ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  3simpc GIF version

Theorem 3simpc 996
Description: Simplification of triple conjunction. (Contributed by NM, 21-Apr-1994.) (Proof shortened by Andrew Salmon, 13-May-2011.)
Assertion
Ref Expression
3simpc ((𝜑𝜓𝜒) → (𝜓𝜒))

Proof of Theorem 3simpc
StepHypRef Expression
1 3anrot 983 . 2 ((𝜑𝜓𝜒) ↔ (𝜓𝜒𝜑))
2 3simpa 994 . 2 ((𝜓𝜒𝜑) → (𝜓𝜒))
31, 2sylbi 121 1 ((𝜑𝜓𝜒) → (𝜓𝜒))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  w3a 978
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108
This theorem depends on definitions:  df-bi 117  df-3an 980
This theorem is referenced by:  simp3  999  3adant1  1015  3adantl1  1153  3adantr1  1156  eupickb  2105  find  4592  fisseneq  6921  eqsupti  6985  divcanap2  8610  diveqap0  8612  divrecap  8618  divcanap3  8628  eliooord  9899  fzrev3  10057  sqdivap  10554  muldvds2  11792  dvdscmul  11793  dvdsmulc  11794  dvdstr  11803  cncfmptc  13653  cnplimclemr  13709
  Copyright terms: Public domain W3C validator