ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  3adantr3 GIF version

Theorem 3adantr3 1160
Description: Deduction adding a conjunct to antecedent. (Contributed by NM, 27-Apr-2005.)
Hypothesis
Ref Expression
3adantr.1 ((𝜑 ∧ (𝜓𝜒)) → 𝜃)
Assertion
Ref Expression
3adantr3 ((𝜑 ∧ (𝜓𝜒𝜏)) → 𝜃)

Proof of Theorem 3adantr3
StepHypRef Expression
1 3simpa 996 . 2 ((𝜓𝜒𝜏) → (𝜓𝜒))
2 3adantr.1 . 2 ((𝜑 ∧ (𝜓𝜒)) → 𝜃)
31, 2sylan2 286 1 ((𝜑 ∧ (𝜓𝜒𝜏)) → 𝜃)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  w3a 980
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108
This theorem depends on definitions:  df-bi 117  df-3an 982
This theorem is referenced by:  3ad2antr1  1164  3ad2antr2  1165  3adant3r3  1216  isosolem  5874  caovlem2d  6120  tanaddap  11923  prdssgrpd  13119  prdsmndd  13152  mhmmnd  13324  imasrng  13590  imasring  13698  isxmet2d  14692  xmetres2  14723  comet  14843  xmetxp  14851
  Copyright terms: Public domain W3C validator