![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > 3simpc | GIF version |
Description: Simplification of triple conjunction. (Contributed by NM, 21-Apr-1994.) (Proof shortened by Andrew Salmon, 13-May-2011.) |
Ref | Expression |
---|---|
3simpc | ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → (𝜓 ∧ 𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3anrot 985 | . 2 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) ↔ (𝜓 ∧ 𝜒 ∧ 𝜑)) | |
2 | 3simpa 996 | . 2 ⊢ ((𝜓 ∧ 𝜒 ∧ 𝜑) → (𝜓 ∧ 𝜒)) | |
3 | 1, 2 | sylbi 121 | 1 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → (𝜓 ∧ 𝜒)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 ∧ w3a 980 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
This theorem depends on definitions: df-bi 117 df-3an 982 |
This theorem is referenced by: simp3 1001 3adant1 1017 3adantl1 1155 3adantr1 1158 eupickb 2123 find 4632 fovcld 6024 fisseneq 6990 eqsupti 7057 divcanap2 8701 diveqap0 8703 divrecap 8709 divcanap3 8719 eliooord 9997 fzrev3 10156 sqdivap 10677 muldvds2 11963 dvdscmul 11964 dvdsmulc 11965 dvdstr 11974 domneq0 13771 znleval2 14153 cncfmptc 14775 cnplimclemr 14848 |
Copyright terms: Public domain | W3C validator |