Proof of Theorem isxmet2d
Step | Hyp | Ref
| Expression |
1 | | isxmetd.0 |
. 2
⊢ (𝜑 → 𝑋 ∈ V) |
2 | | isxmetd.1 |
. 2
⊢ (𝜑 → 𝐷:(𝑋 × 𝑋)⟶ℝ*) |
3 | 2 | fovrnda 5985 |
. . . 4
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋)) → (𝑥𝐷𝑦) ∈
ℝ*) |
4 | | 0xr 7945 |
. . . 4
⊢ 0 ∈
ℝ* |
5 | | xrletri3 9740 |
. . . 4
⊢ (((𝑥𝐷𝑦) ∈ ℝ* ∧ 0 ∈
ℝ*) → ((𝑥𝐷𝑦) = 0 ↔ ((𝑥𝐷𝑦) ≤ 0 ∧ 0 ≤ (𝑥𝐷𝑦)))) |
6 | 3, 4, 5 | sylancl 410 |
. . 3
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋)) → ((𝑥𝐷𝑦) = 0 ↔ ((𝑥𝐷𝑦) ≤ 0 ∧ 0 ≤ (𝑥𝐷𝑦)))) |
7 | | isxmet2d.2 |
. . . 4
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋)) → 0 ≤ (𝑥𝐷𝑦)) |
8 | 7 | biantrud 302 |
. . 3
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋)) → ((𝑥𝐷𝑦) ≤ 0 ↔ ((𝑥𝐷𝑦) ≤ 0 ∧ 0 ≤ (𝑥𝐷𝑦)))) |
9 | | isxmet2d.3 |
. . 3
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋)) → ((𝑥𝐷𝑦) ≤ 0 ↔ 𝑥 = 𝑦)) |
10 | 6, 8, 9 | 3bitr2d 215 |
. 2
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋)) → ((𝑥𝐷𝑦) = 0 ↔ 𝑥 = 𝑦)) |
11 | | isxmet2d.4 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋) ∧ ((𝑧𝐷𝑥) ∈ ℝ ∧ (𝑧𝐷𝑦) ∈ ℝ)) → (𝑥𝐷𝑦) ≤ ((𝑧𝐷𝑥) + (𝑧𝐷𝑦))) |
12 | 11 | 3expa 1193 |
. . . . . 6
⊢ (((𝜑 ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋)) ∧ ((𝑧𝐷𝑥) ∈ ℝ ∧ (𝑧𝐷𝑦) ∈ ℝ)) → (𝑥𝐷𝑦) ≤ ((𝑧𝐷𝑥) + (𝑧𝐷𝑦))) |
13 | | rexadd 9788 |
. . . . . . 7
⊢ (((𝑧𝐷𝑥) ∈ ℝ ∧ (𝑧𝐷𝑦) ∈ ℝ) → ((𝑧𝐷𝑥) +𝑒 (𝑧𝐷𝑦)) = ((𝑧𝐷𝑥) + (𝑧𝐷𝑦))) |
14 | 13 | adantl 275 |
. . . . . 6
⊢ (((𝜑 ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋)) ∧ ((𝑧𝐷𝑥) ∈ ℝ ∧ (𝑧𝐷𝑦) ∈ ℝ)) → ((𝑧𝐷𝑥) +𝑒 (𝑧𝐷𝑦)) = ((𝑧𝐷𝑥) + (𝑧𝐷𝑦))) |
15 | 12, 14 | breqtrrd 4010 |
. . . . 5
⊢ (((𝜑 ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋)) ∧ ((𝑧𝐷𝑥) ∈ ℝ ∧ (𝑧𝐷𝑦) ∈ ℝ)) → (𝑥𝐷𝑦) ≤ ((𝑧𝐷𝑥) +𝑒 (𝑧𝐷𝑦))) |
16 | 15 | anassrs 398 |
. . . 4
⊢ ((((𝜑 ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋)) ∧ (𝑧𝐷𝑥) ∈ ℝ) ∧ (𝑧𝐷𝑦) ∈ ℝ) → (𝑥𝐷𝑦) ≤ ((𝑧𝐷𝑥) +𝑒 (𝑧𝐷𝑦))) |
17 | 3 | 3adantr3 1148 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋)) → (𝑥𝐷𝑦) ∈
ℝ*) |
18 | | pnfge 9725 |
. . . . . . 7
⊢ ((𝑥𝐷𝑦) ∈ ℝ* → (𝑥𝐷𝑦) ≤ +∞) |
