| Step | Hyp | Ref
| Expression |
| 1 | | xmetrel 14579 |
. . . 4
⊢ Rel
∞Met |
| 2 | | comet.1 |
. . . 4
⊢ (𝜑 → 𝐷 ∈ (∞Met‘𝑋)) |
| 3 | | relelfvdm 5590 |
. . . 4
⊢ ((Rel
∞Met ∧ 𝐷 ∈
(∞Met‘𝑋))
→ 𝑋 ∈ dom
∞Met) |
| 4 | 1, 2, 3 | sylancr 414 |
. . 3
⊢ (𝜑 → 𝑋 ∈ dom ∞Met) |
| 5 | 4 | elexd 2776 |
. 2
⊢ (𝜑 → 𝑋 ∈ V) |
| 6 | | comet.2 |
. . 3
⊢ (𝜑 → 𝐹:(0[,]+∞)⟶ℝ*) |
| 7 | | xmetf 14586 |
. . . . . 6
⊢ (𝐷 ∈ (∞Met‘𝑋) → 𝐷:(𝑋 × 𝑋)⟶ℝ*) |
| 8 | 2, 7 | syl 14 |
. . . . 5
⊢ (𝜑 → 𝐷:(𝑋 × 𝑋)⟶ℝ*) |
| 9 | 8 | ffnd 5408 |
. . . 4
⊢ (𝜑 → 𝐷 Fn (𝑋 × 𝑋)) |
| 10 | | xmetcl 14588 |
. . . . . . . 8
⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋) → (𝑎𝐷𝑏) ∈
ℝ*) |
| 11 | | xmetge0 14601 |
. . . . . . . 8
⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋) → 0 ≤ (𝑎𝐷𝑏)) |
| 12 | | elxrge0 10053 |
. . . . . . . 8
⊢ ((𝑎𝐷𝑏) ∈ (0[,]+∞) ↔ ((𝑎𝐷𝑏) ∈ ℝ* ∧ 0 ≤
(𝑎𝐷𝑏))) |
| 13 | 10, 11, 12 | sylanbrc 417 |
. . . . . . 7
⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋) → (𝑎𝐷𝑏) ∈ (0[,]+∞)) |
| 14 | 13 | 3expb 1206 |
. . . . . 6
⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ (𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋)) → (𝑎𝐷𝑏) ∈ (0[,]+∞)) |
| 15 | 2, 14 | sylan 283 |
. . . . 5
⊢ ((𝜑 ∧ (𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋)) → (𝑎𝐷𝑏) ∈ (0[,]+∞)) |
| 16 | 15 | ralrimivva 2579 |
. . . 4
⊢ (𝜑 → ∀𝑎 ∈ 𝑋 ∀𝑏 ∈ 𝑋 (𝑎𝐷𝑏) ∈ (0[,]+∞)) |
| 17 | | ffnov 6026 |
. . . 4
⊢ (𝐷:(𝑋 × 𝑋)⟶(0[,]+∞) ↔ (𝐷 Fn (𝑋 × 𝑋) ∧ ∀𝑎 ∈ 𝑋 ∀𝑏 ∈ 𝑋 (𝑎𝐷𝑏) ∈ (0[,]+∞))) |
| 18 | 9, 16, 17 | sylanbrc 417 |
. . 3
⊢ (𝜑 → 𝐷:(𝑋 × 𝑋)⟶(0[,]+∞)) |
| 19 | | fco 5423 |
. . 3
⊢ ((𝐹:(0[,]+∞)⟶ℝ*
∧ 𝐷:(𝑋 × 𝑋)⟶(0[,]+∞)) → (𝐹 ∘ 𝐷):(𝑋 × 𝑋)⟶ℝ*) |
| 20 | 6, 18, 19 | syl2anc 411 |
. 2
⊢ (𝜑 → (𝐹 ∘ 𝐷):(𝑋 × 𝑋)⟶ℝ*) |
| 21 | | opelxpi 4695 |
. . . . . 6
