Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > 3simpc | GIF version |
Description: Simplification of triple conjunction. (Contributed by NM, 21-Apr-1994.) (Proof shortened by Andrew Salmon, 13-May-2011.) |
Ref | Expression |
---|---|
3simpc | ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → (𝜓 ∧ 𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3anrot 973 | . 2 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) ↔ (𝜓 ∧ 𝜒 ∧ 𝜑)) | |
2 | 3simpa 984 | . 2 ⊢ ((𝜓 ∧ 𝜒 ∧ 𝜑) → (𝜓 ∧ 𝜒)) | |
3 | 1, 2 | sylbi 120 | 1 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → (𝜓 ∧ 𝜒)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 ∧ w3a 968 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 |
This theorem depends on definitions: df-bi 116 df-3an 970 |
This theorem is referenced by: simp3 989 3adant1 1005 3adantl1 1143 3adantr1 1146 eupickb 2095 find 4576 fisseneq 6897 eqsupti 6961 divcanap2 8576 diveqap0 8578 divrecap 8584 divcanap3 8594 eliooord 9864 fzrev3 10022 sqdivap 10519 muldvds2 11757 dvdscmul 11758 dvdsmulc 11759 dvdstr 11768 cncfmptc 13222 cnplimclemr 13278 |
Copyright terms: Public domain | W3C validator |