| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > 3simpc | GIF version | ||
| Description: Simplification of triple conjunction. (Contributed by NM, 21-Apr-1994.) (Proof shortened by Andrew Salmon, 13-May-2011.) | 
| Ref | Expression | 
|---|---|
| 3simpc | ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → (𝜓 ∧ 𝜒)) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | 3anrot 985 | . 2 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) ↔ (𝜓 ∧ 𝜒 ∧ 𝜑)) | |
| 2 | 3simpa 996 | . 2 ⊢ ((𝜓 ∧ 𝜒 ∧ 𝜑) → (𝜓 ∧ 𝜒)) | |
| 3 | 1, 2 | sylbi 121 | 1 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → (𝜓 ∧ 𝜒)) | 
| Colors of variables: wff set class | 
| Syntax hints: → wi 4 ∧ wa 104 ∧ w3a 980 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 | 
| This theorem depends on definitions: df-bi 117 df-3an 982 | 
| This theorem is referenced by: simp3 1001 3adant1 1017 3adantl1 1155 3adantr1 1158 eupickb 2126 find 4635 fovcld 6027 fisseneq 6995 eqsupti 7062 divcanap2 8707 diveqap0 8709 divrecap 8715 divcanap3 8725 eliooord 10003 fzrev3 10162 sqdivap 10695 muldvds2 11982 dvdscmul 11983 dvdsmulc 11984 dvdstr 11993 domneq0 13828 znleval2 14210 cncfmptc 14832 cnplimclemr 14905 | 
| Copyright terms: Public domain | W3C validator |