Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > 3simpa | GIF version |
Description: Simplification of triple conjunction. (Contributed by NM, 21-Apr-1994.) |
Ref | Expression |
---|---|
3simpa | ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → (𝜑 ∧ 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-3an 970 | . 2 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) ↔ ((𝜑 ∧ 𝜓) ∧ 𝜒)) | |
2 | 1 | simplbi 272 | 1 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → (𝜑 ∧ 𝜓)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 ∧ w3a 968 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 |
This theorem depends on definitions: df-bi 116 df-3an 970 |
This theorem is referenced by: 3simpb 985 3simpc 986 simp1 987 simp2 988 3adant3 1007 3adantl3 1145 3adantr3 1148 opprc 3779 oprcl 3782 opm 4212 funtpg 5239 ftpg 5669 ovig 5963 prltlu 7428 mullocpr 7512 lt2halves 9092 nn0n0n1ge2 9261 ixxssixx 9838 sumtp 11355 dvdsmulcr 11761 dvds2add 11765 dvds2sub 11766 dvdstr 11768 bj-peano4 13837 |
Copyright terms: Public domain | W3C validator |