ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  comet GIF version

Theorem comet 12668
Description: The composition of an extended metric with a monotonic subadditive function is an extended metric. (Contributed by Mario Carneiro, 21-Mar-2015.)
Hypotheses
Ref Expression
comet.1 (𝜑𝐷 ∈ (∞Met‘𝑋))
comet.2 (𝜑𝐹:(0[,]+∞)⟶ℝ*)
comet.3 ((𝜑𝑥 ∈ (0[,]+∞)) → ((𝐹𝑥) = 0 ↔ 𝑥 = 0))
comet.4 ((𝜑 ∧ (𝑥 ∈ (0[,]+∞) ∧ 𝑦 ∈ (0[,]+∞))) → (𝑥𝑦 → (𝐹𝑥) ≤ (𝐹𝑦)))
comet.5 ((𝜑 ∧ (𝑥 ∈ (0[,]+∞) ∧ 𝑦 ∈ (0[,]+∞))) → (𝐹‘(𝑥 +𝑒 𝑦)) ≤ ((𝐹𝑥) +𝑒 (𝐹𝑦)))
Assertion
Ref Expression
comet (𝜑 → (𝐹𝐷) ∈ (∞Met‘𝑋))
Distinct variable groups:   𝑥,𝑦,𝐷   𝑥,𝐹,𝑦   𝜑,𝑥,𝑦
Allowed substitution hints:   𝑋(𝑥,𝑦)

Proof of Theorem comet
Dummy variables 𝑎 𝑏 𝑐 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 xmetrel 12512 . . . 4 Rel ∞Met
2 comet.1 . . . 4 (𝜑𝐷 ∈ (∞Met‘𝑋))
3 relelfvdm 5453 . . . 4 ((Rel ∞Met ∧ 𝐷 ∈ (∞Met‘𝑋)) → 𝑋 ∈ dom ∞Met)
41, 2, 3sylancr 410 . . 3 (𝜑𝑋 ∈ dom ∞Met)
54elexd 2699 . 2 (𝜑𝑋 ∈ V)
6 comet.2 . . 3 (𝜑𝐹:(0[,]+∞)⟶ℝ*)
7 xmetf 12519 . . . . . 6 (𝐷 ∈ (∞Met‘𝑋) → 𝐷:(𝑋 × 𝑋)⟶ℝ*)
82, 7syl 14 . . . . 5 (𝜑𝐷:(𝑋 × 𝑋)⟶ℝ*)
98ffnd 5273 . . . 4 (𝜑𝐷 Fn (𝑋 × 𝑋))
10 xmetcl 12521 . . . . . . . 8 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑎𝑋𝑏𝑋) → (𝑎𝐷𝑏) ∈ ℝ*)
11 xmetge0 12534 . . . . . . . 8 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑎𝑋𝑏𝑋) → 0 ≤ (𝑎𝐷𝑏))
