| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 3simpa | GIF version | ||
| Description: Simplification of triple conjunction. (Contributed by NM, 21-Apr-1994.) |
| Ref | Expression |
|---|---|
| 3simpa | ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → (𝜑 ∧ 𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-3an 983 | . 2 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) ↔ ((𝜑 ∧ 𝜓) ∧ 𝜒)) | |
| 2 | 1 | simplbi 274 | 1 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → (𝜑 ∧ 𝜓)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ∧ w3a 981 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 |
| This theorem depends on definitions: df-bi 117 df-3an 983 |
| This theorem is referenced by: 3simpb 998 3simpc 999 simp1 1000 simp2 1001 3adant3 1020 3adantl3 1158 3adantr3 1161 opprc 3846 oprcl 3849 opm 4286 funtpg 5334 ftpg 5781 ovig 6080 prltlu 7620 mullocpr 7704 lt2halves 9293 nn0n0n1ge2 9463 ixxssixx 10044 pfxsuffeqwrdeq 11174 sumtp 11800 dvdsmulcr 12207 dvds2add 12211 dvds2sub 12212 dvdstr 12214 dfgrp3me 13507 bj-peano4 16029 |
| Copyright terms: Public domain | W3C validator |