ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  imasgrp2 GIF version

Theorem imasgrp2 13240
Description: The image structure of a group is a group. (Contributed by Mario Carneiro, 24-Feb-2015.) (Revised by Mario Carneiro, 5-Sep-2015.)
Hypotheses
Ref Expression
imasgrp.u (𝜑𝑈 = (𝐹s 𝑅))
imasgrp.v (𝜑𝑉 = (Base‘𝑅))
imasgrp.p (𝜑+ = (+g𝑅))
imasgrp.f (𝜑𝐹:𝑉onto𝐵)
imasgrp.e ((𝜑 ∧ (𝑎𝑉𝑏𝑉) ∧ (𝑝𝑉𝑞𝑉)) → (((𝐹𝑎) = (𝐹𝑝) ∧ (𝐹𝑏) = (𝐹𝑞)) → (𝐹‘(𝑎 + 𝑏)) = (𝐹‘(𝑝 + 𝑞))))
imasgrp2.r (𝜑𝑅𝑊)
imasgrp2.1 ((𝜑𝑥𝑉𝑦𝑉) → (𝑥 + 𝑦) ∈ 𝑉)
imasgrp2.2 ((𝜑 ∧ (𝑥𝑉𝑦𝑉𝑧𝑉)) → (𝐹‘((𝑥 + 𝑦) + 𝑧)) = (𝐹‘(𝑥 + (𝑦 + 𝑧))))
imasgrp2.3 (𝜑0𝑉)
imasgrp2.4 ((𝜑𝑥𝑉) → (𝐹‘( 0 + 𝑥)) = (𝐹𝑥))
imasgrp2.5 ((𝜑𝑥𝑉) → 𝑁𝑉)
imasgrp2.6 ((𝜑𝑥𝑉) → (𝐹‘(𝑁 + 𝑥)) = (𝐹0 ))
Assertion
Ref Expression
imasgrp2 (𝜑 → (𝑈 ∈ Grp ∧ (𝐹0 ) = (0g𝑈)))
Distinct variable groups:   𝑞,𝑝,𝑥,𝐵   𝑁,𝑝   𝑎,𝑏,𝑝,𝑞,𝑥,𝑦,𝑧,𝜑   𝑅,𝑝,𝑞   𝐹,𝑎,𝑏,𝑝,𝑞,𝑥,𝑦,𝑧   + ,𝑝,𝑞,𝑥,𝑦   𝑈,𝑎,𝑏,𝑝,𝑞,𝑥,𝑦,𝑧   𝑉,𝑎,𝑏,𝑝,𝑞,𝑥,𝑦,𝑧   0 ,𝑝,𝑞,𝑥
Allowed substitution hints:   𝐵(𝑦,𝑧,𝑎,𝑏)   + (𝑧,𝑎,𝑏)   𝑅(𝑥,𝑦,𝑧,𝑎,𝑏)   𝑁(𝑥,𝑦,𝑧,𝑞,𝑎,𝑏)   𝑊(𝑥,𝑦,𝑧,𝑞,𝑝,𝑎,𝑏)   0 (𝑦,𝑧,𝑎,𝑏)

Proof of Theorem imasgrp2
Dummy variables 𝑢 𝑣 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 imasgrp.u . . . 4 (𝜑𝑈 = (𝐹s 𝑅))
2 imasgrp.v . . . 4 (𝜑𝑉 = (Base‘𝑅))
3 imasgrp.f . . . 4 (𝜑𝐹:𝑉onto𝐵)
4 imasgrp2.r . . . 4 (𝜑𝑅𝑊)
51, 2, 3, 4imasbas 12950 . . 3 (𝜑𝐵 = (Base‘𝑈))
6 eqidd 2197 . . 3 (𝜑 → (+g𝑈) = (+g𝑈))
7 imasgrp.e . . . . . 6 ((𝜑 ∧ (𝑎𝑉𝑏𝑉) ∧ (𝑝𝑉𝑞𝑉)) → (((𝐹𝑎) = (𝐹𝑝) ∧ (𝐹𝑏) = (𝐹𝑞)) → (𝐹‘(𝑎 + 𝑏)) = (𝐹‘(𝑝 + 𝑞))))
8 imasgrp.p . . . . . . . . . 10 (𝜑+ = (+g𝑅))
98oveqd 5939 . . . . . . . . 9 (𝜑 → (𝑎 + 𝑏) = (𝑎(+g𝑅)𝑏))
109fveq2d 5562 . . . . . . . 8 (𝜑 → (𝐹‘(𝑎 + 𝑏)) = (𝐹‘(𝑎(+g𝑅)𝑏)))
118oveqd 5939 . . . . . . . . 9 (𝜑 → (𝑝 + 𝑞) = (𝑝(+g𝑅)𝑞))
1211fveq2d 5562 . . . . . . . 8 (𝜑 → (𝐹‘(𝑝 + 𝑞)) = (𝐹‘(𝑝(+g𝑅)𝑞)))
