Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > 3simpa | GIF version |
Description: Simplification of triple conjunction. (Contributed by NM, 21-Apr-1994.) |
Ref | Expression |
---|---|
3simpa | ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → (𝜑 ∧ 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-3an 975 | . 2 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) ↔ ((𝜑 ∧ 𝜓) ∧ 𝜒)) | |
2 | 1 | simplbi 272 | 1 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → (𝜑 ∧ 𝜓)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 ∧ w3a 973 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 |
This theorem depends on definitions: df-bi 116 df-3an 975 |
This theorem is referenced by: 3simpb 990 3simpc 991 simp1 992 simp2 993 3adant3 1012 3adantl3 1150 3adantr3 1153 opprc 3786 oprcl 3789 opm 4219 funtpg 5249 ftpg 5680 ovig 5974 prltlu 7449 mullocpr 7533 lt2halves 9113 nn0n0n1ge2 9282 ixxssixx 9859 sumtp 11377 dvdsmulcr 11783 dvds2add 11787 dvds2sub 11788 dvdstr 11790 bj-peano4 13990 |
Copyright terms: Public domain | W3C validator |