ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  comet GIF version

Theorem comet 13149
Description: The composition of an extended metric with a monotonic subadditive function is an extended metric. (Contributed by Mario Carneiro, 21-Mar-2015.)
Hypotheses
Ref Expression
comet.1 (𝜑𝐷 ∈ (∞Met‘𝑋))
comet.2 (𝜑𝐹:(0[,]+∞)⟶ℝ*)
comet.3 ((𝜑𝑥 ∈ (0[,]+∞)) → ((𝐹𝑥) = 0 ↔ 𝑥 = 0))
comet.4 ((𝜑 ∧ (𝑥 ∈ (0[,]+∞) ∧ 𝑦 ∈ (0[,]+∞))) → (𝑥𝑦 → (𝐹𝑥) ≤ (𝐹𝑦)))
comet.5 ((𝜑 ∧ (𝑥 ∈ (0[,]+∞) ∧ 𝑦 ∈ (0[,]+∞))) → (𝐹‘(𝑥 +𝑒 𝑦)) ≤ ((𝐹𝑥) +𝑒 (𝐹𝑦)))
Assertion
Ref Expression
comet (𝜑 → (𝐹𝐷) ∈ (∞Met‘𝑋))
Distinct variable groups:   𝑥,𝑦,𝐷   𝑥,𝐹,𝑦   𝜑,𝑥,𝑦
Allowed substitution hints:   𝑋(𝑥,𝑦)

Proof of Theorem comet
Dummy variables 𝑎 𝑏 𝑐 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 xmetrel 12993 . . . 4 Rel ∞Met
2 comet.1 . . . 4 (𝜑𝐷 ∈ (∞Met‘𝑋))
3 relelfvdm 5518 . . . 4 ((Rel ∞Met ∧ 𝐷 ∈ (∞Met‘𝑋)) → 𝑋 ∈ dom ∞Met)
41, 2, 3sylancr 411 . . 3 (𝜑𝑋 ∈ dom ∞Met)
54elexd 2739 . 2 (𝜑𝑋 ∈ V)
6 comet.2 . . 3 (𝜑𝐹:(0[,]+∞)⟶ℝ*)
7 xmetf 13000 . . . . . 6 (𝐷 ∈ (∞Met‘𝑋) → 𝐷:(𝑋 × 𝑋)⟶ℝ*)
82, 7syl 14 . . . . 5 (𝜑𝐷:(𝑋 × 𝑋)⟶ℝ*)
98ffnd 5338 . . . 4 (𝜑𝐷 Fn (𝑋 × 𝑋))
10 xmetcl 13002 . . . . . . . 8 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑎𝑋𝑏𝑋) → (𝑎𝐷𝑏) ∈ ℝ*)
11 xmetge0 13015 . . . . . . . 8 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑎𝑋𝑏𝑋) → 0 ≤ (𝑎𝐷𝑏))