1310, 12eqeq12d 2211 . . . . . . 7 (𝜑 → ((𝐹‘(𝑎 + 𝑏)) = (𝐹‘(𝑝 + 𝑞)) ↔ (𝐹‘(𝑎(+g𝑅)𝑏)) = (𝐹‘(𝑝(+g𝑅)𝑞))))
14133ad2ant1 1020 . . . . . 6 ((𝜑 ∧ (𝑎𝑉𝑏𝑉) ∧ (𝑝𝑉𝑞𝑉)) → ((𝐹‘(𝑎 + 𝑏)) = (𝐹‘(𝑝 + 𝑞)) ↔ (𝐹‘(𝑎(+g𝑅)𝑏)) = (𝐹‘(𝑝(+g𝑅)𝑞))))
157, 14sylibd 149 . . . . 5 ((𝜑 ∧ (𝑎𝑉𝑏𝑉) ∧ (𝑝𝑉𝑞𝑉)) → (((𝐹𝑎) = (𝐹𝑝) ∧ (𝐹𝑏) = (𝐹𝑞)) → (𝐹‘(𝑎(+g𝑅)𝑏)) = (𝐹‘(𝑝(+g𝑅)𝑞))))
16 eqid 2196 . . . . 5 (+g𝑅) = (+g𝑅)
17 eqid 2196 . . . . 5 (+g𝑈) = (+g𝑈)
1811adantr 276 . . . . . 6 ((𝜑 ∧ (𝑝𝑉𝑞𝑉)) → (𝑝 + 𝑞) = (𝑝(+g𝑅)𝑞))
19 imasgrp2.1 . . . . . . . 8 ((𝜑𝑥𝑉𝑦𝑉) → (𝑥 + 𝑦) ∈ 𝑉)
20193expb 1206 . . . . . . 7 ((𝜑 ∧ (𝑥𝑉𝑦𝑉)) → (𝑥 + 𝑦) ∈ 𝑉)
2120caovclg 6076 . . . . . 6 ((𝜑 ∧ (𝑝𝑉𝑞𝑉)) → (𝑝 + 𝑞) ∈ 𝑉)
2218, 21eqeltrrd 2274 . . . . 5 ((𝜑 ∧ (𝑝𝑉𝑞𝑉)) → (𝑝(+g𝑅)𝑞) ∈ 𝑉)
233, 15, 1, 2, 4, 16, 17, 22imasaddf 12962 . . . 4 (𝜑 → (+g𝑈):(𝐵 × 𝐵)⟶𝐵)
24 fovcdm 6066 . . . 4 (((+g𝑈):(𝐵 × 𝐵)⟶𝐵𝑢𝐵𝑣𝐵) → (𝑢(+g𝑈)𝑣) ∈ 𝐵)
2523, 24syl3an1 1282 . . 3 ((𝜑𝑢𝐵𝑣𝐵) → (𝑢(+g𝑈)𝑣) ∈ 𝐵)
26 forn 5483 . . . . . . . . . 10 (𝐹:𝑉onto𝐵 → ran 𝐹 = 𝐵)
273, 26syl 14 . . . . . . . . 9 (𝜑 → ran 𝐹 = 𝐵)
2827eleq2d 2266 . . . . . . . 8 (𝜑 → (𝑢 ∈ ran 𝐹𝑢𝐵))
2927eleq2d 2266 . . . . . . . 8 (𝜑 → (𝑣 ∈ ran 𝐹𝑣𝐵))
3027eleq2d 2266 . . . . . . . 8 (𝜑 → (𝑤 ∈ ran 𝐹𝑤𝐵))
3128, 29, 303anbi123d 1323 . . . . . . 7 (𝜑 → ((𝑢 ∈ ran 𝐹𝑣 ∈ ran 𝐹𝑤 ∈ ran 𝐹) ↔ (𝑢𝐵𝑣𝐵𝑤𝐵)))
32 fofn 5482 . . . . . . . . 9 (𝐹:𝑉onto𝐵𝐹 Fn 𝑉)
333, 32syl 14 . . . . . . . 8 (𝜑𝐹 Fn 𝑉)
34 fvelrnb 5608 . . . . . . . . 9 (𝐹 Fn 𝑉 → (𝑢 ∈ ran 𝐹 ↔ ∃𝑥𝑉 (𝐹𝑥) = 𝑢))
35 fvelrnb 5608 . . . . . . . . 9 (𝐹 Fn 𝑉 → (𝑣 ∈ ran 𝐹 ↔ ∃𝑦𝑉 (𝐹𝑦) = 𝑣))
36 fvelrnb 5608 . . . . . . . . 9 (𝐹 Fn 𝑉 → (𝑤 ∈ ran 𝐹 ↔ ∃𝑧𝑉 (𝐹𝑧) = 𝑤))
3734, 35, 363anbi123d 1323 . . . . . . . 8 (𝐹 Fn 𝑉 → ((𝑢 ∈ ran 𝐹𝑣 ∈ ran 𝐹𝑤 ∈ ran 𝐹) ↔ (∃𝑥𝑉 (𝐹𝑥) = 𝑢 ∧ ∃𝑦𝑉 (𝐹𝑦) = 𝑣 ∧ ∃𝑧𝑉 (𝐹𝑧) = 𝑤)))
