ ran 𝐹 ∧ 𝑤 ∈ ran 𝐹) ↔ (∃𝑥 ∈ 𝑉 (𝐹‘𝑥) = 𝑢 ∧ ∃𝑦 ∈ 𝑉 (𝐹‘𝑦) = 𝑣 ∧ ∃𝑧 ∈ 𝑉 (𝐹‘𝑧) = 𝑤))) |
| 43 | 3, 38, 42 | 3syl 17 |
. . . . . 6
⊢ (𝜑 → ((𝑢 ∈ ran 𝐹 ∧ 𝑣 ∈ ran 𝐹 ∧ 𝑤 ∈ ran 𝐹) ↔ (∃𝑥 ∈ 𝑉 (𝐹‘𝑥) = 𝑢 ∧ ∃𝑦 ∈ 𝑉 (𝐹‘𝑦) = 𝑣 ∧ ∃𝑧 ∈ 𝑉 (𝐹‘𝑧) = 𝑤))) |
| 44 | 37, 43 | bitr3d 190 |
. . . . 5
⊢ (𝜑 → ((𝑢 ∈ 𝐵 ∧ 𝑣 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵) ↔ (∃𝑥 ∈ 𝑉 (𝐹‘𝑥) = 𝑢 ∧ ∃𝑦 ∈ 𝑉 (𝐹‘𝑦) = 𝑣 ∧ ∃𝑧 ∈ 𝑉 (𝐹‘𝑧) = 𝑤))) |
| 45 | | 3reeanv 2668 |
. . . . 5
⊢
(∃𝑥 ∈
𝑉 ∃𝑦 ∈ 𝑉 ∃𝑧 ∈ 𝑉 ((𝐹‘𝑥) = 𝑢 ∧ (𝐹‘𝑦) = 𝑣 ∧ (𝐹‘𝑧) = 𝑤) ↔ (∃𝑥 ∈ 𝑉 (𝐹‘𝑥) = 𝑢 ∧ ∃𝑦 ∈ 𝑉 (𝐹‘𝑦) = 𝑣 ∧ ∃𝑧 ∈ 𝑉 (𝐹‘𝑧) = 𝑤)) |
| 46 | 44, 45 | bitr4di 198 |
. . . 4
⊢ (𝜑 → ((𝑢 ∈ 𝐵 ∧ 𝑣 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵) ↔ ∃𝑥 ∈ 𝑉 ∃𝑦 ∈ 𝑉 ∃𝑧 ∈ 𝑉 ((𝐹‘𝑥) = 𝑢 ∧ (𝐹‘𝑦) = 𝑣 ∧ (𝐹‘𝑧) = 𝑤))) |
| 47 | 4 | adantr 276 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉)) → 𝑅 ∈ Rng) |
| 48 | | simp2 1000 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉) → 𝑥 ∈ 𝑉) |
| 49 | 2 | 3ad2ant1 1020 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉) → 𝑉 = (Base‘𝑅)) |
| 50 | 48, 49 | eleqtrd 2275 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉) → 𝑥 ∈ (Base‘𝑅)) |
| 51 | 50 | 3adant3r3 1216 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉)) → 𝑥 ∈ (Base‘𝑅)) |
| 52 | | simp3 1001 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉) → 𝑦 ∈ 𝑉) |
| 53 | 52, 49 | eleqtrd 2275 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉) → 𝑦 ∈ (Base‘𝑅)) |
| 54 | 53 | 3adant3r3 1216 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉)) → 𝑦 ∈ (Base‘𝑅)) |
| 55 | | simpr3 1007 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉)) → 𝑧 ∈ 𝑉) |
| 56 | 2 | adantr 276 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉)) → 𝑉 = (Base‘𝑅)) |
| 57 | 55, 56 | eleqtrd 2275 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉)) → 𝑧 ∈ (Base‘𝑅)) |
| 58 | 25, 17 | rngass 13495 |
. . . . . . . . . . . . 13
⊢ ((𝑅 ∈ Rng ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅) ∧ 𝑧 ∈ (Base‘𝑅))) → ((𝑥 · 𝑦) · 𝑧) = (𝑥 · (𝑦 · 𝑧))) |