19 | 17, 18 | syl 14 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋)) → (𝑥𝐷𝑦) ≤ +∞) |
20 | 19 | ad2antrr 480 |
. . . . 5
⊢ ((((𝜑 ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋)) ∧ (𝑧𝐷𝑥) ∈ ℝ) ∧ (𝑧𝐷𝑦) = +∞) → (𝑥𝐷𝑦) ≤ +∞) |
21 | | oveq2 5850 |
. . . . . 6
⊢ ((𝑧𝐷𝑦) = +∞ → ((𝑧𝐷𝑥) +𝑒 (𝑧𝐷𝑦)) = ((𝑧𝐷𝑥) +𝑒
+∞)) |
22 | 2 | ffnd 5338 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝐷 Fn (𝑋 × 𝑋)) |
23 | | elxrge0 9914 |
. . . . . . . . . . . . 13
⊢ ((𝑥𝐷𝑦) ∈ (0[,]+∞) ↔ ((𝑥𝐷𝑦) ∈ ℝ* ∧ 0 ≤
(𝑥𝐷𝑦))) |
24 | 3, 7, 23 | sylanbrc 414 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋)) → (𝑥𝐷𝑦) ∈ (0[,]+∞)) |
25 | 24 | ralrimivva 2548 |
. . . . . . . . . . 11
⊢ (𝜑 → ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 (𝑥𝐷𝑦) ∈ (0[,]+∞)) |
26 | | ffnov 5946 |
. . . . . . . . . . 11
⊢ (𝐷:(𝑋 × 𝑋)⟶(0[,]+∞) ↔ (𝐷 Fn (𝑋 × 𝑋) ∧ ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 (𝑥𝐷𝑦) ∈ (0[,]+∞))) |
27 | 22, 25, 26 | sylanbrc 414 |
. . . . . . . . . 10
⊢ (𝜑 → 𝐷:(𝑋 × 𝑋)⟶(0[,]+∞)) |
28 | 27 | adantr 274 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋)) → 𝐷:(𝑋 × 𝑋)⟶(0[,]+∞)) |
29 | | simpr3 995 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋)) → 𝑧 ∈ 𝑋) |
30 | | simpr1 993 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋)) → 𝑥 ∈ 𝑋) |
31 | 28, 29, 30 | fovrnd 5986 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋)) → (𝑧𝐷𝑥) ∈ (0[,]+∞)) |
32 | | elxrge0 9914 |
. . . . . . . . 9
⊢ ((𝑧𝐷𝑥) ∈ (0[,]+∞) ↔ ((𝑧𝐷𝑥) ∈ ℝ* ∧ 0 ≤
(𝑧𝐷𝑥))) |
33 | 32 | simplbi 272 |
. . . . . . . 8
⊢ ((𝑧𝐷𝑥) ∈ (0[,]+∞) → (𝑧𝐷𝑥) ∈
ℝ*) |
34 | 31, 33 | syl 14 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋)) → (𝑧𝐷𝑥) ∈
ℝ*) |
35 | | renemnf 7947 |
. . . . . . 7
⊢ ((𝑧𝐷𝑥) ∈ ℝ → (𝑧𝐷𝑥) ≠ -∞) |
36 | | xaddpnf1 9782 |
. . . . . . 7
⊢ (((𝑧𝐷𝑥) ∈ ℝ* ∧ (𝑧𝐷𝑥) ≠ -∞) → ((𝑧𝐷𝑥) +𝑒 +∞) =
+∞) |
37 | 34, 35, 36 | syl2an 287 |
. . . . . 6
⊢ (((𝜑 ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋)) ∧ (𝑧𝐷𝑥) ∈ ℝ) → ((𝑧𝐷𝑥) +𝑒 +∞) =
+∞) |
38 | 21, 37 | sylan9eqr 2221 |
. . . . 5