3833, 37syl 14 . . . . . . 7 (𝜑 → ((𝑢 ∈ ran 𝐹𝑣 ∈ ran 𝐹𝑤 ∈ ran 𝐹) ↔ (∃𝑥𝑉 (𝐹𝑥) = 𝑢 ∧ ∃𝑦𝑉 (𝐹𝑦) = 𝑣 ∧ ∃𝑧𝑉 (𝐹𝑧) = 𝑤)))
3931, 38bitr3d 190 . . . . . 6 (𝜑 → ((𝑢𝐵𝑣𝐵𝑤𝐵) ↔ (∃𝑥𝑉 (𝐹𝑥) = 𝑢 ∧ ∃𝑦𝑉 (𝐹𝑦) = 𝑣 ∧ ∃𝑧𝑉 (𝐹𝑧) = 𝑤)))
40 3reeanv 2668 . . . . . 6 (∃𝑥𝑉𝑦𝑉𝑧𝑉 ((𝐹𝑥) = 𝑢 ∧ (𝐹𝑦) = 𝑣 ∧ (𝐹𝑧) = 𝑤) ↔ (∃𝑥𝑉 (𝐹𝑥) = 𝑢 ∧ ∃𝑦𝑉 (𝐹𝑦) = 𝑣 ∧ ∃𝑧𝑉 (𝐹𝑧) = 𝑤))
4139, 40bitr4di 198 . . . . 5 (𝜑 → ((𝑢𝐵𝑣𝐵𝑤𝐵) ↔ ∃𝑥𝑉𝑦𝑉𝑧𝑉 ((𝐹𝑥) = 𝑢 ∧ (𝐹𝑦) = 𝑣 ∧ (𝐹𝑧) = 𝑤)))
42 imasgrp2.2 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑥𝑉𝑦𝑉𝑧𝑉)) → (𝐹‘((𝑥 + 𝑦) + 𝑧)) = (𝐹‘(𝑥 + (𝑦 + 𝑧))))
438adantr 276 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑥𝑉𝑦𝑉𝑧𝑉)) → + = (+g𝑅))
4443oveqd 5939 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑥𝑉𝑦𝑉𝑧𝑉)) → ((𝑥 + 𝑦) + 𝑧) = ((𝑥 + 𝑦)(+g𝑅)𝑧))
4544fveq2d 5562 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑥𝑉𝑦𝑉𝑧𝑉)) → (𝐹‘((𝑥 + 𝑦) + 𝑧)) = (𝐹‘((𝑥 + 𝑦)(+g𝑅)𝑧)))
4643oveqd 5939 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑥𝑉𝑦𝑉𝑧𝑉)) → (𝑥 + (𝑦 + 𝑧)) = (𝑥(+g𝑅)(𝑦 + 𝑧)))
4746fveq2d 5562 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑥𝑉𝑦𝑉𝑧𝑉)) → (𝐹‘(𝑥 + (𝑦 + 𝑧))) = (𝐹‘(𝑥(+g𝑅)(𝑦 + 𝑧))))
4842, 45, 473eqtr3d 2237 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑥𝑉𝑦𝑉𝑧𝑉)) → (𝐹‘((𝑥 + 𝑦)(+g𝑅)𝑧)) = (𝐹‘(𝑥(+g𝑅)(𝑦 + 𝑧))))
49 simpl 109 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑥𝑉𝑦𝑉𝑧𝑉)) → 𝜑)
50193adant3r3 1216 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑥𝑉𝑦𝑉𝑧𝑉)) → (𝑥 + 𝑦) ∈ 𝑉)
51 simpr3 1007 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑥𝑉𝑦𝑉𝑧𝑉)) → 𝑧𝑉)
523, 15, 1, 2, 4, 16, 17imasaddval 12961 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑥 + 𝑦) ∈ 𝑉𝑧𝑉) → ((𝐹‘(𝑥 + 𝑦))(+g𝑈)(𝐹𝑧)) = (𝐹‘((𝑥 + 𝑦)(+g𝑅)𝑧)))