12 elxrge0 9761 . . . . . . . 8 ((𝑎𝐷𝑏) ∈ (0[,]+∞) ↔ ((𝑎𝐷𝑏) ∈ ℝ* ∧ 0 ≤ (𝑎𝐷𝑏)))
1310, 11, 12sylanbrc 413 . . . . . . 7 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑎𝑋𝑏𝑋) → (𝑎𝐷𝑏) ∈ (0[,]+∞))
14133expb 1182 . . . . . 6 ((𝐷 ∈ (∞Met‘𝑋) ∧ (𝑎𝑋𝑏𝑋)) → (𝑎𝐷𝑏) ∈ (0[,]+∞))
152, 14sylan 281 . . . . 5 ((𝜑 ∧ (𝑎𝑋𝑏𝑋)) → (𝑎𝐷𝑏) ∈ (0[,]+∞))
1615ralrimivva 2514 . . . 4 (𝜑 → ∀𝑎𝑋𝑏𝑋 (𝑎𝐷𝑏) ∈ (0[,]+∞))
17 ffnov 5875 . . . 4 (𝐷:(𝑋 × 𝑋)⟶(0[,]+∞) ↔ (𝐷 Fn (𝑋 × 𝑋) ∧ ∀𝑎𝑋𝑏𝑋 (𝑎𝐷𝑏) ∈ (0[,]+∞)))
189, 16, 17sylanbrc 413 . . 3 (𝜑𝐷:(𝑋 × 𝑋)⟶(0[,]+∞))
19 fco 5288 . . 3 ((𝐹:(0[,]+∞)⟶ℝ*𝐷:(𝑋 × 𝑋)⟶(0[,]+∞)) → (𝐹𝐷):(𝑋 × 𝑋)⟶ℝ*)
206, 18, 19syl2anc 408 . 2 (𝜑 → (𝐹𝐷):(𝑋 × 𝑋)⟶ℝ*)
21 opelxpi 4571 . . . . . 6 ((𝑎𝑋𝑏𝑋) → ⟨𝑎, 𝑏⟩ ∈ (𝑋 × 𝑋))
22 fvco3 5492 . . . . . 6 ((𝐷:(𝑋 × 𝑋)⟶ℝ* ∧ ⟨𝑎, 𝑏⟩ ∈ (𝑋 × 𝑋)) → ((𝐹𝐷)‘⟨𝑎, 𝑏⟩) = (𝐹‘(𝐷‘⟨𝑎, 𝑏⟩)))
238, 21, 22syl2an 287 . . . . 5 ((𝜑 ∧ (𝑎𝑋𝑏𝑋)) → ((𝐹𝐷)‘⟨𝑎, 𝑏⟩) = (𝐹‘(𝐷‘⟨𝑎, 𝑏⟩)))
24 df-ov 5777 . . . . 5 (𝑎(𝐹𝐷)𝑏) = ((𝐹𝐷)‘⟨𝑎, 𝑏⟩)
25 df-ov 5777 . . . . . 6 (𝑎𝐷𝑏) = (𝐷‘⟨𝑎, 𝑏⟩)
2625fveq2i 5424 . . . . 5 (𝐹‘(𝑎𝐷𝑏)) = (𝐹‘(𝐷‘⟨𝑎, 𝑏⟩))
2723, 24, 263eqtr4g 2197 . . . 4 ((𝜑 ∧ (𝑎𝑋𝑏𝑋)) → (𝑎(𝐹𝐷)𝑏) = (𝐹‘(𝑎𝐷𝑏)))
2827eqeq1d 2148 . . 3 ((𝜑 ∧ (𝑎𝑋𝑏𝑋)) → ((𝑎(𝐹𝐷)𝑏) = 0 ↔ (𝐹‘(𝑎𝐷𝑏)) = 0))
29 fveq2 5421 . . . . . 6 (𝑥 = (𝑎𝐷𝑏) → (𝐹𝑥) = (𝐹‘(𝑎𝐷𝑏)))
3029eqeq1d 2148 . . . . 5 (𝑥 = (𝑎𝐷𝑏) → ((𝐹𝑥) = 0 ↔ (𝐹‘(𝑎𝐷𝑏)) = 0))
31 eqeq1 2146 . . . . 5 (𝑥 = (𝑎𝐷𝑏) → (𝑥 = 0 ↔ (𝑎𝐷𝑏) = 0))
