ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  3simpa GIF version

Theorem 3simpa 997
Description: Simplification of triple conjunction. (Contributed by NM, 21-Apr-1994.)
Assertion
Ref Expression
3simpa ((𝜑𝜓𝜒) → (𝜑𝜓))

Proof of Theorem 3simpa
StepHypRef Expression
1 df-3an 983 . 2 ((𝜑𝜓𝜒) ↔ ((𝜑𝜓) ∧ 𝜒))
21simplbi 274 1 ((𝜑𝜓𝜒) → (𝜑𝜓))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  w3a 981
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106
This theorem depends on definitions:  df-bi 117  df-3an 983
This theorem is referenced by:  3simpb  998  3simpc  999  simp1  1000  simp2  1001  3adant3  1020  3adantl3  1158  3adantr3  1161  opprc  3846  oprcl  3849  opm  4286  funtpg  5334  ftpg  5781  ovig  6080  prltlu  7620  mullocpr  7704  lt2halves  9293  nn0n0n1ge2  9463  ixxssixx  10044  pfxsuffeqwrdeq  11174  sumtp  11800  dvdsmulcr  12207  dvds2add  12211  dvds2sub  12212  dvdstr  12214  dfgrp3me  13507  bj-peano4  16029
  Copyright terms: Public domain W3C validator