5349, 50, 51, 52syl3anc 1249 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑥𝑉𝑦𝑉𝑧𝑉)) → ((𝐹‘(𝑥 + 𝑦))(+g𝑈)(𝐹𝑧)) = (𝐹‘((𝑥 + 𝑦)(+g𝑅)𝑧)))
54 simpr1 1005 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑥𝑉𝑦𝑉𝑧𝑉)) → 𝑥𝑉)
5521caovclg 6076 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑦𝑉𝑧𝑉)) → (𝑦 + 𝑧) ∈ 𝑉)
56553adantr1 1158 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑥𝑉𝑦𝑉𝑧𝑉)) → (𝑦 + 𝑧) ∈ 𝑉)
573, 15, 1, 2, 4, 16, 17imasaddval 12961 . . . . . . . . . . . . 13 ((𝜑𝑥𝑉 ∧ (𝑦 + 𝑧) ∈ 𝑉) → ((𝐹𝑥)(+g𝑈)(𝐹‘(𝑦 + 𝑧))) = (𝐹‘(𝑥(+g𝑅)(𝑦 + 𝑧))))
5849, 54, 56, 57syl3anc 1249 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑥𝑉𝑦𝑉𝑧𝑉)) → ((𝐹𝑥)(+g𝑈)(𝐹‘(𝑦 + 𝑧))) = (𝐹‘(𝑥(+g𝑅)(𝑦 + 𝑧))))
5948, 53, 583eqtr4d 2239 . . . . . . . . . . 11 ((𝜑 ∧ (𝑥𝑉𝑦𝑉𝑧𝑉)) → ((𝐹‘(𝑥 + 𝑦))(+g𝑈)(𝐹𝑧)) = ((𝐹𝑥)(+g𝑈)(𝐹‘(𝑦 + 𝑧))))
603, 15, 1, 2, 4, 16, 17imasaddval 12961 . . . . . . . . . . . . . 14 ((𝜑𝑥𝑉𝑦𝑉) → ((𝐹𝑥)(+g𝑈)(𝐹𝑦)) = (𝐹‘(𝑥(+g𝑅)𝑦)))
61603adant3r3 1216 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑥𝑉𝑦𝑉𝑧𝑉)) → ((𝐹𝑥)(+g𝑈)(𝐹𝑦)) = (𝐹‘(𝑥(+g𝑅)𝑦)))
6243oveqd 5939 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑥𝑉𝑦𝑉𝑧𝑉)) → (𝑥 + 𝑦) = (𝑥(+g𝑅)𝑦))
6362fveq2d 5562 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑥𝑉𝑦𝑉𝑧𝑉)) → (𝐹‘(𝑥 + 𝑦)) = (𝐹‘(𝑥(+g𝑅)𝑦)))
6461, 63eqtr4d 2232 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑥𝑉𝑦𝑉𝑧𝑉)) → ((𝐹𝑥)(+g𝑈)(𝐹𝑦)) = (𝐹‘(𝑥 + 𝑦)))
6564oveq1d 5937 . . . . . . . . . . 11 ((𝜑 ∧ (𝑥𝑉𝑦𝑉𝑧𝑉)) → (((𝐹𝑥)(+g𝑈)(𝐹𝑦))(+g𝑈)(𝐹𝑧)) = ((𝐹‘(𝑥 + 𝑦))(+g𝑈)(𝐹𝑧)))
663, 15, 1, 2, 4, 16, 17imasaddval 12961 . . . . . . . . . . . . . 14 ((𝜑𝑦𝑉𝑧𝑉) → ((𝐹𝑦)(+g𝑈)(𝐹𝑧)) = (𝐹‘(𝑦(+g𝑅)𝑧)))
67663adant3r1 1214 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑥𝑉𝑦𝑉𝑧𝑉)) → ((𝐹𝑦)(+g𝑈)(𝐹𝑧)) = (𝐹‘(𝑦(+g𝑅)𝑧)))
6843oveqd 5939 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑥𝑉𝑦𝑉𝑧𝑉)) → (𝑦 + 𝑧) = (𝑦(+g𝑅)𝑧))