12 elxrge0 9914 . . . . . . . 8 ((𝑎𝐷𝑏) ∈ (0[,]+∞) ↔ ((𝑎𝐷𝑏) ∈ ℝ* ∧ 0 ≤ (𝑎𝐷𝑏)))
1310, 11, 12sylanbrc 414 . . . . . . 7 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑎𝑋𝑏𝑋) → (𝑎𝐷𝑏) ∈ (0[,]+∞))
14133expb 1194 . . . . . 6 ((𝐷 ∈ (∞Met‘𝑋) ∧ (𝑎𝑋𝑏𝑋)) → (𝑎𝐷𝑏) ∈ (0[,]+∞))
152, 14sylan 281 . . . . 5 ((𝜑 ∧ (𝑎𝑋𝑏𝑋)) → (𝑎𝐷𝑏) ∈ (0[,]+∞))
1615ralrimivva 2548 . . . 4 (𝜑 → ∀𝑎𝑋𝑏𝑋 (𝑎𝐷𝑏) ∈ (0[,]+∞))
17 ffnov 5946 . . . 4 (𝐷:(𝑋 × 𝑋)⟶(0[,]+∞) ↔ (𝐷 Fn (𝑋 × 𝑋) ∧ ∀𝑎𝑋𝑏𝑋 (𝑎𝐷𝑏) ∈ (0[,]+∞)))
189, 16, 17sylanbrc 414 . . 3 (𝜑𝐷:(𝑋 × 𝑋)⟶(0[,]+∞))
19 fco 5353 . . 3 ((𝐹:(0[,]+∞)⟶ℝ*𝐷:(𝑋 × 𝑋)⟶(0[,]+∞)) → (𝐹𝐷):(𝑋 × 𝑋)⟶ℝ*)
206, 18, 19syl2anc 409 . 2 (𝜑 → (𝐹𝐷):(𝑋 × 𝑋)⟶ℝ*)
21 opelxpi 4636 . . . . . 6 ((𝑎𝑋𝑏𝑋) → ⟨𝑎, 𝑏⟩ ∈ (𝑋 × 𝑋))
22 fvco3 5557 . . . . . 6 ((𝐷:(𝑋 × 𝑋)⟶ℝ* ∧ ⟨𝑎, 𝑏⟩ ∈ (𝑋 × 𝑋)) → ((𝐹𝐷)‘⟨𝑎, 𝑏⟩) = (𝐹‘(𝐷‘⟨𝑎, 𝑏⟩)))
238, 21, 22syl2an 287 . . . . 5 ((𝜑 ∧ (𝑎𝑋𝑏𝑋)) → ((𝐹𝐷)‘⟨𝑎, 𝑏⟩) = (𝐹‘(𝐷‘⟨𝑎, 𝑏⟩)))
24 df-ov 5845 . . . . 5 (𝑎(𝐹𝐷)𝑏) = ((𝐹𝐷)‘⟨𝑎, 𝑏⟩)
25 df-ov 5845 . . . . . 6 (𝑎𝐷𝑏) = (𝐷‘⟨𝑎, 𝑏⟩)
2625fveq2i 5489 . . . . 5 (𝐹‘(𝑎𝐷𝑏)) = (𝐹‘(𝐷‘⟨𝑎, 𝑏⟩))
2723, 24, 263eqtr4g 2224 . . . 4 ((𝜑 ∧ (𝑎𝑋𝑏𝑋)) → (𝑎(𝐹𝐷)𝑏) = (𝐹‘(𝑎𝐷𝑏)))
2827eqeq1d 2174 . . 3 ((𝜑 ∧ (𝑎𝑋𝑏𝑋)) → ((𝑎(𝐹𝐷)𝑏) = 0 ↔ (𝐹‘(𝑎𝐷𝑏)) = 0))
29 fveq2 5486 . . . . . 6 (𝑥 = (𝑎𝐷𝑏) → (𝐹𝑥) = (𝐹‘(𝑎𝐷𝑏)))
3029eqeq1d 2174 . . . . 5 (𝑥 = (𝑎𝐷𝑏) → ((𝐹𝑥) = 0 ↔ (𝐹‘(𝑎𝐷𝑏)) = 0))
31 eqeq1 2172 . . . . 5 (𝑥 = (𝑎𝐷𝑏) → (𝑥 = 0 ↔ (𝑎𝐷𝑏) = 0))
