| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 3simpa | GIF version | ||
| Description: Simplification of triple conjunction. (Contributed by NM, 21-Apr-1994.) |
| Ref | Expression |
|---|---|
| 3simpa | ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → (𝜑 ∧ 𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-3an 982 | . 2 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) ↔ ((𝜑 ∧ 𝜓) ∧ 𝜒)) | |
| 2 | 1 | simplbi 274 | 1 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → (𝜑 ∧ 𝜓)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ∧ w3a 980 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 |
| This theorem depends on definitions: df-bi 117 df-3an 982 |
| This theorem is referenced by: 3simpb 997 3simpc 998 simp1 999 simp2 1000 3adant3 1019 3adantl3 1157 3adantr3 1160 opprc 3839 oprcl 3842 opm 4277 funtpg 5319 ftpg 5758 ovig 6057 prltlu 7582 mullocpr 7666 lt2halves 9255 nn0n0n1ge2 9425 ixxssixx 10006 sumtp 11644 dvdsmulcr 12051 dvds2add 12055 dvds2sub 12056 dvdstr 12058 dfgrp3me 13350 bj-peano4 15755 |
| Copyright terms: Public domain | W3C validator |