| Step | Hyp | Ref
 | Expression | 
| 1 |   | caovdilemd.cl | 
. . . 4
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥𝐺𝑦) ∈ 𝑆) | 
| 2 |   | caovdilemd.a | 
. . . 4
⊢ (𝜑 → 𝐴 ∈ 𝑆) | 
| 3 |   | caovdilemd.c | 
. . . . 5
⊢ (𝜑 → 𝐶 ∈ 𝑆) | 
| 4 |   | caovdilemd.h | 
. . . . 5
⊢ (𝜑 → 𝐻 ∈ 𝑆) | 
| 5 | 1, 3, 4 | caovcld 6077 | 
. . . 4
⊢ (𝜑 → (𝐶𝐺𝐻) ∈ 𝑆) | 
| 6 | 1, 2, 5 | caovcld 6077 | 
. . 3
⊢ (𝜑 → (𝐴𝐺(𝐶𝐺𝐻)) ∈ 𝑆) | 
| 7 |   | caovdilemd.b | 
. . . 4
⊢ (𝜑 → 𝐵 ∈ 𝑆) | 
| 8 |   | caovdilemd.d | 
. . . . 5
⊢ (𝜑 → 𝐷 ∈ 𝑆) | 
| 9 | 1, 8, 4 | caovcld 6077 | 
. . . 4
⊢ (𝜑 → (𝐷𝐺𝐻) ∈ 𝑆) | 
| 10 | 1, 7, 9 | caovcld 6077 | 
. . 3
⊢ (𝜑 → (𝐵𝐺(𝐷𝐺𝐻)) ∈ 𝑆) | 
| 11 |   | caovdl2.6 | 
. . . . 5
⊢ (𝜑 → 𝑅 ∈ 𝑆) | 
| 12 | 1, 8, 11 | caovcld 6077 | 
. . . 4
⊢ (𝜑 → (𝐷𝐺𝑅) ∈ 𝑆) | 
| 13 | 1, 2, 12 | caovcld 6077 | 
. . 3
⊢ (𝜑 → (𝐴𝐺(𝐷𝐺𝑅)) ∈ 𝑆) | 
| 14 |   | caovdl2.com | 
. . 3
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥𝐹𝑦) = (𝑦𝐹𝑥)) | 
| 15 |   | caovdl2.ass | 
. . 3
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆)) → ((𝑥𝐹𝑦)𝐹𝑧) = (𝑥𝐹(𝑦𝐹𝑧))) | 
| 16 | 1, 3, 11 | caovcld 6077 | 
. . . 4
⊢ (𝜑 → (𝐶𝐺𝑅) ∈ 𝑆) | 
| 17 | 1, 7, 16 | caovcld 6077 | 
. . 3
⊢ (𝜑 → (𝐵𝐺(𝐶𝐺𝑅)) ∈ 𝑆) | 
| 18 |   | caovdl2.cl | 
. . 3
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥𝐹𝑦) ∈ 𝑆) | 
| 19 | 6, 10, 13, 14, 15, 17, 18 | caov42d 6110 | 
. 2
⊢ (𝜑 → (((𝐴𝐺(𝐶𝐺𝐻))𝐹(𝐵𝐺(𝐷𝐺𝐻)))𝐹((𝐴𝐺(𝐷𝐺𝑅))𝐹(𝐵𝐺(𝐶𝐺𝑅)))) = (((𝐴𝐺(𝐶𝐺𝐻))𝐹(𝐴𝐺(𝐷𝐺𝑅)))𝐹((𝐵𝐺(𝐶𝐺𝑅))𝐹(𝐵𝐺(𝐷𝐺𝐻))))) | 
| 20 |   | caovdilemd.com | 
. . . 4
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥𝐺𝑦) = (𝑦𝐺𝑥)) | 
| 21 |   | caovdilemd.distr | 
. . . 4
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆)) → ((𝑥𝐹𝑦)𝐺𝑧) = ((𝑥𝐺𝑧)𝐹(𝑦𝐺𝑧))) | 
