ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  3adant3r1 GIF version

Theorem 3adant3r1 1215
Description: Deduction adding a conjunct to antecedent. (Contributed by NM, 16-Feb-2008.)
Hypothesis
Ref Expression
3exp.1 ((𝜑𝜓𝜒) → 𝜃)
Assertion
Ref Expression
3adant3r1 ((𝜑 ∧ (𝜏𝜓𝜒)) → 𝜃)

Proof of Theorem 3adant3r1
StepHypRef Expression
1 3exp.1 . . 3 ((𝜑𝜓𝜒) → 𝜃)
213expb 1207 . 2 ((𝜑 ∧ (𝜓𝜒)) → 𝜃)
323adantr1 1159 1 ((𝜑 ∧ (𝜏𝜓𝜒)) → 𝜃)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  w3a 981
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108
This theorem depends on definitions:  df-bi 117  df-3an 983
This theorem is referenced by:  ccatswrd  11156  imasmnd2  13369  grpsubsub  13506  grpnnncan2  13514  imasgrp2  13531  mulgnn0ass  13579  mulgsubdir  13583  cmn32  13725  ablsubadd  13733  imasrng  13803  imasring  13911  opprrng  13924  opprring  13926  xmettri3  14931  mettri3  14932  xmetrtri  14933  rprelogbmulexp  15513
  Copyright terms: Public domain W3C validator