⊢ ((𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋) → 〈𝑎, 𝑏〉 ∈ (𝑋 × 𝑋)) |
| 22 | | fvco3 5632 |
. . . . . 6
⊢ ((𝐷:(𝑋 × 𝑋)⟶ℝ* ∧
〈𝑎, 𝑏〉 ∈ (𝑋 × 𝑋)) → ((𝐹 ∘ 𝐷)‘〈𝑎, 𝑏〉) = (𝐹‘(𝐷‘〈𝑎, 𝑏〉))) |
| 23 | 8, 21, 22 | syl2an 289 |
. . . . 5
⊢ ((𝜑 ∧ (𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋)) → ((𝐹 ∘ 𝐷)‘〈𝑎, 𝑏〉) = (𝐹‘(𝐷‘〈𝑎, 𝑏〉))) |
| 24 | | df-ov 5925 |
. . . . 5
⊢ (𝑎(𝐹 ∘ 𝐷)𝑏) = ((𝐹 ∘ 𝐷)‘〈𝑎, 𝑏〉) |
| 25 | | df-ov 5925 |
. . . . . 6
⊢ (𝑎𝐷𝑏) = (𝐷‘〈𝑎, 𝑏〉) |
| 26 | 25 | fveq2i 5561 |
. . . . 5
⊢ (𝐹‘(𝑎𝐷𝑏)) = (𝐹‘(𝐷‘〈𝑎, 𝑏〉)) |
| 27 | 23, 24, 26 | 3eqtr4g 2254 |
. . . 4
⊢ ((𝜑 ∧ (𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋)) → (𝑎(𝐹 ∘ 𝐷)𝑏) = (𝐹‘(𝑎𝐷𝑏))) |
| 28 | 27 | eqeq1d 2205 |
. . 3
⊢ ((𝜑 ∧ (𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋)) → ((𝑎(𝐹 ∘ 𝐷)𝑏) = 0 ↔ (𝐹‘(𝑎𝐷𝑏)) = 0)) |
| 29 | | fveq2 5558 |
. . . . . 6
⊢ (𝑥 = (𝑎𝐷𝑏) → (𝐹‘𝑥) = (𝐹‘(𝑎𝐷𝑏))) |
| 30 | 29 | eqeq1d 2205 |
. . . . 5
⊢ (𝑥 = (𝑎𝐷𝑏) → ((𝐹‘𝑥) = 0 ↔ (𝐹‘(𝑎𝐷𝑏)) = 0)) |
| 31 | | eqeq1 2203 |
. . . . 5
⊢ (𝑥 = (𝑎𝐷𝑏) → (𝑥 = 0 ↔ (𝑎𝐷𝑏) = 0)) |
| 32 | 30, 31 | bibi12d 235 |
. . . 4
⊢ (𝑥 = (𝑎𝐷𝑏) → (((𝐹‘𝑥) = 0 ↔ 𝑥 = 0) ↔ ((𝐹‘(𝑎𝐷𝑏)) = 0 ↔ (𝑎𝐷𝑏) = 0))) |
| 33 | | comet.3 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ (0[,]+∞)) → ((𝐹‘𝑥) = 0 ↔ 𝑥 = 0)) |
| 34 | 33 | ralrimiva 2570 |
. . . . 5
⊢ (𝜑 → ∀𝑥 ∈ (0[,]+∞)((𝐹‘𝑥) = 0 ↔ 𝑥 = 0)) |
| 35 | 34 | adantr 276 |
. . . 4
⊢ ((𝜑 ∧ (𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋)) → ∀𝑥 ∈ (0[,]+∞)((𝐹‘𝑥) = 0 ↔ 𝑥 = 0)) |
| 36 | 32, 35, 15 | rspcdva 2873 |
. . 3
⊢ ((𝜑 ∧ (𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋)) → ((𝐹‘(𝑎𝐷𝑏)) = 0 ↔ (𝑎𝐷𝑏) = 0)) |
| 37 | | xmeteq0 14595 |
. . . . 5
⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋) → ((𝑎𝐷𝑏) = 0 ↔ 𝑎 = 𝑏)) |
| 38 | 37 | 3expb 1206 |
. . . 4
⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ (𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋)) → ((𝑎𝐷𝑏) = 0 ↔ 𝑎 = 𝑏)) |
| 39 | 2, 38 | sylan 283 |
. . 3
⊢ ((𝜑 ∧ (𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋)) → ((𝑎𝐷𝑏) = 0 ↔ 𝑎 = 𝑏)) |
| 40 | 28, 36, 39 | 3bitrd 214 |
. 2
⊢ ((𝜑 ∧ (𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋)) → ((𝑎(𝐹 ∘ 𝐷)𝑏) = 0 ↔ 𝑎 = 𝑏)) |
| 41 | 6 | adantr 276 |
. . . . 5
⊢ ((𝜑 ∧ (𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋 ∧ 𝑐 ∈ 𝑋)) → 𝐹:(0[,]+∞)⟶ℝ*) |
| 42 | 15 | 3adantr3 1160 |
. . . . 5
⊢ ((𝜑 ∧ (𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋 ∧ 𝑐 ∈ 𝑋)) → (𝑎𝐷𝑏) ∈ (0[,]+∞)) |
| 43 | 41, 42 | ffvelcdmd 5698 |
. . . 4
⊢ ((𝜑 ∧ (𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋 ∧ 𝑐 ∈ 𝑋)) → (𝐹‘(𝑎𝐷𝑏)) ∈
ℝ*) |
| 44 | 18 | adantr 276 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋 ∧ 𝑐 ∈ 𝑋)) → 𝐷:(𝑋 × 𝑋)⟶(0[,]+∞)) |
| 45 | | simpr3 1007 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋 ∧ 𝑐 ∈ 𝑋)) → 𝑐 ∈ 𝑋) |
| 46 | | simpr1 1005 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋 ∧ 𝑐 ∈ 𝑋)) → 𝑎 ∈ 𝑋) |
| 47 | 44, 45, 46 | fovcdmd 6068 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋 ∧ 𝑐 ∈ 𝑋)) → (𝑐𝐷𝑎) ∈ (0[,]+∞)) |
| 48 | | simpr2 1006 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋 ∧ 𝑐 ∈ 𝑋)) → 𝑏 ∈ 𝑋) |
| 49 | 44, 45, 48 | fovcdmd 6068 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋 ∧ 𝑐 ∈ 𝑋)) → (𝑐𝐷𝑏) ∈ (0[,]+∞)) |
| 50 | | ge0xaddcl 10058 |
. . . . . 6
⊢ (((𝑐𝐷𝑎) ∈ (0[,]+∞) ∧ (𝑐𝐷𝑏) ∈ (0[,]+∞)) → ((𝑐𝐷𝑎) +𝑒 (𝑐𝐷𝑏)) ∈ (0[,]+∞)) |
| 51 | 47, 49, 50 | syl2anc 411 |
. . . . 5
⊢ ((𝜑 ∧ (𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋 ∧ 𝑐 ∈ 𝑋)) → ((𝑐𝐷𝑎) +𝑒 (𝑐𝐷𝑏)) ∈ (0[,]+∞)) |
| 52 | 41, 51 | ffvelcdmd 5698 |