6968fveq2d 5562 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑥𝑉𝑦𝑉𝑧𝑉)) → (𝐹‘(𝑦 + 𝑧)) = (𝐹‘(𝑦(+g𝑅)𝑧)))
7067, 69eqtr4d 2232 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑥𝑉𝑦𝑉𝑧𝑉)) → ((𝐹𝑦)(+g𝑈)(𝐹𝑧)) = (𝐹‘(𝑦 + 𝑧)))
7170oveq2d 5938 . . . . . . . . . . 11 ((𝜑 ∧ (𝑥𝑉𝑦𝑉𝑧𝑉)) → ((𝐹𝑥)(+g𝑈)((𝐹𝑦)(+g𝑈)(𝐹𝑧))) = ((𝐹𝑥)(+g𝑈)(𝐹‘(𝑦 + 𝑧))))
7259, 65, 713eqtr4d 2239 . . . . . . . . . 10 ((𝜑 ∧ (𝑥𝑉𝑦𝑉𝑧𝑉)) → (((𝐹𝑥)(+g𝑈)(𝐹𝑦))(+g𝑈)(𝐹𝑧)) = ((𝐹𝑥)(+g𝑈)((𝐹𝑦)(+g𝑈)(𝐹𝑧))))
73 simp1 999 . . . . . . . . . . . . 13 (((𝐹𝑥) = 𝑢 ∧ (𝐹𝑦) = 𝑣 ∧ (𝐹𝑧) = 𝑤) → (𝐹𝑥) = 𝑢)
74 simp2 1000 . . . . . . . . . . . . 13 (((𝐹𝑥) = 𝑢 ∧ (𝐹𝑦) = 𝑣 ∧ (𝐹𝑧) = 𝑤) → (𝐹𝑦) = 𝑣)
7573, 74oveq12d 5940 . . . . . . . . . . . 12 (((𝐹𝑥) = 𝑢 ∧ (𝐹𝑦) = 𝑣 ∧ (𝐹𝑧) = 𝑤) → ((𝐹𝑥)(+g𝑈)(𝐹𝑦)) = (𝑢(+g𝑈)𝑣))
76 simp3 1001 . . . . . . . . . . . 12 (((𝐹𝑥) = 𝑢 ∧ (𝐹𝑦) = 𝑣 ∧ (𝐹𝑧) = 𝑤) → (𝐹𝑧) = 𝑤)
7775, 76oveq12d 5940 . . . . . . . . . . 11 (((𝐹𝑥) = 𝑢 ∧ (𝐹𝑦) = 𝑣 ∧ (𝐹𝑧) = 𝑤) → (((𝐹𝑥)(+g𝑈)(𝐹𝑦))(+g𝑈)(𝐹𝑧)) = ((𝑢(+g𝑈)𝑣)(+g𝑈)𝑤))
7874, 76oveq12d 5940 . . . . . . . . . . . 12 (((𝐹𝑥) = 𝑢 ∧ (𝐹𝑦) = 𝑣 ∧ (𝐹𝑧) = 𝑤) → ((𝐹𝑦)(+g𝑈)(𝐹𝑧)) = (𝑣(+g𝑈)𝑤))
7973, 78oveq12d 5940 . . . . . . . . . . 11 (((𝐹𝑥) = 𝑢 ∧ (𝐹𝑦) = 𝑣 ∧ (𝐹𝑧) = 𝑤) → ((𝐹𝑥)(+g𝑈)((𝐹𝑦)(+g𝑈)(𝐹𝑧))) = (𝑢(+g𝑈)(𝑣(+g𝑈)𝑤)))
8077, 79eqeq12d 2211 . . . . . . . . . 10 (((𝐹𝑥) = 𝑢 ∧ (𝐹𝑦) = 𝑣 ∧ (𝐹𝑧) = 𝑤) → ((((𝐹𝑥)(+g𝑈)(𝐹𝑦))(+g𝑈)(𝐹𝑧)) = ((𝐹𝑥)(+g𝑈)((𝐹𝑦)(+g𝑈)(𝐹𝑧))) ↔ ((𝑢(+g𝑈)𝑣)(+g𝑈)𝑤) = (𝑢(+g𝑈)(𝑣(+g𝑈)𝑤))))
8172, 80syl5ibcom 155 . . . . . . . . 9 ((𝜑 ∧ (𝑥𝑉𝑦𝑉𝑧𝑉)) → (((𝐹𝑥) = 𝑢 ∧ (𝐹𝑦) = 𝑣 ∧ (𝐹𝑧) = 𝑤) → ((𝑢(+g𝑈)𝑣)(+g𝑈)𝑤) = (𝑢(+g𝑈)(𝑣(+g𝑈)𝑤))))
82813exp2 1227 . . . . . . . 8 (𝜑 → (𝑥𝑉 → (𝑦𝑉 → (𝑧𝑉 → (((𝐹𝑥) = 𝑢 ∧ (𝐹𝑦) = 𝑣 ∧ (𝐹𝑧) = 𝑤) → ((𝑢(+g𝑈)𝑣)(+g𝑈)𝑤) = (𝑢(+g𝑈)(𝑣(+g𝑈)𝑤)))))))