⊢ ((((𝜑 ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋)) ∧ (𝑧𝐷𝑥) ∈ ℝ) ∧ (𝑧𝐷𝑦) = +∞) → ((𝑧𝐷𝑥) +𝑒 (𝑧𝐷𝑦)) = +∞) |
39 | 20, 38 | breqtrrd 4010 |
. . . 4
⊢ ((((𝜑 ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋)) ∧ (𝑧𝐷𝑥) ∈ ℝ) ∧ (𝑧𝐷𝑦) = +∞) → (𝑥𝐷𝑦) ≤ ((𝑧𝐷𝑥) +𝑒 (𝑧𝐷𝑦))) |
40 | | simpr2 994 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋)) → 𝑦 ∈ 𝑋) |
41 | 28, 29, 40 | fovrnd 5986 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋)) → (𝑧𝐷𝑦) ∈ (0[,]+∞)) |
42 | | elxrge0 9914 |
. . . . . . . . . . 11
⊢ ((𝑧𝐷𝑦) ∈ (0[,]+∞) ↔ ((𝑧𝐷𝑦) ∈ ℝ* ∧ 0 ≤
(𝑧𝐷𝑦))) |
43 | 42 | simplbi 272 |
. . . . . . . . . 10
⊢ ((𝑧𝐷𝑦) ∈ (0[,]+∞) → (𝑧𝐷𝑦) ∈
ℝ*) |
44 | 41, 43 | syl 14 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋)) → (𝑧𝐷𝑦) ∈
ℝ*) |
45 | 42 | simprbi 273 |
. . . . . . . . . 10
⊢ ((𝑧𝐷𝑦) ∈ (0[,]+∞) → 0 ≤ (𝑧𝐷𝑦)) |
46 | 41, 45 | syl 14 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋)) → 0 ≤ (𝑧𝐷𝑦)) |
47 | | ge0nemnf 9760 |
. . . . . . . . 9
⊢ (((𝑧𝐷𝑦) ∈ ℝ* ∧ 0 ≤
(𝑧𝐷𝑦)) → (𝑧𝐷𝑦) ≠ -∞) |
48 | 44, 46, 47 | syl2anc 409 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋)) → (𝑧𝐷𝑦) ≠ -∞) |
49 | 48 | neneqd 2357 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋)) → ¬ (𝑧𝐷𝑦) = -∞) |
50 | 49 | pm2.21d 609 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋)) → ((𝑧𝐷𝑦) = -∞ → (𝑥𝐷𝑦) ≤ ((𝑧𝐷𝑥) +𝑒 (𝑧𝐷𝑦)))) |
51 | 50 | adantr 274 |
. . . . 5
⊢ (((𝜑 ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋)) ∧ (𝑧𝐷𝑥) ∈ ℝ) → ((𝑧𝐷𝑦) = -∞ → (𝑥𝐷𝑦) ≤ ((𝑧𝐷𝑥) +𝑒 (𝑧𝐷𝑦)))) |
52 | 51 | imp 123 |
. . . 4
⊢ ((((𝜑 ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋)) ∧ (𝑧𝐷𝑥) ∈ ℝ) ∧ (𝑧𝐷𝑦) = -∞) → (𝑥𝐷𝑦) ≤ ((𝑧𝐷𝑥) +𝑒 (𝑧𝐷𝑦))) |
53 | 44 | adantr 274 |
. . . . 5
⊢ (((𝜑 ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋)) ∧ (𝑧𝐷𝑥) ∈ ℝ) → (𝑧𝐷𝑦) ∈
ℝ*) |
54 | | elxr 9712 |
. . . . 5
⊢ ((𝑧𝐷𝑦) ∈ ℝ* ↔ ((𝑧𝐷𝑦) ∈ ℝ ∨ (𝑧𝐷𝑦) = +∞ ∨ (𝑧𝐷𝑦) = -∞)) |
55 | 53, 54 | sylib 121 |
. . . 4
⊢ (((𝜑 ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋)) ∧ (𝑧𝐷𝑥) ∈ ℝ) → ((𝑧𝐷𝑦) ∈ ℝ ∨ (𝑧𝐷𝑦) = +∞ ∨ (𝑧𝐷𝑦) = -∞)) |