. . . 4
⊢ ((𝜑 ∧ (𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋 ∧ 𝑐 ∈ 𝑋)) → (𝐹‘((𝑐𝐷𝑎) +𝑒 (𝑐𝐷𝑏))) ∈
ℝ*) |
| 53 | 41, 47 | ffvelcdmd 5698 |
. . . . 5
⊢ ((𝜑 ∧ (𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋 ∧ 𝑐 ∈ 𝑋)) → (𝐹‘(𝑐𝐷𝑎)) ∈
ℝ*) |
| 54 | 41, 49 | ffvelcdmd 5698 |
. . . . 5
⊢ ((𝜑 ∧ (𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋 ∧ 𝑐 ∈ 𝑋)) → (𝐹‘(𝑐𝐷𝑏)) ∈
ℝ*) |
| 55 | 53, 54 | xaddcld 9959 |
. . . 4
⊢ ((𝜑 ∧ (𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋 ∧ 𝑐 ∈ 𝑋)) → ((𝐹‘(𝑐𝐷𝑎)) +𝑒 (𝐹‘(𝑐𝐷𝑏))) ∈
ℝ*) |
| 56 | | 3anrot 985 |
. . . . . . 7
⊢ ((𝑐 ∈ 𝑋 ∧ 𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋) ↔ (𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋 ∧ 𝑐 ∈ 𝑋)) |
| 57 | | xmettri2 14597 |
. . . . . . 7
⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ (𝑐 ∈ 𝑋 ∧ 𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋)) → (𝑎𝐷𝑏) ≤ ((𝑐𝐷𝑎) +𝑒 (𝑐𝐷𝑏))) |
| 58 | 56, 57 | sylan2br 288 |
. . . . . 6
⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ (𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋 ∧ 𝑐 ∈ 𝑋)) → (𝑎𝐷𝑏) ≤ ((𝑐𝐷𝑎) +𝑒 (𝑐𝐷𝑏))) |
| 59 | 2, 58 | sylan 283 |
. . . . 5
⊢ ((𝜑 ∧ (𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋 ∧ 𝑐 ∈ 𝑋)) → (𝑎𝐷𝑏) ≤ ((𝑐𝐷𝑎) +𝑒 (𝑐𝐷𝑏))) |
| 60 | | comet.4 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑥 ∈ (0[,]+∞) ∧ 𝑦 ∈ (0[,]+∞))) →
(𝑥 ≤ 𝑦 → (𝐹‘𝑥) ≤ (𝐹‘𝑦))) |
| 61 | 60 | ralrimivva 2579 |
. . . . . . 7
⊢ (𝜑 → ∀𝑥 ∈ (0[,]+∞)∀𝑦 ∈ (0[,]+∞)(𝑥 ≤ 𝑦 → (𝐹‘𝑥) ≤ (𝐹‘𝑦))) |
| 62 | 61 | adantr 276 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋 ∧ 𝑐 ∈ 𝑋)) → ∀𝑥 ∈ (0[,]+∞)∀𝑦 ∈ (0[,]+∞)(𝑥 ≤ 𝑦 → (𝐹‘𝑥) ≤ (𝐹‘𝑦))) |
| 63 | | breq1 4036 |
. . . . . . . 8
⊢ (𝑥 = (𝑎𝐷𝑏) → (𝑥 ≤ 𝑦 ↔ (𝑎𝐷𝑏) ≤ 𝑦)) |
| 64 | 29 | breq1d 4043 |
. . . . . . . 8
