Proof of Theorem divmuldivap
Step | Hyp | Ref
| Expression |
1 | | 3anass 972 |
. . 3
⊢ ((𝐴 ∈ ℂ ∧ 𝐶 ∈ ℂ ∧ 𝐶 # 0) ↔ (𝐴 ∈ ℂ ∧ (𝐶 ∈ ℂ ∧ 𝐶 # 0))) |
2 | | 3anass 972 |
. . 3
⊢ ((𝐵 ∈ ℂ ∧ 𝐷 ∈ ℂ ∧ 𝐷 # 0) ↔ (𝐵 ∈ ℂ ∧ (𝐷 ∈ ℂ ∧ 𝐷 # 0))) |
3 | | divclap 8574 |
. . . . . 6
⊢ ((𝐴 ∈ ℂ ∧ 𝐶 ∈ ℂ ∧ 𝐶 # 0) → (𝐴 / 𝐶) ∈ ℂ) |
4 | | divclap 8574 |
. . . . . 6
⊢ ((𝐵 ∈ ℂ ∧ 𝐷 ∈ ℂ ∧ 𝐷 # 0) → (𝐵 / 𝐷) ∈ ℂ) |
5 | | mulcl 7880 |
. . . . . 6
⊢ (((𝐴 / 𝐶) ∈ ℂ ∧ (𝐵 / 𝐷) ∈ ℂ) → ((𝐴 / 𝐶) · (𝐵 / 𝐷)) ∈ ℂ) |
6 | 3, 4, 5 | syl2an 287 |
. . . . 5
⊢ (((𝐴 ∈ ℂ ∧ 𝐶 ∈ ℂ ∧ 𝐶 # 0) ∧ (𝐵 ∈ ℂ ∧ 𝐷 ∈ ℂ ∧ 𝐷 # 0)) → ((𝐴 / 𝐶) · (𝐵 / 𝐷)) ∈ ℂ) |
7 | | mulcl 7880 |
. . . . . . . 8
⊢ ((𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ) → (𝐶 · 𝐷) ∈ ℂ) |
8 | 7 | ad2ant2r 501 |
. . . . . . 7
⊢ (((𝐶 ∈ ℂ ∧ 𝐶 # 0) ∧ (𝐷 ∈ ℂ ∧ 𝐷 # 0)) → (𝐶 · 𝐷) ∈ ℂ) |
9 | 8 | 3adantr1 1146 |
. . . . . 6
⊢ (((𝐶 ∈ ℂ ∧ 𝐶 # 0) ∧ (𝐵 ∈ ℂ ∧ 𝐷 ∈ ℂ ∧ 𝐷 # 0)) → (𝐶 · 𝐷) ∈ ℂ) |
10 | 9 | 3adantl1 1143 |
. . . . 5
⊢ (((𝐴 ∈ ℂ ∧ 𝐶 ∈ ℂ ∧ 𝐶 # 0) ∧ (𝐵 ∈ ℂ ∧ 𝐷 ∈ ℂ ∧ 𝐷 # 0)) → (𝐶 · 𝐷) ∈ ℂ) |
11 | | mulap0 8551 |
. . . . . . 7
⊢ (((𝐶 ∈ ℂ ∧ 𝐶 # 0) ∧ (𝐷 ∈ ℂ ∧ 𝐷 # 0)) → (𝐶 · 𝐷) # 0) |
12 | 11 | 3adantr1 1146 |
. . . . . 6
⊢ (((𝐶 ∈ ℂ ∧ 𝐶 # 0) ∧ (𝐵 ∈ ℂ ∧ 𝐷 ∈ ℂ ∧ 𝐷 # 0)) → (𝐶 · 𝐷) # 0) |
13 | 12 | 3adantl1 1143 |
. . . . 5
⊢ (((𝐴 ∈ ℂ ∧ 𝐶 ∈ ℂ ∧ 𝐶 # 0) ∧ (𝐵 ∈ ℂ ∧ 𝐷 ∈ ℂ ∧ 𝐷 # 0)) → (𝐶 · 𝐷) # 0) |
14 | | divcanap3 8594 |
. . . . 5
⊢ ((((𝐴 / 𝐶) · (𝐵 / 𝐷)) ∈ ℂ ∧ (𝐶 · 𝐷) ∈ ℂ ∧ (𝐶 · 𝐷) # 0) → (((𝐶 · 𝐷) · ((𝐴 / 𝐶) · (𝐵 / 𝐷))) / (𝐶 · 𝐷)) = ((𝐴 / 𝐶) · (𝐵 / 𝐷))) |
15 | 6, 10, 13, 14 | syl3anc 1228 |
. . . 4
⊢ (((𝐴 ∈ ℂ ∧ 𝐶 ∈ ℂ ∧ 𝐶 # 0) ∧ (𝐵 ∈ ℂ ∧ 𝐷 ∈ ℂ ∧ 𝐷 # 0)) → (((𝐶 · 𝐷) · ((𝐴 / 𝐶) · (𝐵 / 𝐷))) / (𝐶 · 𝐷)) = ((𝐴 / 𝐶) · (𝐵 / 𝐷))) |
16 | | simp2 988 |
. . . . . . . 8