3230, 31bibi12d 234 . . . 4 (𝑥 = (𝑎𝐷𝑏) → (((𝐹𝑥) = 0 ↔ 𝑥 = 0) ↔ ((𝐹‘(𝑎𝐷𝑏)) = 0 ↔ (𝑎𝐷𝑏) = 0)))
33 comet.3 . . . . . 6 ((𝜑𝑥 ∈ (0[,]+∞)) → ((𝐹𝑥) = 0 ↔ 𝑥 = 0))
3433ralrimiva 2539 . . . . 5 (𝜑 → ∀𝑥 ∈ (0[,]+∞)((𝐹𝑥) = 0 ↔ 𝑥 = 0))
3534adantr 274 . . . 4 ((𝜑 ∧ (𝑎𝑋𝑏𝑋)) → ∀𝑥 ∈ (0[,]+∞)((𝐹𝑥) = 0 ↔ 𝑥 = 0))
3632, 35, 15rspcdva 2835 . . 3 ((𝜑 ∧ (𝑎𝑋𝑏𝑋)) → ((𝐹‘(𝑎𝐷𝑏)) = 0 ↔ (𝑎𝐷𝑏) = 0))
37 xmeteq0 13009 . . . . 5 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑎𝑋𝑏𝑋) → ((𝑎𝐷𝑏) = 0 ↔ 𝑎 = 𝑏))
38373expb 1194 . . . 4 ((𝐷 ∈ (∞Met‘𝑋) ∧ (𝑎𝑋𝑏𝑋)) → ((𝑎𝐷𝑏) = 0 ↔ 𝑎 = 𝑏))
392, 38sylan 281 . . 3 ((𝜑 ∧ (𝑎𝑋𝑏𝑋)) → ((𝑎𝐷𝑏) = 0 ↔ 𝑎 = 𝑏))
4028, 36, 393bitrd 213 . 2 ((𝜑 ∧ (𝑎𝑋𝑏𝑋)) → ((𝑎(𝐹𝐷)𝑏) = 0 ↔ 𝑎 = 𝑏))
416adantr 274 . . . . 5 ((𝜑 ∧ (𝑎𝑋𝑏𝑋𝑐𝑋)) → 𝐹:(0[,]+∞)⟶ℝ*)
42153adantr3 1148 . . . . 5 ((𝜑 ∧ (𝑎𝑋𝑏𝑋𝑐𝑋)) → (𝑎𝐷𝑏) ∈ (0[,]+∞))
4341, 42ffvelrnd 5621 . . . 4 ((𝜑 ∧ (𝑎𝑋𝑏𝑋𝑐𝑋)) → (𝐹‘(𝑎𝐷𝑏)) ∈ ℝ*)
4418adantr 274 . . . . . . 7 ((𝜑 ∧ (𝑎𝑋𝑏𝑋𝑐𝑋)) → 𝐷:(𝑋 × 𝑋)⟶(0[,]+∞))
45 simpr3 995 . . . . . . 7 ((𝜑 ∧ (𝑎𝑋𝑏𝑋𝑐𝑋)) → 𝑐𝑋)
46 simpr1 993 . . . . . . 7 ((𝜑 ∧ (𝑎𝑋𝑏𝑋𝑐𝑋)) → 𝑎𝑋)
4744, 45, 46fovrnd 5986 . . . . . 6 ((𝜑 ∧ (𝑎𝑋𝑏𝑋𝑐𝑋)) → (𝑐𝐷𝑎) ∈ (0[,]+∞))
48 simpr2 994 . . . . . . 7 ((𝜑 ∧ (𝑎𝑋𝑏𝑋𝑐𝑋)) → 𝑏𝑋)
4944, 45, 48fovrnd 5986 . . . . . 6 ((𝜑 ∧ (𝑎𝑋𝑏𝑋𝑐𝑋)) → (𝑐𝐷𝑏) ∈ (0[,]+∞))
50 ge0xaddcl 9919 . . . . . 6 (((𝑐𝐷𝑎) ∈ (0[,]+∞) ∧ (𝑐𝐷𝑏) ∈ (0[,]+∞)) → ((𝑐𝐷𝑎) +𝑒 (𝑐𝐷𝑏)) ∈ (0[,]+∞))