⊢ (𝑥 = (𝑎𝐷𝑏) → ((𝐹‘𝑥) ≤ (𝐹‘𝑦) ↔ (𝐹‘(𝑎𝐷𝑏)) ≤ (𝐹‘𝑦))) |
| 65 | 63, 64 | imbi12d 234 |
. . . . . . 7
⊢ (𝑥 = (𝑎𝐷𝑏) → ((𝑥 ≤ 𝑦 → (𝐹‘𝑥) ≤ (𝐹‘𝑦)) ↔ ((𝑎𝐷𝑏) ≤ 𝑦 → (𝐹‘(𝑎𝐷𝑏)) ≤ (𝐹‘𝑦)))) |
| 66 | | breq2 4037 |
. . . . . . . 8
⊢ (𝑦 = ((𝑐𝐷𝑎) +𝑒 (𝑐𝐷𝑏)) → ((𝑎𝐷𝑏) ≤ 𝑦 ↔ (𝑎𝐷𝑏) ≤ ((𝑐𝐷𝑎) +𝑒 (𝑐𝐷𝑏)))) |
| 67 | | fveq2 5558 |
. . . . . . . . 9
⊢ (𝑦 = ((𝑐𝐷𝑎) +𝑒 (𝑐𝐷𝑏)) → (𝐹‘𝑦) = (𝐹‘((𝑐𝐷𝑎) +𝑒 (𝑐𝐷𝑏)))) |
| 68 | 67 | breq2d 4045 |
. . . . . . . 8
⊢ (𝑦 = ((𝑐𝐷𝑎) +𝑒 (𝑐𝐷𝑏)) → ((𝐹‘(𝑎𝐷𝑏)) ≤ (𝐹‘𝑦) ↔ (𝐹‘(𝑎𝐷𝑏)) ≤ (𝐹‘((𝑐𝐷𝑎) +𝑒 (𝑐𝐷𝑏))))) |
| 69 | 66, 68 | imbi12d 234 |
. . . . . . 7
⊢ (𝑦 = ((𝑐𝐷𝑎) +𝑒 (𝑐𝐷𝑏)) → (((𝑎𝐷𝑏) ≤ 𝑦 → (𝐹‘(𝑎𝐷𝑏)) ≤ (𝐹‘𝑦)) ↔ ((𝑎𝐷𝑏) ≤ ((𝑐𝐷𝑎) +𝑒 (𝑐𝐷𝑏)) → (𝐹‘(𝑎𝐷𝑏)) ≤ (𝐹‘((𝑐𝐷𝑎) +𝑒 (𝑐𝐷𝑏)))))) |
| 70 | 65, 69 | rspc2va 2882 |
. . . . . 6
⊢ ((((𝑎𝐷𝑏) ∈ (0[,]+∞) ∧ ((𝑐𝐷𝑎) +𝑒 (𝑐𝐷𝑏)) ∈ (0[,]+∞)) ∧ ∀𝑥 ∈
(0[,]+∞)∀𝑦
∈ (0[,]+∞)(𝑥
≤ 𝑦 → (𝐹‘𝑥) ≤ (𝐹‘𝑦))) → ((𝑎𝐷𝑏) ≤ ((𝑐𝐷𝑎) +𝑒 (𝑐𝐷𝑏)) → (𝐹‘(𝑎𝐷𝑏)) ≤ (𝐹‘((𝑐𝐷𝑎) +𝑒 (𝑐𝐷𝑏))))) |
| 71 | 42, 51, 62, 70 | syl21anc 1248 |
. . . . 5
⊢ ((𝜑 ∧ (𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋 ∧ 𝑐 ∈ 𝑋)) → ((𝑎𝐷𝑏) ≤ ((𝑐𝐷𝑎) +𝑒 (𝑐𝐷𝑏)) → (𝐹‘(𝑎𝐷𝑏)) ≤ (𝐹‘((𝑐𝐷𝑎) +𝑒 (𝑐𝐷𝑏))))) |
| 72 | 59, 71 | mpd 13 |
. . . 4
⊢ ((𝜑 ∧ (𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋 ∧ 𝑐 ∈ 𝑋)) → (𝐹‘(𝑎𝐷𝑏)) ≤ (𝐹‘((𝑐𝐷𝑎) +𝑒 (𝑐𝐷𝑏)))) |
| 73 | | comet.5 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑥 ∈ (0[,]+∞) ∧ 𝑦 ∈ (0[,]+∞))) →
(𝐹‘(𝑥 +𝑒 𝑦)) ≤ ((𝐹‘𝑥) +𝑒 (𝐹‘𝑦))) |
| 74 | 73 | ralrimivva 2579 |
. . . . . 6
⊢ (𝜑 → ∀𝑥 ∈ (0[,]+∞)∀𝑦 ∈ (0[,]+∞)(𝐹‘(𝑥 +𝑒 𝑦)) ≤ ((𝐹‘𝑥) +𝑒 (𝐹‘𝑦))) |
| 75 | 74 | adantr 276 |
. . . . 5
⊢ ((𝜑 ∧ (𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋 ∧ 𝑐 ∈ 𝑋)) → ∀𝑥 ∈ (0[,]+∞)∀𝑦 ∈ (0[,]+∞)(𝐹‘(𝑥 +𝑒 𝑦)) ≤ ((𝐹‘𝑥) +𝑒 (𝐹‘𝑦))) |
| 76 | | fvoveq1 5945 |
. . . . . . 7
⊢ (𝑥 = (𝑐𝐷𝑎) → (𝐹‘(𝑥 +𝑒 𝑦)) = (𝐹‘((𝑐𝐷𝑎) +𝑒 𝑦))) |