8382imp32 257 . . . . . . 7 ((𝜑 ∧ (𝑥𝑉𝑦𝑉)) → (𝑧𝑉 → (((𝐹𝑥) = 𝑢 ∧ (𝐹𝑦) = 𝑣 ∧ (𝐹𝑧) = 𝑤) → ((𝑢(+g𝑈)𝑣)(+g𝑈)𝑤) = (𝑢(+g𝑈)(𝑣(+g𝑈)𝑤)))))
8483rexlimdv 2613 . . . . . 6 ((𝜑 ∧ (𝑥𝑉𝑦𝑉)) → (∃𝑧𝑉 ((𝐹𝑥) = 𝑢 ∧ (𝐹𝑦) = 𝑣 ∧ (𝐹𝑧) = 𝑤) → ((𝑢(+g𝑈)𝑣)(+g𝑈)𝑤) = (𝑢(+g𝑈)(𝑣(+g𝑈)𝑤))))
8584rexlimdvva 2622 . . . . 5 (𝜑 → (∃𝑥𝑉𝑦𝑉𝑧𝑉 ((𝐹𝑥) = 𝑢 ∧ (𝐹𝑦) = 𝑣 ∧ (𝐹𝑧) = 𝑤) → ((𝑢(+g𝑈)𝑣)(+g𝑈)𝑤) = (𝑢(+g𝑈)(𝑣(+g𝑈)𝑤))))
8641, 85sylbid 150 . . . 4 (𝜑 → ((𝑢𝐵𝑣𝐵𝑤𝐵) → ((𝑢(+g𝑈)𝑣)(+g𝑈)𝑤) = (𝑢(+g𝑈)(𝑣(+g𝑈)𝑤))))
8786imp 124 . . 3 ((𝜑 ∧ (𝑢𝐵𝑣𝐵𝑤𝐵)) → ((𝑢(+g𝑈)𝑣)(+g𝑈)𝑤) = (𝑢(+g𝑈)(𝑣(+g𝑈)𝑤)))
88 fof 5480 . . . . 5 (𝐹:𝑉onto𝐵𝐹:𝑉𝐵)
893, 88syl 14 . . . 4 (𝜑𝐹:𝑉𝐵)
90 imasgrp2.3 . . . 4 (𝜑0𝑉)
9189, 90ffvelcdmd 5698 . . 3 (𝜑 → (𝐹0 ) ∈ 𝐵)
9233, 34syl 14 . . . . . 6 (𝜑 → (𝑢 ∈ ran 𝐹 ↔ ∃𝑥𝑉 (𝐹𝑥) = 𝑢))
9328, 92bitr3d 190 . . . . 5 (𝜑 → (𝑢𝐵 ↔ ∃𝑥𝑉 (𝐹𝑥) = 𝑢))
94 simpl 109 . . . . . . . . 9 ((𝜑𝑥𝑉) → 𝜑)
9590adantr 276 . . . . . . . . 9 ((𝜑𝑥𝑉) → 0𝑉)
96 simpr 110 . . . . . . . . 9 ((𝜑𝑥𝑉) → 𝑥𝑉)
973, 15, 1, 2, 4, 16, 17imasaddval 12961 . . . . . . . . 9 ((𝜑0𝑉𝑥𝑉) → ((𝐹0 )(+g𝑈)(𝐹𝑥)) = (𝐹‘( 0 (+g𝑅)𝑥)))
9894, 95, 96, 97syl3anc 1249 . . . . . . . 8 ((𝜑𝑥𝑉) → ((𝐹0 )(+g𝑈)(𝐹𝑥)) = (𝐹‘( 0 (+g𝑅)𝑥)))
998adantr 276 . . . . . . . . . 10 ((𝜑𝑥𝑉) → + = (+g𝑅))
10099oveqd 5939 . . . . . . . . 9 ((𝜑𝑥𝑉) → ( 0 + 𝑥) = ( 0 (+g𝑅)𝑥))
101100fveq2d 5562 . . . . . . . 8 ((𝜑𝑥𝑉) → (𝐹‘( 0 + 𝑥)) = (𝐹‘( 0 (+g𝑅)𝑥)))
102 imasgrp2.4 . . . . . . . 8 ((𝜑𝑥𝑉) → (𝐹‘( 0 + 𝑥)) = (𝐹𝑥))
10398, 101, 1023eqtr2d 2235 . . . . . . 7 ((𝜑𝑥𝑉) → ((𝐹0 )(+g𝑈)(𝐹𝑥)) = (𝐹𝑥))
104 oveq2 5930 . . . . . . . 8 ((𝐹𝑥) = 𝑢 → ((𝐹0 )(+g𝑈)(𝐹𝑥)) = ((𝐹0 )(+g𝑈)𝑢))
105 id 19 . . . . . . . 8 ((𝐹𝑥) = 𝑢 → (𝐹𝑥) = 𝑢)
106104, 105eqeq12d 2211 . . . . . . 7 ((𝐹𝑥) = 𝑢 → (((𝐹0 )(+g𝑈)(𝐹𝑥)) = (𝐹𝑥) ↔ ((𝐹0 )(+g𝑈)𝑢) = 𝑢))
107103, 106syl5ibcom 155 . . . . . 6 ((𝜑𝑥𝑉) → ((𝐹𝑥) = 𝑢 → ((𝐹0 )(+g𝑈)𝑢) = 𝑢))