| 59 | 47, 51, 54, 57, 58 | syl13anc 1251 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉)) → ((𝑥 · 𝑦) · 𝑧) = (𝑥 · (𝑦 · 𝑧))) |
| 60 | 59 | fveq2d 5562 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉)) → (𝐹‘((𝑥 · 𝑦) · 𝑧)) = (𝐹‘(𝑥 · (𝑦 · 𝑧)))) |
| 61 | | simpl 109 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉)) → 𝜑) |
| 62 | 28 | caovclg 6076 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉)) → (𝑥 · 𝑦) ∈ 𝑉) |
| 63 | 62 | 3adantr3 1160 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉)) → (𝑥 · 𝑦) ∈ 𝑉) |
| 64 | 3, 16, 1, 2, 4, 17,
18 | imasmulval 12964 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝑥 · 𝑦) ∈ 𝑉 ∧ 𝑧 ∈ 𝑉) → ((𝐹‘(𝑥 · 𝑦))(.r‘𝑈)(𝐹‘𝑧)) = (𝐹‘((𝑥 · 𝑦) · 𝑧))) |
| 65 | 61, 63, 55, 64 | syl3anc 1249 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉)) → ((𝐹‘(𝑥 · 𝑦))(.r‘𝑈)(𝐹‘𝑧)) = (𝐹‘((𝑥 · 𝑦) · 𝑧))) |
| 66 | | simpr1 1005 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉)) → 𝑥 ∈ 𝑉) |
| 67 | 28 | caovclg 6076 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ (𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉)) → (𝑦 · 𝑧) ∈ 𝑉) |
| 68 | 67 | 3adantr1 1158 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉)) → (𝑦 · 𝑧) ∈ 𝑉) |
| 69 | 3, 16, 1, 2, 4, 17,
18 | imasmulval 12964 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑉 ∧ (𝑦 · 𝑧) ∈ 𝑉) → ((𝐹‘𝑥)(.r‘𝑈)(𝐹‘(𝑦 · 𝑧))) = (𝐹‘(𝑥 · (𝑦 · 𝑧)))) |
| 70 | 61, 66, 68, 69 | syl3anc 1249 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉)) → ((𝐹‘𝑥)(.r‘𝑈)(𝐹‘(𝑦 · 𝑧))) = (𝐹‘(𝑥 · (𝑦 · 𝑧)))) |
| 71 | 60, 65, 70 | 3eqtr4d 2239 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉)) → ((𝐹‘(𝑥 · 𝑦))(.r‘𝑈)(𝐹‘𝑧)) = ((𝐹‘𝑥)(.r‘𝑈)(𝐹‘(𝑦 · 𝑧)))) |
| 72 | 3, 16, 1, 2, 4, 17,
18 | imasmulval 12964 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉) → ((𝐹‘𝑥)(.r‘𝑈)(𝐹‘𝑦)) = (𝐹‘(𝑥 · 𝑦))) |
| 73 | 72 | 3adant3r3 1216 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉)) → ((𝐹‘𝑥)(.r‘𝑈)(𝐹‘𝑦)) = (𝐹‘(𝑥 · 𝑦))) |
| 74 | 73 | oveq1d 5937 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉)) → (((𝐹‘𝑥)(.r‘𝑈)(𝐹‘𝑦))(.r‘𝑈)(𝐹‘𝑧)) = ((𝐹‘(𝑥 · 𝑦))(.r‘𝑈)(𝐹‘𝑧))) |
| 75 | 3, 16, 1, 2, 4, 17,