| 77 | | fveq2 5558 |
. . . . . . . 8
⊢ (𝑥 = (𝑐𝐷𝑎) → (𝐹‘𝑥) = (𝐹‘(𝑐𝐷𝑎))) |
| 78 | 77 | oveq1d 5937 |
. . . . . . 7
⊢ (𝑥 = (𝑐𝐷𝑎) → ((𝐹‘𝑥) +𝑒 (𝐹‘𝑦)) = ((𝐹‘(𝑐𝐷𝑎)) +𝑒 (𝐹‘𝑦))) |
| 79 | 76, 78 | breq12d 4046 |
. . . . . 6
⊢ (𝑥 = (𝑐𝐷𝑎) → ((𝐹‘(𝑥 +𝑒 𝑦)) ≤ ((𝐹‘𝑥) +𝑒 (𝐹‘𝑦)) ↔ (𝐹‘((𝑐𝐷𝑎) +𝑒 𝑦)) ≤ ((𝐹‘(𝑐𝐷𝑎)) +𝑒 (𝐹‘𝑦)))) |
| 80 | | oveq2 5930 |
. . . . . . . 8
⊢ (𝑦 = (𝑐𝐷𝑏) → ((𝑐𝐷𝑎) +𝑒 𝑦) = ((𝑐𝐷𝑎) +𝑒 (𝑐𝐷𝑏))) |
| 81 | 80 | fveq2d 5562 |
. . . . . . 7
⊢ (𝑦 = (𝑐𝐷𝑏) → (𝐹‘((𝑐𝐷𝑎) +𝑒 𝑦)) = (𝐹‘((𝑐𝐷𝑎) +𝑒 (𝑐𝐷𝑏)))) |
| 82 | | fveq2 5558 |
. . . . . . . 8
⊢ (𝑦 = (𝑐𝐷𝑏) → (𝐹‘𝑦) = (𝐹‘(𝑐𝐷𝑏))) |
| 83 | 82 | oveq2d 5938 |
. . . . . . 7
⊢ (𝑦 = (𝑐𝐷𝑏) → ((𝐹‘(𝑐𝐷𝑎)) +𝑒 (𝐹‘𝑦)) = ((𝐹‘(𝑐𝐷𝑎)) +𝑒 (𝐹‘(𝑐𝐷𝑏)))) |
| 84 | 81, 83 | breq12d 4046 |
. . . . . 6
⊢ (𝑦 = (𝑐𝐷𝑏) → ((𝐹‘((𝑐𝐷𝑎) +𝑒 𝑦)) ≤ ((𝐹‘(𝑐𝐷𝑎)) +𝑒 (𝐹‘𝑦)) ↔ (𝐹‘((𝑐𝐷𝑎) +𝑒 (𝑐𝐷𝑏))) ≤ ((𝐹‘(𝑐𝐷𝑎)) +𝑒 (𝐹‘(𝑐𝐷𝑏))))) |
| 85 | 79, 84 | rspc2va 2882 |
. . . . 5
⊢ ((((𝑐𝐷𝑎) ∈ (0[,]+∞) ∧ (𝑐𝐷𝑏) ∈ (0[,]+∞)) ∧ ∀𝑥 ∈
(0[,]+∞)∀𝑦
∈ (0[,]+∞)(𝐹‘(𝑥 +𝑒 𝑦)) ≤ ((𝐹‘𝑥) +𝑒 (𝐹‘𝑦))) → (𝐹‘((𝑐𝐷𝑎) +𝑒 (𝑐𝐷𝑏))) ≤ ((𝐹‘(𝑐𝐷𝑎)) +𝑒 (𝐹‘(𝑐𝐷𝑏)))) |
| 86 | 47, 49, 75, 85 | syl21anc 1248 |
. . . 4
⊢ ((𝜑 ∧ (𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋 ∧ 𝑐 ∈ 𝑋)) → (𝐹‘((𝑐𝐷𝑎) +𝑒 (𝑐𝐷𝑏))) ≤ ((𝐹‘(𝑐𝐷𝑎)) +𝑒 (𝐹‘(𝑐𝐷𝑏)))) |
| 87 | 43, 52, 55, 72, 86 | xrletrd 9887 |
. . 3
⊢ ((𝜑 ∧ (𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋 ∧ 𝑐 ∈ 𝑋)) → (𝐹‘(𝑎𝐷𝑏)) ≤ ((𝐹‘(𝑐𝐷𝑎)) +𝑒 (𝐹‘(𝑐𝐷𝑏)))) |
| 88 | 27 | 3adantr3 1160 |
. . 3
⊢ ((𝜑 ∧ (𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋 ∧ 𝑐 ∈ 𝑋)) → (𝑎(𝐹 ∘ 𝐷)𝑏) = (𝐹‘(𝑎𝐷𝑏))) |
| 89 | 8 | adantr 276 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋 ∧ 𝑐 ∈ 𝑋)) → 𝐷:(𝑋 × 𝑋)⟶ℝ*) |
| 90 | 45, 46 | opelxpd 4696 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋 ∧ 𝑐 ∈ 𝑋)) → 〈𝑐, 𝑎〉 ∈ (𝑋 × 𝑋)) |
