ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  3simpc GIF version

Theorem 3simpc 1001
Description: Simplification of triple conjunction. (Contributed by NM, 21-Apr-1994.) (Proof shortened by Andrew Salmon, 13-May-2011.)
Assertion
Ref Expression
3simpc ((𝜑𝜓𝜒) → (𝜓𝜒))

Proof of Theorem 3simpc
StepHypRef Expression
1 3anrot 988 . 2 ((𝜑𝜓𝜒) ↔ (𝜓𝜒𝜑))
2 3simpa 999 . 2 ((𝜓𝜒𝜑) → (𝜓𝜒))
31, 2sylbi 121 1 ((𝜑𝜓𝜒) → (𝜓𝜒))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  w3a 983
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108
This theorem depends on definitions:  df-bi 117  df-3an 985
This theorem is referenced by:  simp3  1004  3adant1  1020  3adantl1  1158  3adantr1  1161  eupickb  2139  find  4668  fovcld  6080  fisseneq  7064  eqsupti  7131  divcanap2  8795  diveqap0  8797  divrecap  8803  divcanap3  8813  eliooord  10092  fzrev3  10251  sqdivap  10792  swrdlend  11156  swrdnd  11157  ccats1pfxeqbi  11240  muldvds2  12294  dvdscmul  12295  dvdsmulc  12296  dvdstr  12305  domneq0  14201  znleval2  14583  cncfmptc  15235  cnplimclemr  15308  uhgr2edg  15969  umgr2edgneu  15975
  Copyright terms: Public domain W3C validator