![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > 3simpa | GIF version |
Description: Simplification of triple conjunction. (Contributed by NM, 21-Apr-1994.) |
Ref | Expression |
---|---|
3simpa | ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → (𝜑 ∧ 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-3an 926 | . 2 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) ↔ ((𝜑 ∧ 𝜓) ∧ 𝜒)) | |
2 | 1 | simplbi 268 | 1 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → (𝜑 ∧ 𝜓)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 102 ∧ w3a 924 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 |
This theorem depends on definitions: df-bi 115 df-3an 926 |
This theorem is referenced by: 3simpb 941 3simpc 942 simp1 943 simp2 944 3adant3 963 3adantl3 1101 3adantr3 1104 opprc 3643 oprcl 3646 opm 4061 funtpg 5065 ftpg 5481 ovig 5766 prltlu 7046 mullocpr 7130 lt2halves 8651 nn0n0n1ge2 8817 ixxssixx 9320 sumtp 10808 dvdsmulcr 11104 dvds2add 11108 dvds2sub 11109 dvdstr 11111 bj-peano4 11850 |
Copyright terms: Public domain | W3C validator |