![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > 3simpc | GIF version |
Description: Simplification of triple conjunction. (Contributed by NM, 21-Apr-1994.) (Proof shortened by Andrew Salmon, 13-May-2011.) |
Ref | Expression |
---|---|
3simpc | ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → (𝜓 ∧ 𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3anrot 985 | . 2 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) ↔ (𝜓 ∧ 𝜒 ∧ 𝜑)) | |
2 | 3simpa 996 | . 2 ⊢ ((𝜓 ∧ 𝜒 ∧ 𝜑) → (𝜓 ∧ 𝜒)) | |
3 | 1, 2 | sylbi 121 | 1 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → (𝜓 ∧ 𝜒)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 ∧ w3a 980 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
This theorem depends on definitions: df-bi 117 df-3an 982 |
This theorem is referenced by: simp3 1001 3adant1 1017 3adantl1 1155 3adantr1 1158 eupickb 2123 find 4631 fovcld 6023 fisseneq 6988 eqsupti 7055 divcanap2 8699 diveqap0 8701 divrecap 8707 divcanap3 8717 eliooord 9994 fzrev3 10153 sqdivap 10674 muldvds2 11960 dvdscmul 11961 dvdsmulc 11962 dvdstr 11971 domneq0 13768 znleval2 14142 cncfmptc 14750 cnplimclemr 14823 |
Copyright terms: Public domain | W3C validator |