18 | imasmulval 12964 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉) → ((𝐹‘𝑦)(.r‘𝑈)(𝐹‘𝑧)) = (𝐹‘(𝑦 · 𝑧))) |
| 76 | 75 | 3adant3r1 1214 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉)) → ((𝐹‘𝑦)(.r‘𝑈)(𝐹‘𝑧)) = (𝐹‘(𝑦 · 𝑧))) |
| 77 | 76 | oveq2d 5938 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉)) → ((𝐹‘𝑥)(.r‘𝑈)((𝐹‘𝑦)(.r‘𝑈)(𝐹‘𝑧))) = ((𝐹‘𝑥)(.r‘𝑈)(𝐹‘(𝑦 · 𝑧)))) |
| 78 | 71, 74, 77 | 3eqtr4d 2239 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉)) → (((𝐹‘𝑥)(.r‘𝑈)(𝐹‘𝑦))(.r‘𝑈)(𝐹‘𝑧)) = ((𝐹‘𝑥)(.r‘𝑈)((𝐹‘𝑦)(.r‘𝑈)(𝐹‘𝑧)))) |
| 79 | | simp1 999 |
. . . . . . . . . . . 12
⊢ (((𝐹‘𝑥) = 𝑢 ∧ (𝐹‘𝑦) = 𝑣 ∧ (𝐹‘𝑧) = 𝑤) → (𝐹‘𝑥) = 𝑢) |
| 80 | | simp2 1000 |
. . . . . . . . . . . 12
⊢ (((𝐹‘𝑥) = 𝑢 ∧ (𝐹‘𝑦) = 𝑣 ∧ (𝐹‘𝑧) = 𝑤) → (𝐹‘𝑦) = 𝑣) |
| 81 | 79, 80 | oveq12d 5940 |
. . . . . . . . . . 11
⊢ (((𝐹‘𝑥) = 𝑢 ∧ (𝐹‘𝑦) = 𝑣 ∧ (𝐹‘𝑧) = 𝑤) → ((𝐹‘𝑥)(.r‘𝑈)(𝐹‘𝑦)) = (𝑢(.r‘𝑈)𝑣)) |
| 82 | | simp3 1001 |
. . . . . . . . . . 11
⊢ (((𝐹‘𝑥) = 𝑢 ∧ (𝐹‘𝑦) = 𝑣 ∧ (𝐹‘𝑧) = 𝑤) → (𝐹‘𝑧) = 𝑤) |
| 83 | 81, 82 | oveq12d 5940 |
. . . . . . . . . 10
⊢ (((𝐹‘𝑥) = 𝑢 ∧ (𝐹‘𝑦) = 𝑣 ∧ (𝐹‘𝑧) = 𝑤) → (((𝐹‘𝑥)(.r‘𝑈)(𝐹‘𝑦))(.r‘𝑈)(𝐹‘𝑧)) = ((𝑢(.r‘𝑈)𝑣)(.r‘𝑈)𝑤)) |
| 84 | 80, 82 | oveq12d 5940 |
. . . . . . . . . . 11
⊢ (((𝐹‘𝑥) = 𝑢 ∧ (𝐹‘𝑦) = 𝑣 ∧ (𝐹‘𝑧) = 𝑤) → ((𝐹‘𝑦)(.r‘𝑈)(𝐹‘𝑧)) = (𝑣(.r‘𝑈)𝑤)) |
| 85 | 79, 84 | oveq12d 5940 |
. . . . . . . . . 10
⊢ (((𝐹‘𝑥) = 𝑢 ∧ (𝐹‘𝑦) = 𝑣 ∧ (𝐹‘𝑧) = 𝑤) → ((𝐹‘𝑥)(.r‘𝑈)((𝐹‘𝑦)(.r‘𝑈)(𝐹‘𝑧))) = (𝑢(.r‘𝑈)(𝑣(.r‘𝑈)𝑤))) |
| 86 | 83, 85 | eqeq12d 2211 |
. . . . . . . . 9
⊢ (((𝐹‘𝑥) = 𝑢 ∧ (𝐹‘𝑦) = 𝑣 ∧ (𝐹‘𝑧) = 𝑤) → ((((𝐹‘𝑥)(.r‘𝑈)(𝐹‘𝑦))(.r‘𝑈)(𝐹‘𝑧)) = ((𝐹‘𝑥)(.r‘𝑈)((𝐹‘𝑦)(.r‘𝑈)(𝐹‘𝑧))) ↔ ((𝑢(.r‘𝑈)𝑣)(.r‘𝑈)𝑤) = (𝑢(.r‘𝑈)(𝑣(.r‘𝑈)𝑤)))) |
| 87 | 78, 86 | syl5ibcom 155 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉)) → (((𝐹‘𝑥) = 𝑢 ∧ (𝐹‘𝑦) = 𝑣 ∧ (𝐹‘𝑧) = 𝑤) → ((𝑢(.r‘𝑈)𝑣)(.r‘𝑈)𝑤) = (𝑢(.r‘𝑈)(𝑣(.r‘𝑈)𝑤)))) |
| 88 | 87 | 3exp2 1227 |
. . . . . . 7
⊢ (𝜑 → (𝑥 ∈ 𝑉 → (𝑦 ∈ 𝑉 → (𝑧 ∈ 𝑉 → (((𝐹‘𝑥) = 𝑢 ∧ (𝐹‘𝑦) = 𝑣 ∧ (𝐹‘𝑧) = 𝑤) → ((𝑢(.r‘𝑈)𝑣)(.r‘𝑈)𝑤) = (𝑢(.r‘𝑈)(𝑣(.r‘𝑈)𝑤))))))) |
| 89 | 88 | imp32 257 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉)) → (𝑧 ∈ 𝑉 → (((𝐹‘𝑥) = 𝑢 ∧ (𝐹‘𝑦) = 𝑣 ∧ (𝐹‘𝑧) = 𝑤) → ((𝑢(.r‘𝑈)𝑣)(.r‘𝑈)𝑤) = (𝑢(.r‘𝑈)(𝑣(.r‘𝑈)𝑤))))) |
