| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 3simpc | GIF version | ||
| Description: Simplification of triple conjunction. (Contributed by NM, 21-Apr-1994.) (Proof shortened by Andrew Salmon, 13-May-2011.) |
| Ref | Expression |
|---|---|
| 3simpc | ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → (𝜓 ∧ 𝜒)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3anrot 988 | . 2 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) ↔ (𝜓 ∧ 𝜒 ∧ 𝜑)) | |
| 2 | 3simpa 999 | . 2 ⊢ ((𝜓 ∧ 𝜒 ∧ 𝜑) → (𝜓 ∧ 𝜒)) | |
| 3 | 1, 2 | sylbi 121 | 1 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → (𝜓 ∧ 𝜒)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ∧ w3a 983 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 df-3an 985 |
| This theorem is referenced by: simp3 1004 3adant1 1020 3adantl1 1158 3adantr1 1161 eupickb 2139 find 4668 fovcld 6080 fisseneq 7064 eqsupti 7131 divcanap2 8795 diveqap0 8797 divrecap 8803 divcanap3 8813 eliooord 10092 fzrev3 10251 sqdivap 10792 swrdlend 11156 swrdnd 11157 ccats1pfxeqbi 11240 muldvds2 12294 dvdscmul 12295 dvdsmulc 12296 dvdstr 12305 domneq0 14201 znleval2 14583 cncfmptc 15235 cnplimclemr 15308 uhgr2edg 15969 umgr2edgneu 15975 |
| Copyright terms: Public domain | W3C validator |