5147, 49, 50syl2anc 409 . . . . 5 ((𝜑 ∧ (𝑎𝑋𝑏𝑋𝑐𝑋)) → ((𝑐𝐷𝑎) +𝑒 (𝑐𝐷𝑏)) ∈ (0[,]+∞))
5241, 51ffvelrnd 5621 . . . 4 ((𝜑 ∧ (𝑎𝑋𝑏𝑋𝑐𝑋)) → (𝐹‘((𝑐𝐷𝑎) +𝑒 (𝑐𝐷𝑏))) ∈ ℝ*)
5341, 47ffvelrnd 5621 . . . . 5 ((𝜑 ∧ (𝑎𝑋𝑏𝑋𝑐𝑋)) → (𝐹‘(𝑐𝐷𝑎)) ∈ ℝ*)
5441, 49ffvelrnd 5621 . . . . 5 ((𝜑 ∧ (𝑎𝑋𝑏𝑋𝑐𝑋)) → (𝐹‘(𝑐𝐷𝑏)) ∈ ℝ*)
5553, 54xaddcld 9820 . . . 4 ((𝜑 ∧ (𝑎𝑋𝑏𝑋𝑐𝑋)) → ((𝐹‘(𝑐𝐷𝑎)) +𝑒 (𝐹‘(𝑐𝐷𝑏))) ∈ ℝ*)
56 3anrot 973 . . . . . . 7 ((𝑐𝑋𝑎𝑋𝑏𝑋) ↔ (𝑎𝑋𝑏𝑋𝑐𝑋))
57 xmettri2 13011 . . . . . . 7 ((𝐷 ∈ (∞Met‘𝑋) ∧ (𝑐𝑋𝑎𝑋𝑏𝑋)) → (𝑎𝐷𝑏) ≤ ((𝑐𝐷𝑎) +𝑒 (𝑐𝐷𝑏)))
5856, 57sylan2br 286 . . . . . 6 ((𝐷 ∈ (∞Met‘𝑋) ∧ (𝑎𝑋𝑏𝑋𝑐𝑋)) → (𝑎𝐷𝑏) ≤ ((𝑐𝐷𝑎) +𝑒 (𝑐𝐷𝑏)))
592, 58sylan 281 . . . . 5 ((𝜑 ∧ (𝑎𝑋𝑏𝑋𝑐𝑋)) → (𝑎𝐷𝑏) ≤ ((𝑐𝐷𝑎) +𝑒 (𝑐𝐷𝑏)))
60 comet.4 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ (0[,]+∞) ∧ 𝑦 ∈ (0[,]+∞))) → (𝑥𝑦 → (𝐹𝑥) ≤ (𝐹𝑦)))
6160ralrimivva 2548 . . . . . . 7 (𝜑 → ∀𝑥 ∈ (0[,]+∞)∀𝑦 ∈ (0[,]+∞)(𝑥𝑦 → (𝐹𝑥) ≤ (𝐹𝑦)))
6261adantr 274 . . . . . 6 ((𝜑 ∧ (𝑎𝑋𝑏𝑋𝑐𝑋)) → ∀𝑥 ∈ (0[,]+∞)∀𝑦 ∈ (0[,]+∞)(𝑥𝑦 → (𝐹𝑥) ≤ (𝐹𝑦)))
63 breq1 3985 . . . . . . . 8 (𝑥 = (𝑎𝐷𝑏) → (𝑥𝑦 ↔ (𝑎𝐷𝑏) ≤ 𝑦))
6429breq1d 3992 . . . . . . . 8 (𝑥 = (𝑎𝐷𝑏) → ((𝐹𝑥) ≤ (𝐹𝑦) ↔ (𝐹‘(𝑎𝐷𝑏)) ≤ (𝐹𝑦)))
6563, 64imbi12d 233 . . . . . . 7 (𝑥 = (𝑎𝐷𝑏) → ((𝑥𝑦 → (𝐹𝑥) ≤ (𝐹𝑦)) ↔ ((𝑎𝐷𝑏) ≤ 𝑦 → (𝐹‘(𝑎𝐷𝑏)) ≤ (𝐹𝑦))))
66 breq2 3986 . . . . . . . 8 (𝑦 = ((𝑐𝐷𝑎) +𝑒 (𝑐𝐷𝑏)) → ((𝑎𝐷𝑏) ≤ 𝑦 ↔ (𝑎𝐷𝑏) ≤ ((𝑐𝐷𝑎) +𝑒 (𝑐𝐷𝑏))))
