ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  3simpc GIF version

Theorem 3simpc 998
Description: Simplification of triple conjunction. (Contributed by NM, 21-Apr-1994.) (Proof shortened by Andrew Salmon, 13-May-2011.)
Assertion
Ref Expression
3simpc ((𝜑𝜓𝜒) → (𝜓𝜒))

Proof of Theorem 3simpc
StepHypRef Expression
1 3anrot 985 . 2 ((𝜑𝜓𝜒) ↔ (𝜓𝜒𝜑))
2 3simpa 996 . 2 ((𝜓𝜒𝜑) → (𝜓𝜒))
31, 2sylbi 121 1 ((𝜑𝜓𝜒) → (𝜓𝜒))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  w3a 980
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108
This theorem depends on definitions:  df-bi 117  df-3an 982
This theorem is referenced by:  simp3  1001  3adant1  1017  3adantl1  1155  3adantr1  1158  eupickb  2123  find  4632  fovcld  6024  fisseneq  6990  eqsupti  7057  divcanap2  8701  diveqap0  8703  divrecap  8709  divcanap3  8719  eliooord  9997  fzrev3  10156  sqdivap  10677  muldvds2  11963  dvdscmul  11964  dvdsmulc  11965  dvdstr  11974  domneq0  13771  znleval2  14153  cncfmptc  14775  cnplimclemr  14848
  Copyright terms: Public domain W3C validator