| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 3simpa | GIF version | ||
| Description: Simplification of triple conjunction. (Contributed by NM, 21-Apr-1994.) |
| Ref | Expression |
|---|---|
| 3simpa | ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → (𝜑 ∧ 𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-3an 982 | . 2 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) ↔ ((𝜑 ∧ 𝜓) ∧ 𝜒)) | |
| 2 | 1 | simplbi 274 | 1 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → (𝜑 ∧ 𝜓)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ∧ w3a 980 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 |
| This theorem depends on definitions: df-bi 117 df-3an 982 |
| This theorem is referenced by: 3simpb 997 3simpc 998 simp1 999 simp2 1000 3adant3 1019 3adantl3 1157 3adantr3 1160 opprc 3839 oprcl 3842 opm 4277 funtpg 5324 ftpg 5767 ovig 6066 prltlu 7599 mullocpr 7683 lt2halves 9272 nn0n0n1ge2 9442 ixxssixx 10023 sumtp 11667 dvdsmulcr 12074 dvds2add 12078 dvds2sub 12079 dvdstr 12081 dfgrp3me 13374 bj-peano4 15824 |
| Copyright terms: Public domain | W3C validator |