| 90 | 89 | rexlimdv 2613 |
. . . . 5
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉)) → (∃𝑧 ∈ 𝑉 ((𝐹‘𝑥) = 𝑢 ∧ (𝐹‘𝑦) = 𝑣 ∧ (𝐹‘𝑧) = 𝑤) → ((𝑢(.r‘𝑈)𝑣)(.r‘𝑈)𝑤) = (𝑢(.r‘𝑈)(𝑣(.r‘𝑈)𝑤)))) |
| 91 | 90 | rexlimdvva 2622 |
. . . 4
⊢ (𝜑 → (∃𝑥 ∈ 𝑉 ∃𝑦 ∈ 𝑉 ∃𝑧 ∈ 𝑉 ((𝐹‘𝑥) = 𝑢 ∧ (𝐹‘𝑦) = 𝑣 ∧ (𝐹‘𝑧) = 𝑤) → ((𝑢(.r‘𝑈)𝑣)(.r‘𝑈)𝑤) = (𝑢(.r‘𝑈)(𝑣(.r‘𝑈)𝑤)))) |
| 92 | 46, 91 | sylbid 150 |
. . 3
⊢ (𝜑 → ((𝑢 ∈ 𝐵 ∧ 𝑣 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵) → ((𝑢(.r‘𝑈)𝑣)(.r‘𝑈)𝑤) = (𝑢(.r‘𝑈)(𝑣(.r‘𝑈)𝑤)))) |
| 93 | 92 | imp 124 |
. 2
⊢ ((𝜑 ∧ (𝑢 ∈ 𝐵 ∧ 𝑣 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵)) → ((𝑢(.r‘𝑈)𝑣)(.r‘𝑈)𝑤) = (𝑢(.r‘𝑈)(𝑣(.r‘𝑈)𝑤))) |
| 94 | 25, 8, 17 | rngdi 13496 |
. . . . . . . . . . . . 13
⊢ ((𝑅 ∈ Rng ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅) ∧ 𝑧 ∈ (Base‘𝑅))) → (𝑥 · (𝑦 + 𝑧)) = ((𝑥 · 𝑦) + (𝑥 · 𝑧))) |
| 95 | 47, 51, 54, 57, 94 | syl13anc 1251 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉)) → (𝑥 · (𝑦 + 𝑧)) = ((𝑥 · 𝑦) + (𝑥 · 𝑧))) |
| 96 | 95 | fveq2d 5562 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉)) → (𝐹‘(𝑥 · (𝑦 + 𝑧))) = (𝐹‘((𝑥 · 𝑦) + (𝑥 · 𝑧)))) |
| 97 | 25, 8 | rngacl 13498 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑅 ∈ Rng ∧ 𝑢 ∈ (Base‘𝑅) ∧ 𝑣 ∈ (Base‘𝑅)) → (𝑢 + 𝑣) ∈ (Base‘𝑅)) |
| 98 | 19, 22, 24, 97 | syl3anc 1249 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ (𝑢 ∈ 𝑉 ∧ 𝑣 ∈ 𝑉)) → (𝑢 + 𝑣) ∈ (Base‘𝑅)) |
| 99 | 98, 21 | eleqtrrd 2276 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ (𝑢 ∈ 𝑉 ∧ 𝑣 ∈ 𝑉)) → (𝑢 + 𝑣) ∈ 𝑉) |
| 100 | 99 | caovclg 6076 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ (𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉)) → (𝑦 + 𝑧) ∈ 𝑉) |
| 101 | 100 | 3adantr1 1158 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉)) → (𝑦 + 𝑧) ∈ 𝑉) |
| 102 | 3, 16, 1, 2, 4, 17,
18 | imasmulval 12964 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑉 ∧ (𝑦 + 𝑧) ∈ 𝑉) → ((𝐹‘𝑥)(.r‘𝑈)(𝐹‘(𝑦 + 𝑧))) = (𝐹‘(𝑥 · (𝑦 + 𝑧)))) |
