| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 3simpc | GIF version | ||
| Description: Simplification of triple conjunction. (Contributed by NM, 21-Apr-1994.) (Proof shortened by Andrew Salmon, 13-May-2011.) |
| Ref | Expression |
|---|---|
| 3simpc | ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → (𝜓 ∧ 𝜒)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3anrot 985 | . 2 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) ↔ (𝜓 ∧ 𝜒 ∧ 𝜑)) | |
| 2 | 3simpa 996 | . 2 ⊢ ((𝜓 ∧ 𝜒 ∧ 𝜑) → (𝜓 ∧ 𝜒)) | |
| 3 | 1, 2 | sylbi 121 | 1 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → (𝜓 ∧ 𝜒)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ∧ w3a 980 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 df-3an 982 |
| This theorem is referenced by: simp3 1001 3adant1 1017 3adantl1 1155 3adantr1 1158 eupickb 2126 find 4636 fovcld 6031 fisseneq 7004 eqsupti 7071 divcanap2 8724 diveqap0 8726 divrecap 8732 divcanap3 8742 eliooord 10020 fzrev3 10179 sqdivap 10712 muldvds2 11999 dvdscmul 12000 dvdsmulc 12001 dvdstr 12010 domneq0 13904 znleval2 14286 cncfmptc 14916 cnplimclemr 14989 |
| Copyright terms: Public domain | W3C validator |