Step | Hyp | Ref
| Expression |
1 | | caovdilemd.cl |
. . . 4
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥𝐺𝑦) ∈ 𝑆) |
2 | | caovdilemd.a |
. . . 4
⊢ (𝜑 → 𝐴 ∈ 𝑆) |
3 | | caovdilemd.c |
. . . . 5
⊢ (𝜑 → 𝐶 ∈ 𝑆) |
4 | | caovdilemd.h |
. . . . 5
⊢ (𝜑 → 𝐻 ∈ 𝑆) |
5 | 1, 3, 4 | caovcld 5995 |
. . . 4
⊢ (𝜑 → (𝐶𝐺𝐻) ∈ 𝑆) |
6 | 1, 2, 5 | caovcld 5995 |
. . 3
⊢ (𝜑 → (𝐴𝐺(𝐶𝐺𝐻)) ∈ 𝑆) |
7 | | caovdilemd.b |
. . . 4
⊢ (𝜑 → 𝐵 ∈ 𝑆) |
8 | | caovdilemd.d |
. . . . 5
⊢ (𝜑 → 𝐷 ∈ 𝑆) |
9 | 1, 8, 4 | caovcld 5995 |
. . . 4
⊢ (𝜑 → (𝐷𝐺𝐻) ∈ 𝑆) |
10 | 1, 7, 9 | caovcld 5995 |
. . 3
⊢ (𝜑 → (𝐵𝐺(𝐷𝐺𝐻)) ∈ 𝑆) |
11 | | caovdl2.6 |
. . . . 5
⊢ (𝜑 → 𝑅 ∈ 𝑆) |
12 | 1, 8, 11 | caovcld 5995 |
. . . 4
⊢ (𝜑 → (𝐷𝐺𝑅) ∈ 𝑆) |
13 | 1, 2, 12 | caovcld 5995 |
. . 3
⊢ (𝜑 → (𝐴𝐺(𝐷𝐺𝑅)) ∈ 𝑆) |
14 | | caovdl2.com |
. . 3
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥𝐹𝑦) = (𝑦𝐹𝑥)) |
15 | | caovdl2.ass |
. . 3
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆)) → ((𝑥𝐹𝑦)𝐹𝑧) = (𝑥𝐹(𝑦𝐹𝑧))) |
16 | 1, 3, 11 | caovcld 5995 |
. . . 4
⊢ (𝜑 → (𝐶𝐺𝑅) ∈ 𝑆) |
17 | 1, 7, 16 | caovcld 5995 |
. . 3
⊢ (𝜑 → (𝐵𝐺(𝐶𝐺𝑅)) ∈ 𝑆) |
18 | | caovdl2.cl |
. . 3
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥𝐹𝑦) ∈ 𝑆) |
19 | 6, 10, 13, 14, 15, 17, 18 | caov42d 6028 |
. 2
⊢ (𝜑 → (((𝐴𝐺(𝐶𝐺𝐻))𝐹(𝐵𝐺(𝐷𝐺𝐻)))𝐹((𝐴𝐺(𝐷𝐺𝑅))𝐹(𝐵𝐺(𝐶𝐺𝑅)))) = (((𝐴𝐺(𝐶𝐺𝐻))𝐹(𝐴𝐺(𝐷𝐺𝑅)))𝐹((𝐵𝐺(𝐶𝐺𝑅))𝐹(𝐵𝐺(𝐷𝐺𝐻))))) |
20 | | caovdilemd.com |
. . . 4
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥𝐺𝑦) = (𝑦𝐺𝑥)) |
21 | | caovdilemd.distr |
. . . 4
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆)) → ((𝑥𝐹𝑦)𝐺𝑧) = ((𝑥𝐺𝑧)𝐹(𝑦𝐺𝑧))) |
22 | | caovdilemd.ass |
. . . 4
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆)) → ((𝑥𝐺𝑦)𝐺𝑧) = (𝑥𝐺(𝑦𝐺𝑧))) |
23 | 20, 21, 22, 1, 2, 7,
3, 8, 4 | caovdilemd 6033 |
. . 3
⊢ (𝜑 → (((𝐴𝐺𝐶)𝐹(𝐵𝐺𝐷))𝐺𝐻) = ((𝐴𝐺(𝐶𝐺𝐻))𝐹(𝐵𝐺(𝐷𝐺𝐻)))) |
24 | 20, 21, 22, 1, 2, 7,
8, 3, 11 | caovdilemd 6033 |
. . 3
⊢ (𝜑 → (((𝐴𝐺𝐷)𝐹(𝐵𝐺𝐶))𝐺𝑅) = ((𝐴𝐺(𝐷𝐺𝑅))𝐹(𝐵𝐺(𝐶𝐺𝑅)))) |
25 | 23, 24 | oveq12d 5860 |
. 2
⊢ (𝜑 → ((((𝐴𝐺𝐶)𝐹(𝐵𝐺𝐷))𝐺𝐻)𝐹(((𝐴𝐺𝐷)𝐹(𝐵𝐺𝐶))𝐺𝑅)) = (((𝐴𝐺(𝐶𝐺𝐻))𝐹(𝐵𝐺(𝐷𝐺𝐻)))𝐹((𝐴𝐺(𝐷𝐺𝑅))𝐹(𝐵𝐺(𝐶𝐺𝑅))))) |
26 | | simpr1 993 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆)) → 𝑥 ∈ 𝑆) |
27 | 18 | caovclg 5994 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑟 ∈ 𝑆 ∧ 𝑠 ∈ 𝑆)) → (𝑟𝐹𝑠) ∈ 𝑆) |
28 | 27 | caovclg 5994 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑦 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆)) → (𝑦𝐹𝑧) ∈ 𝑆) |