108107rexlimdva 2614 . . . . 5 (𝜑 → (∃𝑥𝑉 (𝐹𝑥) = 𝑢 → ((𝐹0 )(+g𝑈)𝑢) = 𝑢))
10993, 108sylbid 150 . . . 4 (𝜑 → (𝑢𝐵 → ((𝐹0 )(+g𝑈)𝑢) = 𝑢))
110109imp 124 . . 3 ((𝜑𝑢𝐵) → ((𝐹0 )(+g𝑈)𝑢) = 𝑢)
11189adantr 276 . . . . . . . . 9 ((𝜑𝑥𝑉) → 𝐹:𝑉𝐵)
112 imasgrp2.5 . . . . . . . . 9 ((𝜑𝑥𝑉) → 𝑁𝑉)
113111, 112ffvelcdmd 5698 . . . . . . . 8 ((𝜑𝑥𝑉) → (𝐹𝑁) ∈ 𝐵)
1143, 15, 1, 2, 4, 16, 17imasaddval 12961 . . . . . . . . . 10 ((𝜑𝑁𝑉𝑥𝑉) → ((𝐹𝑁)(+g𝑈)(𝐹𝑥)) = (𝐹‘(𝑁(+g𝑅)𝑥)))
11594, 112, 96, 114syl3anc 1249 . . . . . . . . 9 ((𝜑𝑥𝑉) → ((𝐹𝑁)(+g𝑈)(𝐹𝑥)) = (𝐹‘(𝑁(+g𝑅)𝑥)))
11699oveqd 5939 . . . . . . . . . 10 ((𝜑𝑥𝑉) → (𝑁 + 𝑥) = (𝑁(+g𝑅)𝑥))
117116fveq2d 5562 . . . . . . . . 9 ((𝜑𝑥𝑉) → (𝐹‘(𝑁 + 𝑥)) = (𝐹‘(𝑁(+g𝑅)𝑥)))
118 imasgrp2.6 . . . . . . . . 9 ((𝜑𝑥𝑉) → (𝐹‘(𝑁 + 𝑥)) = (𝐹0 ))
119115, 117, 1183eqtr2d 2235 . . . . . . . 8 ((𝜑𝑥𝑉) → ((𝐹𝑁)(+g𝑈)(𝐹𝑥)) = (𝐹0 ))
120 oveq1 5929 . . . . . . . . . 10 (𝑣 = (𝐹𝑁) → (𝑣(+g𝑈)(𝐹𝑥)) = ((𝐹𝑁)(+g𝑈)(𝐹𝑥)))
121120eqeq1d 2205 . . . . . . . . 9 (𝑣 = (𝐹𝑁) → ((𝑣(+g𝑈)(𝐹𝑥)) = (𝐹0 ) ↔ ((𝐹𝑁)(+g𝑈)(𝐹𝑥)) = (𝐹0 )))
122121rspcev 2868 . . . . . . . 8 (((𝐹𝑁) ∈ 𝐵 ∧ ((𝐹𝑁)(+g𝑈)(𝐹𝑥)) = (𝐹0 )) → ∃𝑣𝐵 (𝑣(+g𝑈)(𝐹𝑥)) = (𝐹0 ))
123113, 119, 122syl2anc 411 . . . . . . 7 ((𝜑𝑥𝑉) → ∃𝑣𝐵 (𝑣(+g𝑈)(𝐹𝑥)) = (𝐹0 ))
124 oveq2 5930 . . . . . . . . 9 ((𝐹𝑥) = 𝑢 → (𝑣(+g𝑈)(𝐹𝑥)) = (𝑣(+g𝑈)𝑢))
125124eqeq1d 2205 . . . . . . . 8 ((𝐹𝑥) = 𝑢 → ((𝑣(+g𝑈)(𝐹𝑥)) = (𝐹0 ) ↔ (𝑣(+g𝑈)𝑢) = (𝐹0 )))
126125rexbidv 2498 . . . . . . 7 ((𝐹𝑥) = 𝑢 → (∃𝑣𝐵 (𝑣(+g𝑈)(𝐹𝑥)) = (𝐹0 ) ↔ ∃𝑣𝐵 (𝑣(+g𝑈)𝑢) = (𝐹0 )))
127123, 126syl5ibcom 155 . . . . . 6 ((𝜑𝑥𝑉) → ((𝐹𝑥) = 𝑢 → ∃𝑣𝐵 (𝑣(+g𝑈)𝑢) = (𝐹0 )))
128127rexlimdva 2614 . . . . 5 (𝜑 → (∃𝑥𝑉 (𝐹𝑥) = 𝑢 → ∃𝑣𝐵 (𝑣(+g𝑈)𝑢) = (𝐹0 )))
12993, 128sylbid 150 . . . 4 (𝜑 → (𝑢𝐵 → ∃𝑣𝐵 (𝑣(+g𝑈)𝑢) = (𝐹0 )))
130129imp 124 . . 3 ((𝜑𝑢𝐵) → ∃𝑣𝐵 (𝑣(+g𝑈)𝑢) = (𝐹0 ))