| 22 |   | caovdilemd.ass | 
. . . 4
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆)) → ((𝑥𝐺𝑦)𝐺𝑧) = (𝑥𝐺(𝑦𝐺𝑧))) | 
| 23 | 20, 21, 22, 1, 2, 7,
3, 8, 4 | caovdilemd 6115 | 
. . 3
⊢ (𝜑 → (((𝐴𝐺𝐶)𝐹(𝐵𝐺𝐷))𝐺𝐻) = ((𝐴𝐺(𝐶𝐺𝐻))𝐹(𝐵𝐺(𝐷𝐺𝐻)))) | 
| 24 | 20, 21, 22, 1, 2, 7,
8, 3, 11 | caovdilemd 6115 | 
. . 3
⊢ (𝜑 → (((𝐴𝐺𝐷)𝐹(𝐵𝐺𝐶))𝐺𝑅) = ((𝐴𝐺(𝐷𝐺𝑅))𝐹(𝐵𝐺(𝐶𝐺𝑅)))) | 
| 25 | 23, 24 | oveq12d 5940 | 
. 2
⊢ (𝜑 → ((((𝐴𝐺𝐶)𝐹(𝐵𝐺𝐷))𝐺𝐻)𝐹(((𝐴𝐺𝐷)𝐹(𝐵𝐺𝐶))𝐺𝑅)) = (((𝐴𝐺(𝐶𝐺𝐻))𝐹(𝐵𝐺(𝐷𝐺𝐻)))𝐹((𝐴𝐺(𝐷𝐺𝑅))𝐹(𝐵𝐺(𝐶𝐺𝑅))))) | 
| 26 |   | simpr1 1005 | 
. . . . . . 7
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆)) → 𝑥 ∈ 𝑆) | 
| 27 | 18 | caovclg 6076 | 
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑟 ∈ 𝑆 ∧ 𝑠 ∈ 𝑆)) → (𝑟𝐹𝑠) ∈ 𝑆) | 
| 28 | 27 | caovclg 6076 | 
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑦 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆)) → (𝑦𝐹𝑧) ∈ 𝑆) | 
| 29 | 28 | 3adantr1 1158 | 
. . . . . . 7
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆)) → (𝑦𝐹𝑧) ∈ 𝑆) | 
| 30 | 26, 29 | jca 306 | 
. . . . . 6
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆)) → (𝑥 ∈ 𝑆 ∧ (𝑦𝐹𝑧) ∈ 𝑆)) | 
| 31 | 20 | caovcomg 6079 | 
. . . . . . 7
⊢ ((𝜑 ∧ (𝑟 ∈ 𝑆 ∧ 𝑠 ∈ 𝑆)) → (𝑟𝐺𝑠) = (𝑠𝐺𝑟)) | 
| 32 | 31 | caovcomg 6079 | 
. . . . . 6
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ (𝑦𝐹𝑧) ∈ 𝑆)) → (𝑥𝐺(𝑦𝐹𝑧)) = ((𝑦𝐹𝑧)𝐺𝑥)) | 
| 33 | 30, 32 | syldan 282 | 
. . . . 5
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆)) → (𝑥𝐺(𝑦𝐹𝑧)) = ((𝑦𝐹𝑧)𝐺𝑥)) | 
| 34 |   | 3anrot 985 | 
. . . . . 6
⊢ ((𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆) ↔ (𝑦 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆 ∧ 𝑥 ∈ 𝑆)) | 
| 35 | 21 | caovdirg 6101 | 
