ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  3adant3r1 GIF version

Theorem 3adant3r1 1214
Description: Deduction adding a conjunct to antecedent. (Contributed by NM, 16-Feb-2008.)
Hypothesis
Ref Expression
3exp.1 ((𝜑𝜓𝜒) → 𝜃)
Assertion
Ref Expression
3adant3r1 ((𝜑 ∧ (𝜏𝜓𝜒)) → 𝜃)

Proof of Theorem 3adant3r1
StepHypRef Expression
1 3exp.1 . . 3 ((𝜑𝜓𝜒) → 𝜃)
213expb 1206 . 2 ((𝜑 ∧ (𝜓𝜒)) → 𝜃)
323adantr1 1158 1 ((𝜑 ∧ (𝜏𝜓𝜒)) → 𝜃)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  w3a 980
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108
This theorem depends on definitions:  df-bi 117  df-3an 982
This theorem is referenced by:  grpsubsub  13221  grpnnncan2  13229  imasgrp2  13240  mulgnn0ass  13288  mulgsubdir  13292  cmn32  13434  ablsubadd  13442  imasrng  13512  imasring  13620  opprrng  13633  opprring  13635  xmettri3  14610  mettri3  14611  xmetrtri  14612  rprelogbmulexp  15192
  Copyright terms: Public domain W3C validator