3230, 31bibi12d 234 . . . 4 (𝑥 = (𝑎𝐷𝑏) → (((𝐹𝑥) = 0 ↔ 𝑥 = 0) ↔ ((𝐹‘(𝑎𝐷𝑏)) = 0 ↔ (𝑎𝐷𝑏) = 0)))
33 comet.3 . . . . . 6 ((𝜑𝑥 ∈ (0[,]+∞)) → ((𝐹𝑥) = 0 ↔ 𝑥 = 0))
3433ralrimiva 2505 . . . . 5 (𝜑 → ∀𝑥 ∈ (0[,]+∞)((𝐹𝑥) = 0 ↔ 𝑥 = 0))
3534adantr 274 . . . 4 ((𝜑 ∧ (𝑎𝑋𝑏𝑋)) → ∀𝑥 ∈ (0[,]+∞)((𝐹𝑥) = 0 ↔ 𝑥 = 0))
3632, 35, 15rspcdva 2794 . . 3 ((𝜑 ∧ (𝑎𝑋𝑏𝑋)) → ((𝐹‘(𝑎𝐷𝑏)) = 0 ↔ (𝑎𝐷𝑏) = 0))
37 xmeteq0 12528 . . . . 5 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑎𝑋𝑏𝑋) → ((𝑎𝐷𝑏) = 0 ↔ 𝑎 = 𝑏))
38373expb 1182 . . . 4 ((𝐷 ∈ (∞Met‘𝑋) ∧ (𝑎𝑋𝑏𝑋)) → ((𝑎𝐷𝑏) = 0 ↔ 𝑎 = 𝑏))
392, 38sylan 281 . . 3 ((𝜑 ∧ (𝑎𝑋𝑏𝑋)) → ((𝑎𝐷𝑏) = 0 ↔ 𝑎 = 𝑏))
4028, 36, 393bitrd 213 . 2 ((𝜑 ∧ (𝑎𝑋𝑏𝑋)) → ((𝑎(𝐹𝐷)𝑏) = 0 ↔ 𝑎 = 𝑏))
416adantr 274 . . . . 5 ((𝜑 ∧ (𝑎𝑋𝑏𝑋𝑐𝑋)) → 𝐹:(0[,]+∞)⟶ℝ*)
42153adantr3 1142 . . . . 5 ((𝜑 ∧ (𝑎𝑋𝑏𝑋𝑐𝑋)) → (𝑎𝐷𝑏) ∈ (0[,]+∞))
4341, 42ffvelrnd 5556 . . . 4 ((𝜑 ∧ (𝑎𝑋𝑏𝑋𝑐𝑋)) → (𝐹‘(𝑎𝐷𝑏)) ∈ ℝ*)
4418adantr 274 . . . . . . 7 ((𝜑 ∧ (𝑎𝑋𝑏𝑋𝑐𝑋)) → 𝐷:(𝑋 × 𝑋)⟶(0[,]+∞))
45 simpr3 989 . . . . . . 7 ((𝜑 ∧ (𝑎𝑋𝑏𝑋𝑐𝑋)) → 𝑐𝑋)
46 simpr1 987 . . . . . . 7 ((𝜑 ∧ (𝑎𝑋𝑏𝑋𝑐𝑋)) → 𝑎𝑋)
4744, 45, 46fovrnd 5915 . . . . . 6 ((𝜑 ∧ (𝑎𝑋𝑏𝑋𝑐𝑋)) → (𝑐𝐷𝑎) ∈ (0[,]+∞))
48 simpr2 988 . . . . . . 7 ((𝜑 ∧ (𝑎𝑋𝑏𝑋𝑐𝑋)) → 𝑏𝑋)
4944, 45, 48fovrnd 5915 . . . . . 6 ((𝜑 ∧ (𝑎𝑋𝑏𝑋𝑐𝑋)) → (𝑐𝐷𝑏) ∈ (0[,]+∞))
50 ge0xaddcl 9766 . . . . . 6 (((𝑐𝐷𝑎) ∈ (0[,]+∞) ∧ (𝑐𝐷𝑏) ∈ (0[,]+∞)) → ((𝑐𝐷𝑎) +𝑒 (𝑐𝐷𝑏)) ∈ (0[,]+∞))