| 103 | 61, 66, 101, 102 | syl3anc 1249 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉)) → ((𝐹‘𝑥)(.r‘𝑈)(𝐹‘(𝑦 + 𝑧))) = (𝐹‘(𝑥 · (𝑦 + 𝑧)))) |
| 104 | 28 | caovclg 6076 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉)) → (𝑥 · 𝑧) ∈ 𝑉) |
| 105 | 104 | 3adantr2 1159 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉)) → (𝑥 · 𝑧) ∈ 𝑉) |
| 106 | | eqid 2196 |
. . . . . . . . . . . . 13
⊢
(+g‘𝑈) = (+g‘𝑈) |
| 107 | 3, 10, 1, 2, 4, 8, 106 | imasaddval 12961 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝑥 · 𝑦) ∈ 𝑉 ∧ (𝑥 · 𝑧) ∈ 𝑉) → ((𝐹‘(𝑥 · 𝑦))(+g‘𝑈)(𝐹‘(𝑥 · 𝑧))) = (𝐹‘((𝑥 · 𝑦) + (𝑥 · 𝑧)))) |
| 108 | 61, 63, 105, 107 | syl3anc 1249 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉)) → ((𝐹‘(𝑥 · 𝑦))(+g‘𝑈)(𝐹‘(𝑥 · 𝑧))) = (𝐹‘((𝑥 · 𝑦) + (𝑥 · 𝑧)))) |
| 109 | 96, 103, 108 | 3eqtr4d 2239 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉)) → ((𝐹‘𝑥)(.r‘𝑈)(𝐹‘(𝑦 + 𝑧))) = ((𝐹‘(𝑥 · 𝑦))(+g‘𝑈)(𝐹‘(𝑥 · 𝑧)))) |
| 110 | 3, 10, 1, 2, 4, 8, 106 | imasaddval 12961 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉) → ((𝐹‘𝑦)(+g‘𝑈)(𝐹‘𝑧)) = (𝐹‘(𝑦 + 𝑧))) |
| 111 | 110 | 3adant3r1 1214 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉)) → ((𝐹‘𝑦)(+g‘𝑈)(𝐹‘𝑧)) = (𝐹‘(𝑦 + 𝑧))) |
| 112 | 111 | oveq2d 5938 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉)) → ((𝐹‘𝑥)(.r‘𝑈)((𝐹‘𝑦)(+g‘𝑈)(𝐹‘𝑧))) = ((𝐹‘𝑥)(.r‘𝑈)(𝐹‘(𝑦 + 𝑧)))) |
| 113 | 3, 16, 1, 2, 4, 17,
18 | imasmulval 12964 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉) → ((𝐹‘𝑥)(.r‘𝑈)(𝐹‘𝑧)) = (𝐹‘(𝑥 · 𝑧))) |
| 114 | 113 | 3adant3r2 1215 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉)) → ((𝐹‘𝑥)(.r‘𝑈)(𝐹‘𝑧)) = (𝐹‘(𝑥 · 𝑧))) |
| 115 | 73, 114 | oveq12d 5940 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉)) → (((𝐹‘𝑥)(.r‘𝑈)(𝐹‘𝑦))(+g‘𝑈)((𝐹‘𝑥)(.r‘𝑈)(𝐹‘𝑧))) = ((𝐹‘(𝑥 · 𝑦))(+g‘𝑈)(𝐹‘(𝑥 · 𝑧)))) |
| 116 | 109, 112,
115 | 3eqtr4d 2239 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉)) → ((𝐹‘𝑥)(.r‘𝑈)((𝐹‘𝑦)(+g‘𝑈)(𝐹‘𝑧))) = (((𝐹‘𝑥)(.r‘𝑈)(𝐹‘𝑦))(+g‘𝑈)((𝐹‘𝑥)(.r‘𝑈)(𝐹‘𝑧)))) |
| 117 | 80, 82 | oveq12d 5940 |
. . . . . . . . . . 11
⊢ (((𝐹‘𝑥) = 𝑢 ∧ (𝐹‘𝑦) = 𝑣 ∧ (𝐹‘𝑧) = 𝑤) → ((𝐹‘𝑦)(+g‘𝑈)(𝐹‘𝑧)) = (𝑣(+g‘𝑈)𝑤)) |
| 118 | 79, 117 | oveq12d 5940 |