67 fveq2 5486 . . . . . . . . 9 (𝑦 = ((𝑐𝐷𝑎) +𝑒 (𝑐𝐷𝑏)) → (𝐹𝑦) = (𝐹‘((𝑐𝐷𝑎) +𝑒 (𝑐𝐷𝑏))))
6867breq2d 3994 . . . . . . . 8 (𝑦 = ((𝑐𝐷𝑎) +𝑒 (𝑐𝐷𝑏)) → ((𝐹‘(𝑎𝐷𝑏)) ≤ (𝐹𝑦) ↔ (𝐹‘(𝑎𝐷𝑏)) ≤ (𝐹‘((𝑐𝐷𝑎) +𝑒 (𝑐𝐷𝑏)))))
6966, 68imbi12d 233 . . . . . . 7 (𝑦 = ((𝑐𝐷𝑎) +𝑒 (𝑐𝐷𝑏)) → (((𝑎𝐷𝑏) ≤ 𝑦 → (𝐹‘(𝑎𝐷𝑏)) ≤ (𝐹𝑦)) ↔ ((𝑎𝐷𝑏) ≤ ((𝑐𝐷𝑎) +𝑒 (𝑐𝐷𝑏)) → (𝐹‘(𝑎𝐷𝑏)) ≤ (𝐹‘((𝑐𝐷𝑎) +𝑒 (𝑐𝐷𝑏))))))
7065, 69rspc2va 2844 . . . . . 6 ((((𝑎𝐷𝑏) ∈ (0[,]+∞) ∧ ((𝑐𝐷𝑎) +𝑒 (𝑐𝐷𝑏)) ∈ (0[,]+∞)) ∧ ∀𝑥 ∈ (0[,]+∞)∀𝑦 ∈ (0[,]+∞)(𝑥𝑦 → (𝐹𝑥) ≤ (𝐹𝑦))) → ((𝑎𝐷𝑏) ≤ ((𝑐𝐷𝑎) +𝑒 (𝑐𝐷𝑏)) → (𝐹‘(𝑎𝐷𝑏)) ≤ (𝐹‘((𝑐𝐷𝑎) +𝑒 (𝑐𝐷𝑏)))))
7142, 51, 62, 70syl21anc 1227 . . . . 5 ((𝜑 ∧ (𝑎𝑋𝑏𝑋𝑐𝑋)) → ((𝑎𝐷𝑏) ≤ ((𝑐𝐷𝑎) +𝑒 (𝑐𝐷𝑏)) → (𝐹‘(𝑎𝐷𝑏)) ≤ (𝐹‘((𝑐𝐷𝑎) +𝑒 (𝑐𝐷𝑏)))))
7259, 71mpd 13 . . . 4 ((𝜑 ∧ (𝑎𝑋𝑏𝑋𝑐𝑋)) → (𝐹‘(𝑎𝐷𝑏)) ≤ (𝐹‘((𝑐𝐷𝑎) +𝑒 (𝑐𝐷𝑏))))
73 comet.5 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ (0[,]+∞) ∧ 𝑦 ∈ (0[,]+∞))) → (𝐹‘(𝑥 +𝑒 𝑦)) ≤ ((𝐹𝑥) +𝑒 (𝐹𝑦)))
7473ralrimivva 2548 . . . . . 6 (𝜑 → ∀𝑥 ∈ (0[,]+∞)∀𝑦 ∈ (0[,]+∞)(𝐹‘(𝑥 +𝑒 𝑦)) ≤ ((𝐹𝑥) +𝑒 (𝐹𝑦)))
7574adantr 274 . . . . 5 ((𝜑 ∧ (𝑎𝑋𝑏𝑋𝑐𝑋)) → ∀𝑥 ∈ (0[,]+∞)∀𝑦 ∈ (0[,]+∞)(𝐹‘(𝑥 +𝑒 𝑦)) ≤ ((𝐹𝑥) +𝑒 (𝐹𝑦)))
76 fvoveq1 5865 . . . . . . 7 (𝑥 = (𝑐𝐷𝑎) → (𝐹‘(𝑥 +𝑒 𝑦)) = (𝐹‘((𝑐𝐷𝑎) +𝑒 𝑦)))
77 fveq2 5486 . . . . . . . 8 (𝑥 = (𝑐𝐷𝑎) → (𝐹𝑥) = (𝐹‘(𝑐𝐷𝑎)))
7877oveq1d 5857 . . . . . . 7 (𝑥 = (𝑐𝐷𝑎) → ((𝐹𝑥) +𝑒 (𝐹𝑦)) = ((𝐹‘(𝑐𝐷𝑎)) +𝑒 (𝐹𝑦)))
7976, 78breq12d 3995 . . . . . 6 (𝑥 = (𝑐𝐷𝑎) → ((𝐹‘(𝑥 +𝑒 𝑦)) ≤ ((𝐹𝑥) +𝑒 (𝐹𝑦)) ↔ (𝐹‘((𝑐𝐷𝑎) +𝑒 𝑦)) ≤ ((𝐹‘(𝑐𝐷𝑎)) +𝑒 (𝐹𝑦))))