56 | 16, 39, 52, 55 | mpjao3dan 1297 |
. . 3
⊢ (((𝜑 ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋)) ∧ (𝑧𝐷𝑥) ∈ ℝ) → (𝑥𝐷𝑦) ≤ ((𝑧𝐷𝑥) +𝑒 (𝑧𝐷𝑦))) |
57 | 19 | adantr 274 |
. . . 4
⊢ (((𝜑 ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋)) ∧ (𝑧𝐷𝑥) = +∞) → (𝑥𝐷𝑦) ≤ +∞) |
58 | | oveq1 5849 |
. . . . 5
⊢ ((𝑧𝐷𝑥) = +∞ → ((𝑧𝐷𝑥) +𝑒 (𝑧𝐷𝑦)) = (+∞ +𝑒 (𝑧𝐷𝑦))) |
59 | | xaddpnf2 9783 |
. . . . . 6
⊢ (((𝑧𝐷𝑦) ∈ ℝ* ∧ (𝑧𝐷𝑦) ≠ -∞) → (+∞
+𝑒 (𝑧𝐷𝑦)) = +∞) |
60 | 44, 48, 59 | syl2anc 409 |
. . . . 5
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋)) → (+∞ +𝑒
(𝑧𝐷𝑦)) = +∞) |
61 | 58, 60 | sylan9eqr 2221 |
. . . 4
⊢ (((𝜑 ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋)) ∧ (𝑧𝐷𝑥) = +∞) → ((𝑧𝐷𝑥) +𝑒 (𝑧𝐷𝑦)) = +∞) |
62 | 57, 61 | breqtrrd 4010 |
. . 3
⊢ (((𝜑 ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋)) ∧ (𝑧𝐷𝑥) = +∞) → (𝑥𝐷𝑦) ≤ ((𝑧𝐷𝑥) +𝑒 (𝑧𝐷𝑦))) |
63 | 32 | simprbi 273 |
. . . . . . . 8
⊢ ((𝑧𝐷𝑥) ∈ (0[,]+∞) → 0 ≤ (𝑧𝐷𝑥)) |
64 | 31, 63 | syl 14 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋)) → 0 ≤ (𝑧𝐷𝑥)) |
65 | | ge0nemnf 9760 |
. . . . . . 7
⊢ (((𝑧𝐷𝑥) ∈ ℝ* ∧ 0 ≤
(𝑧𝐷𝑥)) → (𝑧𝐷𝑥) ≠ -∞) |
66 | 34, 64, 65 | syl2anc 409 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋)) → (𝑧𝐷𝑥) ≠ -∞) |
67 | 66 | neneqd 2357 |
. . . . 5
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋)) → ¬ (𝑧𝐷𝑥) = -∞) |
68 | 67 | pm2.21d 609 |
. . . 4
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋)) → ((𝑧𝐷𝑥) = -∞ → (𝑥𝐷𝑦) ≤ ((𝑧𝐷𝑥) +𝑒 (𝑧𝐷𝑦)))) |
69 | 68 | imp 123 |
. . 3
⊢ (((𝜑 ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋)) ∧ (𝑧𝐷𝑥) = -∞) → (𝑥𝐷𝑦) ≤ ((𝑧𝐷𝑥) +𝑒 (𝑧𝐷𝑦))) |
70 | | elxr 9712 |
. . . 4
⊢ ((𝑧𝐷𝑥) ∈ ℝ* ↔ ((𝑧𝐷𝑥) ∈ ℝ ∨ (𝑧𝐷𝑥) = +∞ ∨ (𝑧𝐷𝑥) = -∞)) |
71 | 34, 70 | sylib 121 |
. . 3
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋)) → ((𝑧𝐷𝑥) ∈ ℝ ∨ (𝑧𝐷𝑥) = +∞ ∨ (𝑧𝐷𝑥) = -∞)) |
72 | 56, 62, 69, 71 | mpjao3dan 1297 |
. 2
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋)) → (𝑥𝐷𝑦) ≤ ((𝑧𝐷𝑥) +𝑒 (𝑧𝐷𝑦))) |
73 | 1, 2, 10, 72 | isxmetd 12987 |
1
⊢ (𝜑 → 𝐷 ∈ (∞Met‘𝑋)) |