ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  3simpa GIF version

Theorem 3simpa 1018
Description: Simplification of triple conjunction. (Contributed by NM, 21-Apr-1994.)
Assertion
Ref Expression
3simpa ((𝜑𝜓𝜒) → (𝜑𝜓))

Proof of Theorem 3simpa
StepHypRef Expression
1 df-3an 1004 . 2 ((𝜑𝜓𝜒) ↔ ((𝜑𝜓) ∧ 𝜒))
21simplbi 274 1 ((𝜑𝜓𝜒) → (𝜑𝜓))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  w3a 1002
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106
This theorem depends on definitions:  df-bi 117  df-3an 1004
This theorem is referenced by:  3simpb  1019  3simpc  1020  simp1  1021  simp2  1022  3adant3  1041  3adantl3  1179  3adantr3  1182  opprc  3877  oprcl  3880  opm  4319  funtpg  5371  ftpg  5822  ovig  6125  prltlu  7670  mullocpr  7754  lt2halves  9343  nn0n0n1ge2  9513  ixxssixx  10094  pfxsuffeqwrdeq  11225  pfxccatpfx1  11263  pfxccatpfx2  11264  sumtp  11920  dvdsmulcr  12327  dvds2add  12331  dvds2sub  12332  dvdstr  12334  dfgrp3me  13628  bj-peano4  16276
  Copyright terms: Public domain W3C validator