80 oveq2 5850 . . . . . . . 8 (𝑦 = (𝑐𝐷𝑏) → ((𝑐𝐷𝑎) +𝑒 𝑦) = ((𝑐𝐷𝑎) +𝑒 (𝑐𝐷𝑏)))
8180fveq2d 5490 . . . . . . 7 (𝑦 = (𝑐𝐷𝑏) → (𝐹‘((𝑐𝐷𝑎) +𝑒 𝑦)) = (𝐹‘((𝑐𝐷𝑎) +𝑒 (𝑐𝐷𝑏))))
82 fveq2 5486 . . . . . . . 8 (𝑦 = (𝑐𝐷𝑏) → (𝐹𝑦) = (𝐹‘(𝑐𝐷𝑏)))
8382oveq2d 5858 . . . . . . 7 (𝑦 = (𝑐𝐷𝑏) → ((𝐹‘(𝑐𝐷𝑎)) +𝑒 (𝐹𝑦)) = ((𝐹‘(𝑐𝐷𝑎)) +𝑒 (𝐹‘(𝑐𝐷𝑏))))
8481, 83breq12d 3995 . . . . . 6 (𝑦 = (𝑐𝐷𝑏) → ((𝐹‘((𝑐𝐷𝑎) +𝑒 𝑦)) ≤ ((𝐹‘(𝑐𝐷𝑎)) +𝑒 (𝐹𝑦)) ↔ (𝐹‘((𝑐𝐷𝑎) +𝑒 (𝑐𝐷𝑏))) ≤ ((𝐹‘(𝑐𝐷𝑎)) +𝑒 (𝐹‘(𝑐𝐷𝑏)))))
8579, 84rspc2va 2844 . . . . 5 ((((𝑐𝐷𝑎) ∈ (0[,]+∞) ∧ (𝑐𝐷𝑏) ∈ (0[,]+∞)) ∧ ∀𝑥 ∈ (0[,]+∞)∀𝑦 ∈ (0[,]+∞)(𝐹‘(𝑥 +𝑒 𝑦)) ≤ ((𝐹𝑥) +𝑒 (𝐹𝑦))) → (𝐹‘((𝑐𝐷𝑎) +𝑒 (𝑐𝐷𝑏))) ≤ ((𝐹‘(𝑐𝐷𝑎)) +𝑒 (𝐹‘(𝑐𝐷𝑏))))
8647, 49, 75, 85syl21anc 1227 . . . 4 ((𝜑 ∧ (𝑎𝑋𝑏𝑋𝑐𝑋)) → (𝐹‘((𝑐𝐷𝑎) +𝑒 (𝑐𝐷𝑏))) ≤ ((𝐹‘(𝑐𝐷𝑎)) +𝑒 (𝐹‘(𝑐𝐷𝑏))))
8743, 52, 55, 72, 86xrletrd 9748 . . 3 ((𝜑 ∧ (𝑎𝑋𝑏𝑋𝑐𝑋)) → (𝐹‘(𝑎𝐷𝑏)) ≤ ((𝐹‘(𝑐𝐷𝑎)) +𝑒 (𝐹‘(𝑐𝐷𝑏))))
88273adantr3 1148 . . 3 ((𝜑 ∧ (𝑎𝑋𝑏𝑋𝑐𝑋)) → (𝑎(𝐹𝐷)𝑏) = (𝐹‘(𝑎𝐷𝑏)))
898adantr 274 . . . . . 6 ((𝜑 ∧ (𝑎𝑋𝑏𝑋𝑐𝑋)) → 𝐷:(𝑋 × 𝑋)⟶ℝ*)
9045, 46opelxpd 4637 . . . . . 6 ((𝜑 ∧ (𝑎𝑋𝑏𝑋𝑐𝑋)) → ⟨𝑐, 𝑎⟩ ∈ (𝑋 × 𝑋))
91 fvco3 5557 . . . . . 6 ((𝐷:(𝑋 × 𝑋)⟶ℝ* ∧ ⟨𝑐, 𝑎⟩ ∈ (𝑋 × 𝑋)) → ((𝐹𝐷)‘⟨𝑐, 𝑎⟩) = (𝐹‘(𝐷‘⟨𝑐, 𝑎⟩)))
9289, 90, 91syl2anc 409 . . . . 5 ((𝜑 ∧ (𝑎𝑋𝑏𝑋𝑐𝑋)) → ((𝐹𝐷)‘⟨𝑐, 𝑎⟩) = (𝐹‘(𝐷‘⟨𝑐, 𝑎⟩)))
93 df-ov 5845 . . . . 5 (𝑐(𝐹𝐷)𝑎) = ((𝐹𝐷)‘⟨𝑐, 𝑎⟩)
94 df-ov 5845 . . . . . 6 (𝑐𝐷𝑎) = (𝐷‘⟨𝑐, 𝑎⟩)
