ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  3simpc GIF version

Theorem 3simpc 998
Description: Simplification of triple conjunction. (Contributed by NM, 21-Apr-1994.) (Proof shortened by Andrew Salmon, 13-May-2011.)
Assertion
Ref Expression
3simpc ((𝜑𝜓𝜒) → (𝜓𝜒))

Proof of Theorem 3simpc
StepHypRef Expression
1 3anrot 985 . 2 ((𝜑𝜓𝜒) ↔ (𝜓𝜒𝜑))
2 3simpa 996 . 2 ((𝜓𝜒𝜑) → (𝜓𝜒))
31, 2sylbi 121 1 ((𝜑𝜓𝜒) → (𝜓𝜒))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  w3a 980
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108
This theorem depends on definitions:  df-bi 117  df-3an 982
This theorem is referenced by:  simp3  1001  3adant1  1017  3adantl1  1155  3adantr1  1158  eupickb  2126  find  4636  fovcld  6031  fisseneq  7004  eqsupti  7071  divcanap2  8726  diveqap0  8728  divrecap  8734  divcanap3  8744  eliooord  10022  fzrev3  10181  sqdivap  10714  muldvds2  12001  dvdscmul  12002  dvdsmulc  12003  dvdstr  12012  domneq0  13906  znleval2  14288  cncfmptc  14940  cnplimclemr  15013
  Copyright terms: Public domain W3C validator