Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > 3simpa | GIF version |
Description: Simplification of triple conjunction. (Contributed by NM, 21-Apr-1994.) |
Ref | Expression |
---|---|
3simpa | ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → (𝜑 ∧ 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-3an 965 | . 2 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) ↔ ((𝜑 ∧ 𝜓) ∧ 𝜒)) | |
2 | 1 | simplbi 272 | 1 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → (𝜑 ∧ 𝜓)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 ∧ w3a 963 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 |
This theorem depends on definitions: df-bi 116 df-3an 965 |
This theorem is referenced by: 3simpb 980 3simpc 981 simp1 982 simp2 983 3adant3 1002 3adantl3 1140 3adantr3 1143 opprc 3762 oprcl 3765 opm 4194 funtpg 5220 ftpg 5650 ovig 5939 prltlu 7401 mullocpr 7485 lt2halves 9062 nn0n0n1ge2 9228 ixxssixx 9799 sumtp 11304 dvdsmulcr 11709 dvds2add 11713 dvds2sub 11714 dvdstr 11716 bj-peano4 13501 |
Copyright terms: Public domain | W3C validator |