ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  3simpc GIF version

Theorem 3simpc 998
Description: Simplification of triple conjunction. (Contributed by NM, 21-Apr-1994.) (Proof shortened by Andrew Salmon, 13-May-2011.)
Assertion
Ref Expression
3simpc ((𝜑𝜓𝜒) → (𝜓𝜒))

Proof of Theorem 3simpc
StepHypRef Expression
1 3anrot 985 . 2 ((𝜑𝜓𝜒) ↔ (𝜓𝜒𝜑))
2 3simpa 996 . 2 ((𝜓𝜒𝜑) → (𝜓𝜒))
31, 2sylbi 121 1 ((𝜑𝜓𝜒) → (𝜓𝜒))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  w3a 980
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108
This theorem depends on definitions:  df-bi 117  df-3an 982
This theorem is referenced by:  simp3  1001  3adant1  1017  3adantl1  1155  3adantr1  1158  eupickb  2126  find  4636  fovcld  6031  fisseneq  7004  eqsupti  7071  divcanap2  8724  diveqap0  8726  divrecap  8732  divcanap3  8742  eliooord  10020  fzrev3  10179  sqdivap  10712  muldvds2  11999  dvdscmul  12000  dvdsmulc  12001  dvdstr  12010  domneq0  13904  znleval2  14286  cncfmptc  14916  cnplimclemr  14989
  Copyright terms: Public domain W3C validator