ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  3simpc GIF version

Theorem 3simpc 948
Description: Simplification of triple conjunction. (Contributed by NM, 21-Apr-1994.) (Proof shortened by Andrew Salmon, 13-May-2011.)
Assertion
Ref Expression
3simpc ((𝜑𝜓𝜒) → (𝜓𝜒))

Proof of Theorem 3simpc
StepHypRef Expression
1 3anrot 935 . 2 ((𝜑𝜓𝜒) ↔ (𝜓𝜒𝜑))
2 3simpa 946 . 2 ((𝜓𝜒𝜑) → (𝜓𝜒))
31, 2sylbi 120 1 ((𝜑𝜓𝜒) → (𝜓𝜒))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  w3a 930
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107
This theorem depends on definitions:  df-bi 116  df-3an 932
This theorem is referenced by:  simp3  951  3adant1  967  3adantl1  1105  3adantr1  1108  eupickb  2041  find  4451  fisseneq  6749  eqsupti  6798  divcanap2  8301  diveqap0  8303  divrecap  8309  divcanap3  8319  eliooord  9552  fzrev3  9708  sqdivap  10198  muldvds2  11314  dvdscmul  11315  dvdsmulc  11316  dvdstr  11325  cncfmptc  12495
  Copyright terms: Public domain W3C validator