ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  3simpc GIF version

Theorem 3simpc 986
Description: Simplification of triple conjunction. (Contributed by NM, 21-Apr-1994.) (Proof shortened by Andrew Salmon, 13-May-2011.)
Assertion
Ref Expression
3simpc ((𝜑𝜓𝜒) → (𝜓𝜒))

Proof of Theorem 3simpc
StepHypRef Expression
1 3anrot 973 . 2 ((𝜑𝜓𝜒) ↔ (𝜓𝜒𝜑))
2 3simpa 984 . 2 ((𝜓𝜒𝜑) → (𝜓𝜒))
31, 2sylbi 120 1 ((𝜑𝜓𝜒) → (𝜓𝜒))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  w3a 968
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107
This theorem depends on definitions:  df-bi 116  df-3an 970
This theorem is referenced by:  simp3  989  3adant1  1005  3adantl1  1143  3adantr1  1146  eupickb  2095  find  4576  fisseneq  6897  eqsupti  6961  divcanap2  8576  diveqap0  8578  divrecap  8584  divcanap3  8594  eliooord  9864  fzrev3  10022  sqdivap  10519  muldvds2  11757  dvdscmul  11758  dvdsmulc  11759  dvdstr  11768  cncfmptc  13222  cnplimclemr  13278
  Copyright terms: Public domain W3C validator