1315, 6, 25, 87, 91, 110, 130isgrpde 13154 . 2 (𝜑𝑈 ∈ Grp)
1325, 6, 91, 110, 131grpidd2 13173 . 2 (𝜑 → (𝐹0 ) = (0g𝑈))
133131, 132jca 306 1 (𝜑 → (𝑈 ∈ Grp ∧ (𝐹0 ) = (0g𝑈)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  w3a 980   = wceq 1364  wcel 2167  wrex 2476   × cxp 4661  ran crn 4664   Fn wfn 5253  wf 5254  ontowfo 5256  cfv 5258  (class class class)co 5922  Basecbs 12678  +gcplusg 12755  0gc0g 12927  s cimas 12942  Grpcgrp 13132
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4148  ax-sep 4151  ax-pow 4207  ax-pr 4242  ax-un 4468  ax-setind 4573  ax-cnex 7970  ax-resscn 7971  ax-1cn 7972  ax-1re 7973  ax-icn 7974  ax-addcl 7975  ax-addrcl 7976  ax-mulcl 7977  ax-addcom 7979  ax-addass 7981  ax-i2m1 7984  ax-0lt1 7985  ax-0id 7987  ax-rnegex 7988  ax-pre-ltirr 7991  ax-pre-lttrn 7993  ax-pre-ltadd 7995
This theorem depends on definitions:  df-bi 117  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rmo 2483  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3451  df-pw 3607  df-sn 3628  df-pr 3629  df-tp 3630  df-op 3631  df-uni 3840  df-int 3875  df-iun 3918  df-br 4034  df-opab 4095  df-mpt 4096  df-id 4328  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-rn 4674  df-res 4675  df-ima 4676  df-iota 5219  df-fun 5260  df-fn 5261  df-f 5262  df-f1 5263  df-fo 5264  df-f1o 5265  df-fv 5266  df-riota 5877  df-ov 5925  df-oprab 5926  df-mpo 5927  df-pnf 8063  df-mnf 8064  df-ltxr 8066  df-inn 8991  df-2 9049  df-3 9050  df-ndx 12681  df-slot 12682  df-base 12684  df-plusg 12768  df-mulr 12769  df-0g 12929  df-iimas 12945  df-mgm 12999  df-sgrp 13045  df-mnd 13058  df-grp 13135
This theorem is referenced by:  imasgrp  13241  qusgrp2  13243
  Copyright terms: Public domain W3C validator