⊢ ((𝐴 ∈ ℂ ∧ 𝐶 ∈ ℂ ∧ 𝐶 # 0) → 𝐶 ∈ ℂ) |
17 | 16, 3 | jca 304 |
. . . . . . 7
⊢ ((𝐴 ∈ ℂ ∧ 𝐶 ∈ ℂ ∧ 𝐶 # 0) → (𝐶 ∈ ℂ ∧ (𝐴 / 𝐶) ∈ ℂ)) |
18 | | simp2 988 |
. . . . . . . 8
⊢ ((𝐵 ∈ ℂ ∧ 𝐷 ∈ ℂ ∧ 𝐷 # 0) → 𝐷 ∈ ℂ) |
19 | 18, 4 | jca 304 |
. . . . . . 7
⊢ ((𝐵 ∈ ℂ ∧ 𝐷 ∈ ℂ ∧ 𝐷 # 0) → (𝐷 ∈ ℂ ∧ (𝐵 / 𝐷) ∈ ℂ)) |
20 | | mul4 8030 |
. . . . . . 7
⊢ (((𝐶 ∈ ℂ ∧ (𝐴 / 𝐶) ∈ ℂ) ∧ (𝐷 ∈ ℂ ∧ (𝐵 / 𝐷) ∈ ℂ)) → ((𝐶 · (𝐴 / 𝐶)) · (𝐷 · (𝐵 / 𝐷))) = ((𝐶 · 𝐷) · ((𝐴 / 𝐶) · (𝐵 / 𝐷)))) |
21 | 17, 19, 20 | syl2an 287 |
. . . . . 6
⊢ (((𝐴 ∈ ℂ ∧ 𝐶 ∈ ℂ ∧ 𝐶 # 0) ∧ (𝐵 ∈ ℂ ∧ 𝐷 ∈ ℂ ∧ 𝐷 # 0)) → ((𝐶 · (𝐴 / 𝐶)) · (𝐷 · (𝐵 / 𝐷))) = ((𝐶 · 𝐷) · ((𝐴 / 𝐶) · (𝐵 / 𝐷)))) |
22 | | divcanap2 8576 |
. . . . . . 7
⊢ ((𝐴 ∈ ℂ ∧ 𝐶 ∈ ℂ ∧ 𝐶 # 0) → (𝐶 · (𝐴 / 𝐶)) = 𝐴) |
23 | | divcanap2 8576 |
. . . . . . 7
⊢ ((𝐵 ∈ ℂ ∧ 𝐷 ∈ ℂ ∧ 𝐷 # 0) → (𝐷 · (𝐵 / 𝐷)) = 𝐵) |
24 | 22, 23 | oveqan12d 5861 |
. . . . . 6
⊢ (((𝐴 ∈ ℂ ∧ 𝐶 ∈ ℂ ∧ 𝐶 # 0) ∧ (𝐵 ∈ ℂ ∧ 𝐷 ∈ ℂ ∧ 𝐷 # 0)) → ((𝐶 · (𝐴 / 𝐶)) · (𝐷 · (𝐵 / 𝐷))) = (𝐴 · 𝐵)) |
25 | 21, 24 | eqtr3d 2200 |
. . . . 5
⊢ (((𝐴 ∈ ℂ ∧ 𝐶 ∈ ℂ ∧ 𝐶 # 0) ∧ (𝐵 ∈ ℂ ∧ 𝐷 ∈ ℂ ∧ 𝐷 # 0)) → ((𝐶 · 𝐷) · ((𝐴 / 𝐶) · (𝐵 / 𝐷))) = (𝐴 · 𝐵)) |
26 | 25 | oveq1d 5857 |
. . . 4
⊢ (((𝐴 ∈ ℂ ∧ 𝐶 ∈ ℂ ∧ 𝐶 # 0) ∧ (𝐵 ∈ ℂ ∧ 𝐷 ∈ ℂ ∧ 𝐷 # 0)) → (((𝐶 · 𝐷) · ((𝐴 / 𝐶) · (𝐵 / 𝐷))) / (𝐶 · 𝐷)) = ((𝐴 · 𝐵) / (𝐶 · 𝐷))) |
27 | 15, 26 | eqtr3d 2200 |
. . 3
⊢ (((𝐴 ∈ ℂ ∧ 𝐶 ∈ ℂ ∧ 𝐶 # 0) ∧ (𝐵 ∈ ℂ ∧ 𝐷 ∈ ℂ ∧ 𝐷 # 0)) → ((𝐴 / 𝐶) · (𝐵 / 𝐷)) = ((𝐴 · 𝐵) / (𝐶 · 𝐷))) |
28 | 1, 2, 27 | syl2anbr 290 |
. 2
⊢ (((𝐴 ∈ ℂ ∧ (𝐶 ∈ ℂ ∧ 𝐶 # 0)) ∧ (𝐵 ∈ ℂ ∧ (𝐷 ∈ ℂ ∧ 𝐷 # 0))) → ((𝐴 / 𝐶) · (𝐵 / 𝐷)) = ((𝐴 · 𝐵) / (𝐶 · 𝐷))) |
29 | 28 | an4s 578 |
1
⊢ (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ ((𝐶 ∈ ℂ ∧ 𝐶 # 0) ∧ (𝐷 ∈ ℂ ∧ 𝐷 # 0))) → ((𝐴 / 𝐶) · (𝐵 / 𝐷)) = ((𝐴 · 𝐵) / (𝐶 · 𝐷))) |