9594fveq2i 5489 . . . . 5 (𝐹‘(𝑐𝐷𝑎)) = (𝐹‘(𝐷‘⟨𝑐, 𝑎⟩))
9692, 93, 953eqtr4g 2224 . . . 4 ((𝜑 ∧ (𝑎𝑋𝑏𝑋𝑐𝑋)) → (𝑐(𝐹𝐷)𝑎) = (𝐹‘(𝑐𝐷𝑎)))
9745, 48opelxpd 4637 . . . . . 6 ((𝜑 ∧ (𝑎𝑋𝑏𝑋𝑐𝑋)) → ⟨𝑐, 𝑏⟩ ∈ (𝑋 × 𝑋))
98 fvco3 5557 . . . . . 6 ((𝐷:(𝑋 × 𝑋)⟶ℝ* ∧ ⟨𝑐, 𝑏⟩ ∈ (𝑋 × 𝑋)) → ((𝐹𝐷)‘⟨𝑐, 𝑏⟩) = (𝐹‘(𝐷‘⟨𝑐, 𝑏⟩)))
9989, 97, 98syl2anc 409 . . . . 5 ((𝜑 ∧ (𝑎𝑋𝑏𝑋𝑐𝑋)) → ((𝐹𝐷)‘⟨𝑐, 𝑏⟩) = (𝐹‘(𝐷‘⟨𝑐, 𝑏⟩)))
100 df-ov 5845 . . . . 5 (𝑐(𝐹𝐷)𝑏) = ((𝐹𝐷)‘⟨𝑐, 𝑏⟩)
101 df-ov 5845 . . . . . 6 (𝑐𝐷𝑏) = (𝐷‘⟨𝑐, 𝑏⟩)
102101fveq2i 5489 . . . . 5 (𝐹‘(𝑐𝐷𝑏)) = (𝐹‘(𝐷‘⟨𝑐, 𝑏⟩))
10399, 100, 1023eqtr4g 2224 . . . 4 ((𝜑 ∧ (𝑎𝑋𝑏𝑋𝑐𝑋)) → (𝑐(𝐹𝐷)𝑏) = (𝐹‘(𝑐𝐷𝑏)))
10496, 103oveq12d 5860 . . 3 ((𝜑 ∧ (𝑎𝑋𝑏𝑋𝑐𝑋)) → ((𝑐(𝐹𝐷)𝑎) +𝑒 (𝑐(𝐹𝐷)𝑏)) = ((𝐹‘(𝑐𝐷𝑎)) +𝑒 (𝐹‘(𝑐𝐷𝑏))))
10587, 88, 1043brtr4d 4014 . 2 ((𝜑 ∧ (𝑎𝑋𝑏𝑋𝑐𝑋)) → (𝑎(𝐹𝐷)𝑏) ≤ ((𝑐(𝐹𝐷)𝑎) +𝑒 (𝑐(𝐹𝐷)𝑏)))
1065, 20, 40, 105isxmetd 12997 1 (𝜑 → (𝐹𝐷) ∈ (∞Met‘𝑋))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104  w3a 968   = wceq 1343  wcel 2136  wral 2444  cop 3579   class class class wbr 3982   × cxp 4602  dom cdm 4604  ccom 4608  Rel wrel 4609   Fn wfn 5183  wf 5184  cfv 5188  (class class class)co 5842  0cc0 7753  +∞cpnf 7930  *cxr 7932  cle 7934   +𝑒 cxad 9706  [,]cicc 9827  ∞Metcxmet 12630
