ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  3adant3r1 GIF version

Theorem 3adant3r1 1236
Description: Deduction adding a conjunct to antecedent. (Contributed by NM, 16-Feb-2008.)
Hypothesis
Ref Expression
3exp.1 ((𝜑𝜓𝜒) → 𝜃)
Assertion
Ref Expression
3adant3r1 ((𝜑 ∧ (𝜏𝜓𝜒)) → 𝜃)

Proof of Theorem 3adant3r1
StepHypRef Expression
1 3exp.1 . . 3 ((𝜑𝜓𝜒) → 𝜃)
213expb 1228 . 2 ((𝜑 ∧ (𝜓𝜒)) → 𝜃)
323adantr1 1180 1 ((𝜑 ∧ (𝜏𝜓𝜒)) → 𝜃)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  w3a 1002
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108
This theorem depends on definitions:  df-bi 117  df-3an 1004
This theorem is referenced by:  ccatswrd  11197  imasmnd2  13480  grpsubsub  13617  grpnnncan2  13625  imasgrp2  13642  mulgnn0ass  13690  mulgsubdir  13694  cmn32  13836  ablsubadd  13844  imasrng  13914  imasring  14022  opprrng  14035  opprring  14037  xmettri3  15042  mettri3  15043  xmetrtri  15044  rprelogbmulexp  15624
  Copyright terms: Public domain W3C validator