5147, 49, 50syl2anc 408 . . . . 5 ((𝜑 ∧ (𝑎𝑋𝑏𝑋𝑐𝑋)) → ((𝑐𝐷𝑎) +𝑒 (𝑐𝐷𝑏)) ∈ (0[,]+∞))
5241, 51ffvelrnd 5556 . . . 4 ((𝜑 ∧ (𝑎𝑋𝑏𝑋𝑐𝑋)) → (𝐹‘((𝑐𝐷𝑎) +𝑒 (𝑐𝐷𝑏))) ∈ ℝ*)
5341, 47ffvelrnd 5556 . . . . 5 ((𝜑 ∧ (𝑎𝑋𝑏𝑋𝑐𝑋)) → (𝐹‘(𝑐𝐷𝑎)) ∈ ℝ*)
5441, 49ffvelrnd 5556 . . . . 5 ((𝜑 ∧ (𝑎𝑋𝑏𝑋𝑐𝑋)) → (𝐹‘(𝑐𝐷𝑏)) ∈ ℝ*)
5553, 54xaddcld 9667 . . . 4 ((𝜑 ∧ (𝑎𝑋𝑏𝑋𝑐𝑋)) → ((𝐹‘(𝑐𝐷𝑎)) +𝑒 (𝐹‘(𝑐𝐷𝑏))) ∈ ℝ*)
56 3anrot 967 . . . . . . 7 ((𝑐𝑋𝑎𝑋𝑏𝑋) ↔ (𝑎𝑋𝑏𝑋𝑐𝑋))
57 xmettri2 12530 . . . . . . 7 ((𝐷 ∈ (∞Met‘𝑋) ∧ (𝑐𝑋𝑎𝑋𝑏𝑋)) → (𝑎𝐷𝑏) ≤ ((𝑐𝐷𝑎) +𝑒 (𝑐𝐷𝑏)))
5856, 57sylan2br 286 . . . . . 6 ((𝐷 ∈ (∞Met‘𝑋) ∧ (𝑎𝑋𝑏𝑋𝑐𝑋)) → (𝑎𝐷𝑏) ≤ ((𝑐𝐷𝑎) +𝑒 (𝑐𝐷𝑏)))
592, 58sylan 281 . . . . 5 ((𝜑 ∧ (𝑎𝑋𝑏𝑋𝑐𝑋)) → (𝑎𝐷𝑏) ≤ ((𝑐𝐷𝑎) +𝑒 (𝑐𝐷𝑏)))
60 comet.4 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ (0[,]+∞) ∧ 𝑦 ∈ (0[,]+∞))) → (𝑥𝑦 → (𝐹𝑥) ≤ (𝐹𝑦)))
6160ralrimivva 2514 . . . . . . 7 (𝜑 → ∀𝑥 ∈ (0[,]+∞)∀𝑦 ∈ (0[,]+∞)(𝑥𝑦 → (𝐹𝑥) ≤ (𝐹𝑦)))
6261adantr 274 . . . . . 6 ((𝜑 ∧ (𝑎𝑋𝑏𝑋𝑐𝑋)) → ∀𝑥 ∈ (0[,]+∞)∀𝑦 ∈ (0[,]+∞)(𝑥𝑦 → (𝐹𝑥) ≤ (𝐹𝑦)))
63 breq1 3932 . . . . . . . 8 (𝑥 = (𝑎𝐷𝑏) → (𝑥𝑦 ↔ (𝑎𝐷𝑏) ≤ 𝑦))
6429breq1d 3939 . . . . . . . 8 (𝑥 = (𝑎𝐷𝑏) → ((𝐹𝑥) ≤ (𝐹𝑦) ↔ (𝐹‘(𝑎𝐷𝑏)) ≤ (𝐹𝑦)))
6563, 64imbi12d 233 . . . . . . 7 (𝑥 = (𝑎𝐷𝑏) → ((𝑥𝑦 → (𝐹𝑥) ≤ (𝐹𝑦)) ↔ ((𝑎𝐷𝑏) ≤ 𝑦 → (𝐹‘(𝑎𝐷𝑏)) ≤ (𝐹𝑦))))
66 breq2 3933 . . . . . . . 8 (𝑦 = ((𝑐𝐷𝑎) +𝑒 (𝑐𝐷𝑏)) → ((𝑎𝐷𝑏) ≤ 𝑦 ↔ (𝑎𝐷𝑏) ≤ ((𝑐𝐷𝑎) +𝑒 (𝑐𝐷𝑏))))
67 fveq2 5421 . . . . . . . . 9 (𝑦 = ((𝑐𝐷𝑎) +𝑒 (𝑐𝐷𝑏)) → (𝐹𝑦) = (𝐹‘((𝑐𝐷𝑎) +𝑒 (𝑐𝐷𝑏))))
