| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 3simpc | GIF version | ||
| Description: Simplification of triple conjunction. (Contributed by NM, 21-Apr-1994.) (Proof shortened by Andrew Salmon, 13-May-2011.) |
| Ref | Expression |
|---|---|
| 3simpc | ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → (𝜓 ∧ 𝜒)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3anrot 1007 | . 2 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) ↔ (𝜓 ∧ 𝜒 ∧ 𝜑)) | |
| 2 | 3simpa 1018 | . 2 ⊢ ((𝜓 ∧ 𝜒 ∧ 𝜑) → (𝜓 ∧ 𝜒)) | |
| 3 | 1, 2 | sylbi 121 | 1 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → (𝜓 ∧ 𝜒)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ∧ w3a 1002 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 |
| This theorem is referenced by: simp3 1023 3adant1 1039 3adantl1 1177 3adantr1 1180 eupickb 2159 find 4691 fovcld 6115 fisseneq 7104 eqsupti 7171 divcanap2 8835 diveqap0 8837 divrecap 8843 divcanap3 8853 eliooord 10132 fzrev3 10291 sqdivap 10833 swrdlend 11198 swrdnd 11199 ccats1pfxeqbi 11282 muldvds2 12336 dvdscmul 12337 dvdsmulc 12338 dvdstr 12347 domneq0 14244 znleval2 14626 cncfmptc 15278 cnplimclemr 15351 uhgr2edg 16012 umgr2edgneu 16018 |
| Copyright terms: Public domain | W3C validator |