. . . . . . 7
⊢ ((𝜑 ∧ (𝑟 ∈ 𝑆 ∧ 𝑠 ∈ 𝑆 ∧ 𝑡 ∈ 𝑆)) → ((𝑟𝐹𝑠)𝐺𝑡) = ((𝑟𝐺𝑡)𝐹(𝑠𝐺𝑡))) | 
| 36 | 35 | caovdirg 6101 | 
. . . . . 6
⊢ ((𝜑 ∧ (𝑦 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆 ∧ 𝑥 ∈ 𝑆)) → ((𝑦𝐹𝑧)𝐺𝑥) = ((𝑦𝐺𝑥)𝐹(𝑧𝐺𝑥))) | 
| 37 | 34, 36 | sylan2b 287 | 
. . . . 5
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆)) → ((𝑦𝐹𝑧)𝐺𝑥) = ((𝑦𝐺𝑥)𝐹(𝑧𝐺𝑥))) | 
| 38 | 20 | eqcomd 2202 | 
. . . . . . 7
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑦𝐺𝑥) = (𝑥𝐺𝑦)) | 
| 39 | 38 | 3adantr3 1160 | 
. . . . . 6
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆)) → (𝑦𝐺𝑥) = (𝑥𝐺𝑦)) | 
| 40 | 31 | caovcomg 6079 | 
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑧 ∈ 𝑆 ∧ 𝑥 ∈ 𝑆)) → (𝑧𝐺𝑥) = (𝑥𝐺𝑧)) | 
| 41 | 40 | ancom2s 566 | 
. . . . . . 7
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆)) → (𝑧𝐺𝑥) = (𝑥𝐺𝑧)) | 
| 42 | 41 | 3adantr2 1159 | 
. . . . . 6
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆)) → (𝑧𝐺𝑥) = (𝑥𝐺𝑧)) | 
| 43 | 39, 42 | oveq12d 5940 | 
. . . . 5
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆)) → ((𝑦𝐺𝑥)𝐹(𝑧𝐺𝑥)) = ((𝑥𝐺𝑦)𝐹(𝑥𝐺𝑧))) | 
| 44 | 33, 37, 43 | 3eqtrd 2233 | 
. . . 4
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆)) → (𝑥𝐺(𝑦𝐹𝑧)) = ((𝑥𝐺𝑦)𝐹(𝑥𝐺𝑧))) | 
| 45 | 44, 2, 5, 12 | caovdid 6099 | 
. . 3
⊢ (𝜑 → (𝐴𝐺((𝐶𝐺𝐻)𝐹(𝐷𝐺𝑅))) = ((𝐴𝐺(𝐶𝐺𝐻))𝐹(𝐴𝐺(𝐷𝐺𝑅)))) | 
| 46 | 44, 7, 16, 9 | caovdid 6099 | 
. . 3
⊢ (𝜑 → (𝐵𝐺((𝐶𝐺𝑅)𝐹(𝐷𝐺𝐻))) = ((𝐵𝐺(𝐶𝐺𝑅))𝐹(𝐵𝐺(𝐷𝐺𝐻)))) | 
| 47 | 45, 46 | oveq12d 5940 | 
. 2
⊢ (𝜑 → ((𝐴𝐺((𝐶𝐺𝐻)𝐹(𝐷𝐺𝑅)))𝐹(𝐵𝐺((𝐶𝐺𝑅)𝐹(𝐷𝐺𝐻)))) = (((𝐴𝐺(𝐶𝐺𝐻))𝐹(𝐴𝐺(𝐷𝐺𝑅)))𝐹((𝐵𝐺(𝐶𝐺𝑅))𝐹(𝐵𝐺(𝐷𝐺𝐻))))) | 
| 48 | 19, 25, 47 | 3eqtr4d 2239 | 
1
⊢ (𝜑 → ((((𝐴𝐺𝐶)𝐹(𝐵𝐺𝐷))𝐺𝐻)𝐹(((𝐴𝐺𝐷)𝐹(𝐵𝐺𝐶))𝐺𝑅)) = ((𝐴𝐺((𝐶𝐺𝐻)𝐹(𝐷𝐺𝑅)))𝐹(𝐵𝐺((𝐶𝐺𝑅)𝐹(𝐷𝐺𝐻))))) |