6867breq2d 3941 . . . . . . . 8 (𝑦 = ((𝑐𝐷𝑎) +𝑒 (𝑐𝐷𝑏)) → ((𝐹‘(𝑎𝐷𝑏)) ≤ (𝐹𝑦) ↔ (𝐹‘(𝑎𝐷𝑏)) ≤ (𝐹‘((𝑐𝐷𝑎) +𝑒 (𝑐𝐷𝑏)))))
6966, 68imbi12d 233 . . . . . . 7 (𝑦 = ((𝑐𝐷𝑎) +𝑒 (𝑐𝐷𝑏)) → (((𝑎𝐷𝑏) ≤ 𝑦 → (𝐹‘(𝑎𝐷𝑏)) ≤ (𝐹𝑦)) ↔ ((𝑎𝐷𝑏) ≤ ((𝑐𝐷𝑎) +𝑒 (𝑐𝐷𝑏)) → (𝐹‘(𝑎𝐷𝑏)) ≤ (𝐹‘((𝑐𝐷𝑎) +𝑒 (𝑐𝐷𝑏))))))
7065, 69rspc2va 2803 . . . . . 6 ((((𝑎𝐷𝑏) ∈ (0[,]+∞) ∧ ((𝑐𝐷𝑎) +𝑒 (𝑐𝐷𝑏)) ∈ (0[,]+∞)) ∧ ∀𝑥 ∈ (0[,]+∞)∀𝑦 ∈ (0[,]+∞)(𝑥𝑦 → (𝐹𝑥) ≤ (𝐹𝑦))) → ((𝑎𝐷𝑏) ≤ ((𝑐𝐷𝑎) +𝑒 (𝑐𝐷𝑏)) → (𝐹‘(𝑎𝐷𝑏)) ≤ (𝐹‘((𝑐𝐷𝑎) +𝑒 (𝑐𝐷𝑏)))))
7142, 51, 62, 70syl21anc 1215 . . . . 5 ((𝜑 ∧ (𝑎𝑋𝑏𝑋𝑐𝑋)) → ((𝑎𝐷𝑏) ≤ ((𝑐𝐷𝑎) +𝑒 (𝑐𝐷𝑏)) → (𝐹‘(𝑎𝐷𝑏)) ≤ (𝐹‘((𝑐𝐷𝑎) +𝑒 (𝑐𝐷𝑏)))))
7259, 71mpd 13 . . . 4 ((𝜑 ∧ (𝑎𝑋𝑏𝑋𝑐𝑋)) → (𝐹‘(𝑎𝐷𝑏)) ≤ (𝐹‘((𝑐𝐷𝑎) +𝑒 (𝑐𝐷𝑏))))
73 comet.5 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ (0[,]+∞) ∧ 𝑦 ∈ (0[,]+∞))) → (𝐹‘(𝑥 +𝑒 𝑦)) ≤ ((𝐹𝑥) +𝑒 (𝐹𝑦)))
7473ralrimivva 2514 . . . . . 6 (𝜑 → ∀𝑥 ∈ (0[,]+∞)∀𝑦 ∈ (0[,]+∞)(𝐹‘(𝑥 +𝑒 𝑦)) ≤ ((𝐹𝑥) +𝑒 (𝐹𝑦)))
7574adantr 274 . . . . 5 ((𝜑 ∧ (𝑎𝑋𝑏𝑋𝑐𝑋)) → ∀𝑥 ∈ (0[,]+∞)∀𝑦 ∈ (0[,]+∞)(𝐹‘(𝑥 +𝑒 𝑦)) ≤ ((𝐹𝑥) +𝑒 (𝐹𝑦)))
76 fvoveq1 5797 . . . . . . 7 (𝑥 = (𝑐𝐷𝑎) → (𝐹‘(𝑥 +𝑒 𝑦)) = (𝐹‘((𝑐𝐷𝑎) +𝑒 𝑦)))
77 fveq2 5421 . . . . . . . 8 (𝑥 = (𝑐𝐷𝑎) → (𝐹𝑥) = (𝐹‘(𝑐𝐷𝑎)))
7877oveq1d 5789 . . . . . . 7 (𝑥 = (𝑐𝐷𝑎) → ((𝐹𝑥) +𝑒 (𝐹𝑦)) = ((𝐹‘(𝑐𝐷𝑎)) +𝑒 (𝐹𝑦)))
7976, 78breq12d 3942 . . . . . 6 (𝑥 = (𝑐𝐷𝑎) → ((𝐹‘(𝑥 +𝑒 𝑦)) ≤ ((𝐹𝑥) +𝑒 (𝐹𝑦)) ↔ (𝐹‘((𝑐𝐷𝑎) +𝑒 𝑦)) ≤ ((𝐹‘(𝑐𝐷𝑎)) +𝑒 (𝐹𝑦))))