29 | 28 | 3adantr1 1146 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆)) → (𝑦𝐹𝑧) ∈ 𝑆) |
30 | 26, 29 | jca 304 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆)) → (𝑥 ∈ 𝑆 ∧ (𝑦𝐹𝑧) ∈ 𝑆)) |
31 | 20 | caovcomg 5997 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑟 ∈ 𝑆 ∧ 𝑠 ∈ 𝑆)) → (𝑟𝐺𝑠) = (𝑠𝐺𝑟)) |
32 | 31 | caovcomg 5997 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ (𝑦𝐹𝑧) ∈ 𝑆)) → (𝑥𝐺(𝑦𝐹𝑧)) = ((𝑦𝐹𝑧)𝐺𝑥)) |
33 | 30, 32 | syldan 280 |
. . . . 5
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆)) → (𝑥𝐺(𝑦𝐹𝑧)) = ((𝑦𝐹𝑧)𝐺𝑥)) |
34 | | 3anrot 973 |
. . . . . 6
⊢ ((𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆) ↔ (𝑦 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆 ∧ 𝑥 ∈ 𝑆)) |
35 | 21 | caovdirg 6019 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑟 ∈ 𝑆 ∧ 𝑠 ∈ 𝑆 ∧ 𝑡 ∈ 𝑆)) → ((𝑟𝐹𝑠)𝐺𝑡) = ((𝑟𝐺𝑡)𝐹(𝑠𝐺𝑡))) |
36 | 35 | caovdirg 6019 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑦 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆 ∧ 𝑥 ∈ 𝑆)) → ((𝑦𝐹𝑧)𝐺𝑥) = ((𝑦𝐺𝑥)𝐹(𝑧𝐺𝑥))) |
37 | 34, 36 | sylan2b 285 |
. . . . 5
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆)) → ((𝑦𝐹𝑧)𝐺𝑥) = ((𝑦𝐺𝑥)𝐹(𝑧𝐺𝑥))) |
38 | 20 | eqcomd 2171 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑦𝐺𝑥) = (𝑥𝐺𝑦)) |
39 | 38 | 3adantr3 1148 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆)) → (𝑦𝐺𝑥) = (𝑥𝐺𝑦)) |
40 | 31 | caovcomg 5997 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑧 ∈ 𝑆 ∧ 𝑥 ∈ 𝑆)) → (𝑧𝐺𝑥) = (𝑥𝐺𝑧)) |
41 | 40 | ancom2s 556 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆)) → (𝑧𝐺𝑥) = (𝑥𝐺𝑧)) |
42 | 41 | 3adantr2 1147 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆)) → (𝑧𝐺𝑥) = (𝑥𝐺𝑧)) |
43 | 39, 42 | oveq12d 5860 |
. . . . 5
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆)) → ((𝑦𝐺𝑥)𝐹(𝑧𝐺𝑥)) = ((𝑥𝐺𝑦)𝐹(𝑥𝐺𝑧))) |
44 | 33, 37, 43 | 3eqtrd 2202 |
. . . 4
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆)) → (𝑥𝐺(𝑦𝐹𝑧)) = ((𝑥𝐺𝑦)𝐹(𝑥𝐺𝑧))) |
45 | 44, 2, 5, 12 | caovdid 6017 |
. . 3
⊢ (𝜑 → (𝐴𝐺((𝐶𝐺𝐻)𝐹(𝐷𝐺𝑅))) = ((𝐴𝐺(𝐶𝐺𝐻))𝐹(𝐴𝐺(𝐷𝐺𝑅)))) |
46 | 44, 7, 16, 9 | caovdid 6017 |
. . 3
⊢ (𝜑 → (𝐵𝐺((𝐶𝐺𝑅)𝐹(𝐷𝐺𝐻))) = ((𝐵𝐺(𝐶𝐺𝑅))𝐹(𝐵𝐺(𝐷𝐺𝐻)))) |
47 | 45, 46 | oveq12d 5860 |
. 2
⊢ (𝜑 → ((𝐴𝐺((𝐶𝐺𝐻)𝐹(𝐷𝐺𝑅)))𝐹(𝐵𝐺((𝐶𝐺𝑅)𝐹(𝐷𝐺𝐻)))) = (((𝐴𝐺(𝐶𝐺𝐻))𝐹(𝐴𝐺(𝐷𝐺𝑅)))𝐹((𝐵𝐺(𝐶𝐺𝑅))𝐹(𝐵𝐺(𝐷𝐺𝐻))))) |
48 | 19, 25, 47 | 3eqtr4d 2208 |
1
⊢ (𝜑 → ((((𝐴𝐺𝐶)𝐹(𝐵𝐺𝐷))𝐺𝐻)𝐹(((𝐴𝐺𝐷)𝐹(𝐵𝐺𝐶))𝐺𝑅)) = ((𝐴𝐺((𝐶𝐺𝐻)𝐹(𝐷𝐺𝑅)))𝐹(𝐵𝐺((𝐶𝐺𝑅)𝐹(𝐷𝐺𝐻))))) |