| 91 | | fvco3 5632 |
. . . . . 6
⊢ ((𝐷:(𝑋 × 𝑋)⟶ℝ* ∧
〈𝑐, 𝑎〉 ∈ (𝑋 × 𝑋)) → ((𝐹 ∘ 𝐷)‘〈𝑐, 𝑎〉) = (𝐹‘(𝐷‘〈𝑐, 𝑎〉))) |
| 92 | 89, 90, 91 | syl2anc 411 |
. . . . 5
⊢ ((𝜑 ∧ (𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋 ∧ 𝑐 ∈ 𝑋)) → ((𝐹 ∘ 𝐷)‘〈𝑐, 𝑎〉) = (𝐹‘(𝐷‘〈𝑐, 𝑎〉))) |
| 93 | | df-ov 5925 |
. . . . 5
⊢ (𝑐(𝐹 ∘ 𝐷)𝑎) = ((𝐹 ∘ 𝐷)‘〈𝑐, 𝑎〉) |
| 94 | | df-ov 5925 |
. . . . . 6
⊢ (𝑐𝐷𝑎) = (𝐷‘〈𝑐, 𝑎〉) |
| 95 | 94 | fveq2i 5561 |
. . . . 5
⊢ (𝐹‘(𝑐𝐷𝑎)) = (𝐹‘(𝐷‘〈𝑐, 𝑎〉)) |
| 96 | 92, 93, 95 | 3eqtr4g 2254 |
. . . 4
⊢ ((𝜑 ∧ (𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋 ∧ 𝑐 ∈ 𝑋)) → (𝑐(𝐹 ∘ 𝐷)𝑎) = (𝐹‘(𝑐𝐷𝑎))) |
| 97 | 45, 48 | opelxpd 4696 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋 ∧ 𝑐 ∈ 𝑋)) → 〈𝑐, 𝑏〉 ∈ (𝑋 × 𝑋)) |
| 98 | | fvco3 5632 |
. . . . . 6
⊢ ((𝐷:(𝑋 × 𝑋)⟶ℝ* ∧
〈𝑐, 𝑏〉 ∈ (𝑋 × 𝑋)) → ((𝐹 ∘ 𝐷)‘〈𝑐, 𝑏〉) = (𝐹‘(𝐷‘〈𝑐, 𝑏〉))) |
| 99 | 89, 97, 98 | syl2anc 411 |
. . . . 5
⊢ ((𝜑 ∧ (𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋 ∧ 𝑐 ∈ 𝑋)) → ((𝐹 ∘ 𝐷)‘〈𝑐, 𝑏〉) = (𝐹‘(𝐷‘〈𝑐, 𝑏〉))) |
| 100 | | df-ov 5925 |
. . . . 5
⊢ (𝑐(𝐹 ∘ 𝐷)𝑏) = ((𝐹 ∘ 𝐷)‘〈𝑐, 𝑏〉) |
| 101 | | df-ov 5925 |
. . . . . 6
⊢ (𝑐𝐷𝑏) = (𝐷‘〈𝑐, 𝑏〉) |
| 102 | 101 | fveq2i 5561 |
. . . . 5
⊢ (𝐹‘(𝑐𝐷𝑏)) = (𝐹‘(𝐷‘〈𝑐, 𝑏〉)) |
| 103 | 99, 100, 102 | 3eqtr4g 2254 |
. . . 4
⊢ ((𝜑 ∧ (𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋 ∧ 𝑐 ∈ 𝑋)) → (𝑐(𝐹 ∘ 𝐷)𝑏) = (𝐹‘(𝑐𝐷𝑏))) |
| 104 | 96, 103 | oveq12d 5940 |
. . 3
⊢ ((𝜑 ∧ (𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋 ∧ 𝑐 ∈ 𝑋)) → ((𝑐(𝐹 ∘ 𝐷)𝑎) +𝑒 (𝑐(𝐹 ∘ 𝐷)𝑏)) = ((𝐹‘(𝑐𝐷𝑎)) +𝑒 (𝐹‘(𝑐𝐷𝑏)))) |
| 105 | 87, 88, 104 | 3brtr4d 4065 |
. 2
⊢ ((𝜑 ∧ (𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋 ∧ 𝑐 ∈ 𝑋)) → (𝑎(𝐹 ∘ 𝐷)𝑏) ≤ ((𝑐(𝐹 ∘ 𝐷)𝑎) +𝑒 (𝑐(𝐹 ∘ 𝐷)𝑏))) |
| 106 | 5, 20, 40, 105 | isxmetd 14583 |
1
⊢ (𝜑 → (𝐹 ∘ 𝐷) ∈ (∞Met‘𝑋)) |