80 oveq2 5782 . . . . . . . 8 (𝑦 = (𝑐𝐷𝑏) → ((𝑐𝐷𝑎) +𝑒 𝑦) = ((𝑐𝐷𝑎) +𝑒 (𝑐𝐷𝑏)))
8180fveq2d 5425 . . . . . . 7 (𝑦 = (𝑐𝐷𝑏) → (𝐹‘((𝑐𝐷𝑎) +𝑒 𝑦)) = (𝐹‘((𝑐𝐷𝑎) +𝑒 (𝑐𝐷𝑏))))
82 fveq2 5421 . . . . . . . 8 (𝑦 = (𝑐𝐷𝑏) → (𝐹𝑦) = (𝐹‘(𝑐𝐷𝑏)))
8382oveq2d 5790 . . . . . . 7 (𝑦 = (𝑐𝐷𝑏) → ((𝐹‘(𝑐𝐷𝑎)) +𝑒 (𝐹𝑦)) = ((𝐹‘(𝑐𝐷𝑎)) +𝑒 (𝐹‘(𝑐𝐷𝑏))))
8481, 83breq12d 3942 . . . . . 6 (𝑦 = (𝑐𝐷𝑏) → ((𝐹‘((𝑐𝐷𝑎) +𝑒 𝑦)) ≤ ((𝐹‘(𝑐𝐷𝑎)) +𝑒 (𝐹𝑦)) ↔ (𝐹‘((𝑐𝐷𝑎) +𝑒 (𝑐𝐷𝑏))) ≤ ((𝐹‘(𝑐𝐷𝑎)) +𝑒 (𝐹‘(𝑐𝐷𝑏)))))
8579, 84rspc2va 2803 . . . . 5 ((((𝑐𝐷𝑎) ∈ (0[,]+∞) ∧ (𝑐𝐷𝑏) ∈ (0[,]+∞)) ∧ ∀𝑥 ∈ (0[,]+∞)∀𝑦 ∈ (0[,]+∞)(𝐹‘(𝑥 +𝑒 𝑦)) ≤ ((𝐹𝑥) +𝑒 (𝐹𝑦))) → (𝐹‘((𝑐𝐷𝑎) +𝑒 (𝑐𝐷𝑏))) ≤ ((𝐹‘(𝑐𝐷𝑎)) +𝑒 (𝐹‘(𝑐𝐷𝑏))))
8647, 49, 75, 85syl21anc 1215 . . . 4 ((𝜑 ∧ (𝑎𝑋𝑏𝑋𝑐𝑋)) → (𝐹‘((𝑐𝐷𝑎) +𝑒 (𝑐𝐷𝑏))) ≤ ((𝐹‘(𝑐𝐷𝑎)) +𝑒 (𝐹‘(𝑐𝐷𝑏))))
8743, 52, 55, 72, 86xrletrd 9595 . . 3 ((𝜑 ∧ (𝑎𝑋𝑏𝑋𝑐𝑋)) → (𝐹‘(𝑎𝐷𝑏)) ≤ ((𝐹‘(𝑐𝐷𝑎)) +𝑒 (𝐹‘(𝑐𝐷𝑏))))
88273adantr3 1142 . . 3 ((𝜑 ∧ (𝑎𝑋𝑏𝑋𝑐𝑋)) → (𝑎(𝐹𝐷)𝑏) = (𝐹‘(𝑎𝐷𝑏)))
898adantr 274 . . . . . 6 ((𝜑 ∧ (𝑎𝑋𝑏𝑋𝑐𝑋)) → 𝐷:(𝑋 × 𝑋)⟶ℝ*)
9045, 46opelxpd 4572 . . . . . 6 ((𝜑 ∧ (𝑎𝑋𝑏𝑋𝑐𝑋)) → ⟨𝑐, 𝑎⟩ ∈ (𝑋 × 𝑋))
91 fvco3 5492 . . . . . 6 ((𝐷:(𝑋 × 𝑋)⟶ℝ* ∧ ⟨𝑐, 𝑎⟩ ∈ (𝑋 × 𝑋)) → ((𝐹𝐷)‘⟨𝑐, 𝑎⟩) = (𝐹‘(𝐷‘⟨𝑐, 𝑎⟩)))
9289, 90, 91syl2anc 408 . . . . 5 ((𝜑 ∧ (𝑎𝑋𝑏𝑋𝑐𝑋)) → ((𝐹𝐷)‘⟨𝑐, 𝑎⟩) = (𝐹‘(𝐷‘⟨𝑐, 𝑎⟩)))
93 df-ov 5777 . . . . 5 (𝑐(𝐹𝐷)𝑎) = ((𝐹𝐷)‘⟨𝑐, 𝑎⟩)
94 df-ov 5777 . . . . . 6 (𝑐𝐷𝑎) = (𝐷‘⟨𝑐, 𝑎⟩)
9594fveq2i 5424 . . . . 5 (𝐹‘(𝑐𝐷𝑎)) = (𝐹‘(𝐷‘⟨𝑐, 𝑎⟩))