. . . . . . . . . 10
⊢ (((𝐹‘𝑥) = 𝑢 ∧ (𝐹‘𝑦) = 𝑣 ∧ (𝐹‘𝑧) = 𝑤) → ((𝐹‘𝑥)(.r‘𝑈)((𝐹‘𝑦)(+g‘𝑈)(𝐹‘𝑧))) = (𝑢(.r‘𝑈)(𝑣(+g‘𝑈)𝑤))) |
| 119 | 79, 82 | oveq12d 5940 |
. . . . . . . . . . 11
⊢ (((𝐹‘𝑥) = 𝑢 ∧ (𝐹‘𝑦) = 𝑣 ∧ (𝐹‘𝑧) = 𝑤) → ((𝐹‘𝑥)(.r‘𝑈)(𝐹‘𝑧)) = (𝑢(.r‘𝑈)𝑤)) |
| 120 | 81, 119 | oveq12d 5940 |
. . . . . . . . . 10
⊢ (((𝐹‘𝑥) = 𝑢 ∧ (𝐹‘𝑦) = 𝑣 ∧ (𝐹‘𝑧) = 𝑤) → (((𝐹‘𝑥)(.r‘𝑈)(𝐹‘𝑦))(+g‘𝑈)((𝐹‘𝑥)(.r‘𝑈)(𝐹‘𝑧))) = ((𝑢(.r‘𝑈)𝑣)(+g‘𝑈)(𝑢(.r‘𝑈)𝑤))) |
| 121 | 118, 120 | eqeq12d 2211 |
. . . . . . . . 9
⊢ (((𝐹‘𝑥) = 𝑢 ∧ (𝐹‘𝑦) = 𝑣 ∧ (𝐹‘𝑧) = 𝑤) → (((𝐹‘𝑥)(.r‘𝑈)((𝐹‘𝑦)(+g‘𝑈)(𝐹‘𝑧))) = (((𝐹‘𝑥)(.r‘𝑈)(𝐹‘𝑦))(+g‘𝑈)((𝐹‘𝑥)(.r‘𝑈)(𝐹‘𝑧))) ↔ (𝑢(.r‘𝑈)(𝑣(+g‘𝑈)𝑤)) = ((𝑢(.r‘𝑈)𝑣)(+g‘𝑈)(𝑢(.r‘𝑈)𝑤)))) |
| 122 | 116, 121 | syl5ibcom 155 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉)) → (((𝐹‘𝑥) = 𝑢 ∧ (𝐹‘𝑦) = 𝑣 ∧ (𝐹‘𝑧) = 𝑤) → (𝑢(.r‘𝑈)(𝑣(+g‘𝑈)𝑤)) = ((𝑢(.r‘𝑈)𝑣)(+g‘𝑈)(𝑢(.r‘𝑈)𝑤)))) |
| 123 | 122 | 3exp2 1227 |
. . . . . . 7
⊢ (𝜑 → (𝑥 ∈ 𝑉 → (𝑦 ∈ 𝑉 → (𝑧 ∈ 𝑉 → (((𝐹‘𝑥) = 𝑢 ∧ (𝐹‘𝑦) = 𝑣 ∧ (𝐹‘𝑧) = 𝑤) → (𝑢(.r‘𝑈)(𝑣(+g‘𝑈)𝑤)) = ((𝑢(.r‘𝑈)𝑣)(+g‘𝑈)(𝑢(.r‘𝑈)𝑤))))))) |
| 124 | 123 | imp32 257 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉)) → (𝑧 ∈ 𝑉 → (((𝐹‘𝑥) = 𝑢 ∧ (𝐹‘𝑦) = 𝑣 ∧ (𝐹‘𝑧) = 𝑤) → (𝑢(.r‘𝑈)(𝑣(+g‘𝑈)𝑤)) = ((𝑢(.r‘𝑈)𝑣)(+g‘𝑈)(𝑢(.r‘𝑈)𝑤))))) |
| 125 | 124 | rexlimdv 2613 |
. . . . 5
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉)) → (∃𝑧 ∈ 𝑉 ((𝐹‘𝑥) = 𝑢 ∧ (𝐹‘𝑦) = 𝑣 ∧ (𝐹‘𝑧) = 𝑤) → (𝑢(.r‘𝑈)(𝑣(+g‘𝑈)𝑤)) = ((𝑢(.r‘𝑈)𝑣)(+g‘𝑈)(𝑢(.r‘𝑈)𝑤)))) |
| 126 | 125 | rexlimdvva 2622 |
. . . 4
⊢ (𝜑 → (∃𝑥 ∈ 𝑉 ∃𝑦 ∈ 𝑉 ∃𝑧 ∈ 𝑉 ((𝐹‘𝑥) = 𝑢 ∧ (𝐹‘𝑦) = 𝑣 ∧ (𝐹‘𝑧) = 𝑤) → (𝑢(.r‘𝑈)(𝑣(+g‘𝑈)𝑤)) = ((𝑢(.r‘𝑈)𝑣)(+g‘𝑈)(𝑢(.r‘𝑈)𝑤)))) |
| 127 | 46, 126 | sylbid 150 |
. . 3
⊢ (𝜑 → ((𝑢 ∈ 𝐵 ∧ 𝑣 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵) → (𝑢(.r‘𝑈)(𝑣(+g‘𝑈)𝑤)) = ((𝑢(.r‘𝑈)𝑣)(+g‘𝑈)(𝑢(.r‘𝑈)𝑤)))) |
| 128 | 127 | imp 124 |
. 2
⊢ ((𝜑 ∧ (𝑢 ∈ 𝐵 ∧ 𝑣 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵)) → (𝑢(.r‘𝑈)(𝑣(+g‘𝑈)𝑤)) = ((𝑢(.r‘𝑈)𝑣)(+g‘𝑈)(𝑢(.r‘𝑈)𝑤))) |
| 129 | 25, 8, 17 | rngdir 13497 |
. . . . . . . . . . . . 13
⊢ ((𝑅 ∈ Rng ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅) ∧ 𝑧 ∈ (Base‘𝑅))) → ((𝑥 + 𝑦) · 𝑧) = ((𝑥 · 𝑧) + (𝑦 · 𝑧))) |
