| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 3simpa | GIF version | ||
| Description: Simplification of triple conjunction. (Contributed by NM, 21-Apr-1994.) |
| Ref | Expression |
|---|---|
| 3simpa | ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → (𝜑 ∧ 𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-3an 982 | . 2 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) ↔ ((𝜑 ∧ 𝜓) ∧ 𝜒)) | |
| 2 | 1 | simplbi 274 | 1 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → (𝜑 ∧ 𝜓)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ∧ w3a 980 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 |
| This theorem depends on definitions: df-bi 117 df-3an 982 |
| This theorem is referenced by: 3simpb 997 3simpc 998 simp1 999 simp2 1000 3adant3 1019 3adantl3 1157 3adantr3 1160 opprc 3830 oprcl 3833 opm 4268 funtpg 5310 ftpg 5747 ovig 6045 prltlu 7556 mullocpr 7640 lt2halves 9229 nn0n0n1ge2 9398 ixxssixx 9979 sumtp 11581 dvdsmulcr 11988 dvds2add 11992 dvds2sub 11993 dvdstr 11995 dfgrp3me 13242 bj-peano4 15611 |
| Copyright terms: Public domain | W3C validator |