9692, 93, 953eqtr4g 2197 . . . 4 ((𝜑 ∧ (𝑎𝑋𝑏𝑋𝑐𝑋)) → (𝑐(𝐹𝐷)𝑎) = (𝐹‘(𝑐𝐷𝑎)))
9745, 48opelxpd 4572 . . . . . 6 ((𝜑 ∧ (𝑎𝑋𝑏𝑋𝑐𝑋)) → ⟨𝑐, 𝑏⟩ ∈ (𝑋 × 𝑋))
98 fvco3 5492 . . . . . 6 ((𝐷:(𝑋 × 𝑋)⟶ℝ* ∧ ⟨𝑐, 𝑏⟩ ∈ (𝑋 × 𝑋)) → ((𝐹𝐷)‘⟨𝑐, 𝑏⟩) = (𝐹‘(𝐷‘⟨𝑐, 𝑏⟩)))
9989, 97, 98syl2anc 408 . . . . 5 ((𝜑 ∧ (𝑎𝑋𝑏𝑋𝑐𝑋)) → ((𝐹𝐷)‘⟨𝑐, 𝑏⟩) = (𝐹‘(𝐷‘⟨𝑐, 𝑏⟩)))
100 df-ov 5777 . . . . 5 (𝑐(𝐹𝐷)𝑏) = ((𝐹𝐷)‘⟨𝑐, 𝑏⟩)
101 df-ov 5777 . . . . . 6 (𝑐𝐷𝑏) = (𝐷‘⟨𝑐, 𝑏⟩)
102101fveq2i 5424 . . . . 5 (𝐹‘(𝑐𝐷𝑏)) = (𝐹‘(𝐷‘⟨𝑐, 𝑏⟩))
10399, 100, 1023eqtr4g 2197 . . . 4 ((𝜑 ∧ (𝑎𝑋𝑏𝑋𝑐𝑋)) → (𝑐(𝐹𝐷)𝑏) = (𝐹‘(𝑐𝐷𝑏)))
10496, 103oveq12d 5792 . . 3 ((𝜑 ∧ (𝑎𝑋𝑏𝑋𝑐𝑋)) → ((𝑐(𝐹𝐷)𝑎) +𝑒 (𝑐(𝐹𝐷)𝑏)) = ((𝐹‘(𝑐𝐷𝑎)) +𝑒 (𝐹‘(𝑐𝐷𝑏))))
10587, 88, 1043brtr4d 3960 . 2 ((𝜑 ∧ (𝑎𝑋𝑏𝑋𝑐𝑋)) → (𝑎(𝐹𝐷)𝑏) ≤ ((𝑐(𝐹𝐷)𝑎) +𝑒 (𝑐(𝐹𝐷)𝑏)))
1065, 20, 40, 105isxmetd 12516 1 (𝜑 → (𝐹𝐷) ∈ (∞Met‘𝑋))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104  w3a 962   = wceq 1331  wcel 1480  wral 2416  cop 3530   class class class wbr 3929   × cxp 4537  dom cdm 4539  ccom 4543  Rel wrel 4544   Fn wfn 5118  wf 5119  cfv 5123  (class class class)co 5774  0cc0 7620  +∞cpnf 7797  *cxr 7799  cle 7801   +𝑒 cxad 9557  [,]cicc 9674  ∞Metcxmet 12149
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-sep 4046  ax-pow 4098  ax-pr 4131  ax-un 4355  ax-setind 4452  ax-cnex 7711  ax-resscn 7712  ax-1cn 7713  ax-1re 7714  ax-icn 7715  ax-addcl 7716  ax-addrcl 