| 130 | 47, 51, 54, 57, 129 | syl13anc 1251 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉)) → ((𝑥 + 𝑦) · 𝑧) = ((𝑥 · 𝑧) + (𝑦 · 𝑧))) |
| 131 | 130 | fveq2d 5562 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉)) → (𝐹‘((𝑥 + 𝑦) · 𝑧)) = (𝐹‘((𝑥 · 𝑧) + (𝑦 · 𝑧)))) |
| 132 | 99 | caovclg 6076 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉)) → (𝑥 + 𝑦) ∈ 𝑉) |
| 133 | 132 | 3adantr3 1160 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉)) → (𝑥 + 𝑦) ∈ 𝑉) |
| 134 | 3, 16, 1, 2, 4, 17,
18 | imasmulval 12964 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝑥 + 𝑦) ∈ 𝑉 ∧ 𝑧 ∈ 𝑉) → ((𝐹‘(𝑥 + 𝑦))(.r‘𝑈)(𝐹‘𝑧)) = (𝐹‘((𝑥 + 𝑦) · 𝑧))) |
| 135 | 61, 133, 55, 134 | syl3anc 1249 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉)) → ((𝐹‘(𝑥 + 𝑦))(.r‘𝑈)(𝐹‘𝑧)) = (𝐹‘((𝑥 + 𝑦) · 𝑧))) |
| 136 | 3, 10, 1, 2, 4, 8, 106 | imasaddval 12961 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝑥 · 𝑧) ∈ 𝑉 ∧ (𝑦 · 𝑧) ∈ 𝑉) → ((𝐹‘(𝑥 · 𝑧))(+g‘𝑈)(𝐹‘(𝑦 · 𝑧))) = (𝐹‘((𝑥 · 𝑧) + (𝑦 · 𝑧)))) |
| 137 | 61, 105, 68, 136 | syl3anc 1249 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉)) → ((𝐹‘(𝑥 · 𝑧))(+g‘𝑈)(𝐹‘(𝑦 · 𝑧))) = (𝐹‘((𝑥 · 𝑧) + (𝑦 · 𝑧)))) |
| 138 | 131, 135,
137 | 3eqtr4d 2239 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉)) → ((𝐹‘(𝑥 + 𝑦))(.r‘𝑈)(𝐹‘𝑧)) = ((𝐹‘(𝑥 · 𝑧))(+g‘𝑈)(𝐹‘(𝑦 · 𝑧)))) |
| 139 | 3, 10, 1, 2, 4, 8, 106 | imasaddval 12961 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉) → ((𝐹‘𝑥)(+g‘𝑈)(𝐹‘𝑦)) = (𝐹‘(𝑥 + 𝑦))) |
| 140 | 139 | 3adant3r3 1216 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉)) → ((𝐹‘𝑥)(+g‘𝑈)(𝐹‘𝑦)) = (𝐹‘(𝑥 + 𝑦))) |
| 141 | 140 | oveq1d 5937 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉)) → (((𝐹‘𝑥)(+g‘𝑈)(𝐹‘𝑦))(.r‘𝑈)(𝐹‘𝑧)) = ((𝐹‘(𝑥 + 𝑦))(.r‘𝑈)(𝐹‘𝑧))) |
| 142 | 114, 76 | oveq12d 5940 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉)) → (((𝐹‘𝑥)(.r‘𝑈)(𝐹‘𝑧))(+g‘𝑈)((𝐹‘𝑦)(.r‘𝑈)(𝐹‘𝑧))) = ((𝐹‘(𝑥 · 𝑧))(+g‘𝑈)(𝐹‘(𝑦 · 𝑧)))) |
| 143 | 138, 141,
142 | 3eqtr4d 2239 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉)) → (((𝐹‘𝑥)(+g‘𝑈)(𝐹‘𝑦))(.r‘𝑈)(𝐹‘𝑧)) = (((𝐹‘𝑥)(.r‘𝑈)(𝐹‘𝑧))(+g‘𝑈)((𝐹‘𝑦)(.r‘𝑈)(𝐹‘𝑧)))) |
