| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 3simpa | GIF version | ||
| Description: Simplification of triple conjunction. (Contributed by NM, 21-Apr-1994.) |
| Ref | Expression |
|---|---|
| 3simpa | ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → (𝜑 ∧ 𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-3an 1004 | . 2 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) ↔ ((𝜑 ∧ 𝜓) ∧ 𝜒)) | |
| 2 | 1 | simplbi 274 | 1 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → (𝜑 ∧ 𝜓)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ∧ w3a 1002 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 |
| This theorem is referenced by: 3simpb 1019 3simpc 1020 simp1 1021 simp2 1022 3adant3 1041 3adantl3 1179 3adantr3 1182 opprc 3877 oprcl 3880 opm 4319 funtpg 5371 ftpg 5822 ovig 6125 prltlu 7670 mullocpr 7754 lt2halves 9343 nn0n0n1ge2 9513 ixxssixx 10094 pfxsuffeqwrdeq 11225 pfxccatpfx1 11263 pfxccatpfx2 11264 sumtp 11920 dvdsmulcr 12327 dvds2add 12331 dvds2sub 12332 dvdstr 12334 dfgrp3me 13628 bj-peano4 16276 |
| Copyright terms: Public domain | W3C validator |