7717  ax-mulcl 7718  ax-mulrcl 7719  ax-addcom 7720  ax-mulcom 7721  ax-addass 7722  ax-mulass 7723  ax-distr 7724  ax-i2m1 7725  ax-0lt1 7726  ax-1rid 7727  ax-0id 7728  ax-rnegex 7729  ax-precex 7730  ax-cnre 7731  ax-pre-ltirr 7732  ax-pre-ltwlin 7733  ax-pre-lttrn 7734  ax-pre-apti 7735  ax-pre-ltadd 7736  ax-pre-mulgt0 7737
This theorem depends on definitions:  df-bi 116  df-dc 820  df-3or 963  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2002  df-mo 2003  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ne 2309  df-nel 2404  df-ral 2421  df-rex 2422  df-reu 2423  df-rab 2425  df-v 2688  df-sbc 2910  df-csb 3004  df-dif 3073  df-un 3075  df-in 3077  df-ss 3084  df-if 3475  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-uni 3737  df-iun 3815  df-br 3930  df-opab 3990  df-mpt 3991  df-id 4215  df-po 4218  df-iso 4219  df-xp 4545  df-rel 4546  df-cnv 4547  df-co 4548  df-dm 4549  df-rn 4550  df-res 4551  df-ima 4552  df-iota 5088  df-fun 5125  df-fn 5126  df-f 5127  df-fv 5131  df-riota 5730  df-ov 5777  df-oprab 5778  df-mpo 5779  df-1st 6038  df-2nd 6039  df-map 6544  df-pnf 7802  df-mnf 7803  df-xr 7804  df-ltxr 7805  df-le 7806  df-sub 7935  df-neg 7936  df-2 8779  df-xadd 9560  df-icc 9678  df-xmet 12157
This theorem is referenced by:  bdxmet  12670
  Copyright terms: Public domain W3C validator