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-sep 4100  ax-pow 4153  ax-pr 4187  ax-un 4411  ax-setind 4514  ax-cnex 7844  ax-resscn 7845  ax-1cn 7846  ax-1re 7847  ax-icn 7848  ax-addcl 7849  ax-addrcl 7850  ax-mulcl 7851  ax-mulrcl 7852  ax-addcom 7853  ax-mulcom 7854  ax-addass 7855  ax-mulass 7856  ax-distr 7857  ax-i2m1 7858  ax-0lt1 7859  ax-1rid 7860  ax-0id 7861  ax-rnegex 7862  ax-precex 7863  ax-cnre 7864  ax-pre-ltirr 7865  ax-pre-ltwlin 7866  ax-pre-lttrn 7867  ax-pre-apti 7868  ax-pre-ltadd 7869  ax-pre-mulgt0 7870
This theorem depends on definitions:  df-bi 116  df-dc 825  df-3or 969  df-3an 970  df-tru 1346  df-fal 1349  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ne 2337  df-nel 2432  df-ral 2449  df-rex 2450  df-reu 2451  df-rab 2453  df-v 2728  df-sbc 2952  df-csb 3046  df-dif 3118  df-un 3120  df-in 3122  df-ss 3129  df-if 3521  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-iun 3868  df-br 3983  df-opab 4044  df-mpt 4045  df-id 4271  df-po 4274  df-iso 4275  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-rn 4615  df-res 4616  df-ima 4617  df-iota 5153  df-fun 5190  df-fn 5191  df-f 5192  df-fv 5196  df-riota 5798  df-ov 5845  df-oprab 5846  df-mpo 5847  df-1st 6108  df-2nd 6109  df-map 6616  df-pnf 7935  df-mnf 7936  df-xr 7937  df-ltxr 7938  df-le 7939  df-sub 8071  df-neg 8072  df-2 8916  df-xadd 9709  df-icc 9831  df-xmet 12638
This theorem is referenced by:  bdxmet  13151
  Copyright terms: Public domain W3C validator