ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  3simpc GIF version

Theorem 3simpc 1020
Description: Simplification of triple conjunction. (Contributed by NM, 21-Apr-1994.) (Proof shortened by Andrew Salmon, 13-May-2011.)
Assertion
Ref Expression
3simpc ((𝜑𝜓𝜒) → (𝜓𝜒))

Proof of Theorem 3simpc
StepHypRef Expression
1 3anrot 1007 . 2 ((𝜑𝜓𝜒) ↔ (𝜓𝜒𝜑))
2 3simpa 1018 . 2 ((𝜓𝜒𝜑) → (𝜓𝜒))
31, 2sylbi 121 1 ((𝜑𝜓𝜒) → (𝜓𝜒))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  w3a 1002
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108
This theorem depends on definitions:  df-bi 117  df-3an 1004
This theorem is referenced by:  simp3  1023  3adant1  1039  3adantl1  1177  3adantr1  1180  eupickb  2159  find  4691  fovcld  6115  fisseneq  7104  eqsupti  7171  divcanap2  8835  diveqap0  8837  divrecap  8843  divcanap3  8853  eliooord  10132  fzrev3  10291  sqdivap  10833  swrdlend  11198  swrdnd  11199  ccats1pfxeqbi  11282  muldvds2  12336  dvdscmul  12337  dvdsmulc  12338  dvdstr  12347  domneq0  14244  znleval2  14626  cncfmptc  15278  cnplimclemr  15351  uhgr2edg  16012  umgr2edgneu  16018
  Copyright terms: Public domain W3C validator