| 144 | 79, 80 | oveq12d 5940 |
. . . . . . . . . . 11
⊢ (((𝐹‘𝑥) = 𝑢 ∧ (𝐹‘𝑦) = 𝑣 ∧ (𝐹‘𝑧) = 𝑤) → ((𝐹‘𝑥)(+g‘𝑈)(𝐹‘𝑦)) = (𝑢(+g‘𝑈)𝑣)) |
| 145 | 144, 82 | oveq12d 5940 |
. . . . . . . . . 10
⊢ (((𝐹‘𝑥) = 𝑢 ∧ (𝐹‘𝑦) = 𝑣 ∧ (𝐹‘𝑧) = 𝑤) → (((𝐹‘𝑥)(+g‘𝑈)(𝐹‘𝑦))(.r‘𝑈)(𝐹‘𝑧)) = ((𝑢(+g‘𝑈)𝑣)(.r‘𝑈)𝑤)) |
| 146 | 119, 84 | oveq12d 5940 |
. . . . . . . . . 10
⊢ (((𝐹‘𝑥) = 𝑢 ∧ (𝐹‘𝑦) = 𝑣 ∧ (𝐹‘𝑧) = 𝑤) → (((𝐹‘𝑥)(.r‘𝑈)(𝐹‘𝑧))(+g‘𝑈)((𝐹‘𝑦)(.r‘𝑈)(𝐹‘𝑧))) = ((𝑢(.r‘𝑈)𝑤)(+g‘𝑈)(𝑣(.r‘𝑈)𝑤))) |
| 147 | 145, 146 | eqeq12d 2211 |
. . . . . . . . 9
⊢ (((𝐹‘𝑥) = 𝑢 ∧ (𝐹‘𝑦) = 𝑣 ∧ (𝐹‘𝑧) = 𝑤) → ((((𝐹‘𝑥)(+g‘𝑈)(𝐹‘𝑦))(.r‘𝑈)(𝐹‘𝑧)) = (((𝐹‘𝑥)(.r‘𝑈)(𝐹‘𝑧))(+g‘𝑈)((𝐹‘𝑦)(.r‘𝑈)(𝐹‘𝑧))) ↔ ((𝑢(+g‘𝑈)𝑣)(.r‘𝑈)𝑤) = ((𝑢(.r‘𝑈)𝑤)(+g‘𝑈)(𝑣(.r‘𝑈)𝑤)))) |
| 148 | 143, 147 | syl5ibcom 155 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉)) → (((𝐹‘𝑥) = 𝑢 ∧ (𝐹‘𝑦) = 𝑣 ∧ (𝐹‘𝑧) = 𝑤) → ((𝑢(+g‘𝑈)𝑣)(.r‘𝑈)𝑤) = ((𝑢(.r‘𝑈)𝑤)(+g‘𝑈)(𝑣(.r‘𝑈)𝑤)))) |
| 149 | 148 | 3exp2 1227 |
. . . . . . 7
⊢ (𝜑 → (𝑥 ∈ 𝑉 → (𝑦 ∈ 𝑉 → (𝑧 ∈ 𝑉 → (((𝐹‘𝑥) = 𝑢 ∧ (𝐹‘𝑦) = 𝑣 ∧ (𝐹‘𝑧) = 𝑤) → ((𝑢(+g‘𝑈)𝑣)(.r‘𝑈)𝑤) = ((𝑢(.r‘𝑈)𝑤)(+g‘𝑈)(𝑣(.r‘𝑈)𝑤))))))) |
| 150 | 149 | imp32 257 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉)) → (𝑧 ∈ 𝑉 → (((𝐹‘𝑥) = 𝑢 ∧ (𝐹‘𝑦) = 𝑣 ∧ (𝐹‘𝑧) = 𝑤) → ((𝑢(+g‘𝑈)𝑣)(.r‘𝑈)𝑤) = ((𝑢(.r‘𝑈)𝑤)(+g‘𝑈)(𝑣(.r‘𝑈)𝑤))))) |
| 151 | 150 | rexlimdv 2613 |
. . . . 5
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉)) → (∃𝑧 ∈ 𝑉 ((𝐹‘𝑥) = 𝑢 ∧ (𝐹‘𝑦) = 𝑣 ∧ (𝐹‘𝑧) = 𝑤) → ((𝑢(+g‘𝑈)𝑣)(.r‘𝑈)𝑤) = ((𝑢(.r‘𝑈)𝑤)(+g‘𝑈)(𝑣(.r‘𝑈)𝑤)))) |
| 152 | 151 | rexlimdvva 2622 |
. . . 4
⊢ (𝜑 → (∃𝑥 ∈ 𝑉 ∃𝑦 ∈ 𝑉 ∃𝑧 ∈ 𝑉 ((𝐹‘𝑥) = 𝑢 ∧ (𝐹‘𝑦) = 𝑣 ∧ (𝐹‘𝑧) = 𝑤) → ((𝑢(+g‘𝑈)𝑣)(.r‘𝑈)𝑤) = ((𝑢(.r‘𝑈)𝑤)(+g‘𝑈)(𝑣(.r‘𝑈)𝑤)))) |
| 153 | 46, 152 | sylbid 150 |
. . 3
⊢ (𝜑 → ((𝑢 ∈ 𝐵 ∧ 𝑣 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵) → ((𝑢(+g‘𝑈)𝑣)(.r‘𝑈)𝑤) = ((𝑢(.r‘𝑈)𝑤)(+g‘𝑈)(𝑣(.r‘𝑈)𝑤)))) |
| 154 | 153 | imp 124 |
. 2
⊢ ((𝜑 ∧ (𝑢 ∈ 𝐵 ∧ 𝑣 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵)) → ((𝑢(+g‘𝑈)𝑣)(.r‘𝑈)𝑤) = ((𝑢(.r‘𝑈)𝑤)(+g‘𝑈)(𝑣(.r‘𝑈)𝑤))) |
| 155 | 5, 6, 7, 15, 31, 93, 128, 154 | isrngd 13509 |
1
⊢ (𝜑 → 𝑈 ∈ Rng) |