ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  isxmet2d GIF version

Theorem isxmet2d 12517
Description: It is safe to only require the triangle inequality when the values are real (so that we can use the standard addition over the reals), but in this case the nonnegativity constraint cannot be deduced and must be provided separately. (Counterexample: 𝐷(𝑥, 𝑦) = if(𝑥 = 𝑦, 0, -∞) satisfies all hypotheses except nonnegativity.) (Contributed by Mario Carneiro, 20-Aug-2015.)
Hypotheses
Ref Expression
isxmetd.0 (𝜑𝑋 ∈ V)
isxmetd.1 (𝜑𝐷:(𝑋 × 𝑋)⟶ℝ*)
isxmet2d.2 ((𝜑 ∧ (𝑥𝑋𝑦𝑋)) → 0 ≤ (𝑥𝐷𝑦))
isxmet2d.3 ((𝜑 ∧ (𝑥𝑋𝑦𝑋)) → ((𝑥𝐷𝑦) ≤ 0 ↔ 𝑥 = 𝑦))
isxmet2d.4 ((𝜑 ∧ (𝑥𝑋𝑦𝑋𝑧𝑋) ∧ ((𝑧𝐷𝑥) ∈ ℝ ∧ (𝑧𝐷𝑦) ∈ ℝ)) → (𝑥𝐷𝑦) ≤ ((𝑧𝐷𝑥) + (𝑧𝐷𝑦)))
Assertion
Ref Expression
isxmet2d (𝜑𝐷 ∈ (∞Met‘𝑋))
Distinct variable groups:   𝑥,𝑦,𝑧,𝐷   𝜑,𝑥,𝑦,𝑧   𝑥,𝑋,𝑦,𝑧

Proof of Theorem isxmet2d
StepHypRef Expression
1 isxmetd.0 . 2 (𝜑𝑋 ∈ V)
2 isxmetd.1 . 2 (𝜑𝐷:(𝑋 × 𝑋)⟶ℝ*)
32fovrnda 5914 . . . 4 ((𝜑 ∧ (𝑥𝑋𝑦𝑋)) → (𝑥𝐷𝑦) ∈ ℝ*)
4 0xr 7812 . . . 4 0 ∈ ℝ*
5 xrletri3 9588 . . . 4 (((𝑥𝐷𝑦) ∈ ℝ* ∧ 0 ∈ ℝ*) → ((𝑥𝐷𝑦) = 0 ↔ ((𝑥𝐷𝑦) ≤ 0 ∧ 0 ≤ (𝑥𝐷𝑦))))
63, 4, 5sylancl 409 . . 3 ((𝜑 ∧ (𝑥𝑋𝑦𝑋)) → ((𝑥𝐷𝑦) = 0 ↔ ((𝑥𝐷𝑦) ≤ 0 ∧ 0 ≤ (𝑥𝐷𝑦))))
7 isxmet2d.2 . . . 4 ((𝜑 ∧ (𝑥𝑋𝑦𝑋)) → 0 ≤ (𝑥𝐷𝑦))
87biantrud 302 . . 3 ((𝜑 ∧ (𝑥𝑋𝑦𝑋)) → ((𝑥𝐷𝑦) ≤ 0 ↔ ((𝑥𝐷𝑦) ≤ 0 ∧ 0 ≤ (𝑥𝐷𝑦))))
9 isxmet2d.3 . . 3 ((𝜑 ∧ (𝑥𝑋𝑦𝑋)) → ((𝑥𝐷𝑦) ≤ 0 ↔ 𝑥 = 𝑦))
106, 8, 93bitr2d 215 . 2 ((𝜑 ∧ (𝑥𝑋𝑦𝑋)) → ((𝑥𝐷𝑦) = 0 ↔ 𝑥 = 𝑦))
11 isxmet2d.4 . . . . . . 7 ((𝜑 ∧ (𝑥𝑋𝑦𝑋𝑧𝑋) ∧ ((𝑧𝐷𝑥) ∈ ℝ ∧ (𝑧𝐷𝑦) ∈ ℝ)) → (𝑥𝐷𝑦) ≤ ((𝑧𝐷𝑥) + (𝑧𝐷𝑦)))
12113expa 1181 . . . . . 6 (((𝜑 ∧ (𝑥𝑋𝑦𝑋𝑧𝑋)) ∧ ((𝑧𝐷𝑥) ∈ ℝ ∧ (𝑧𝐷𝑦) ∈ ℝ)) → (𝑥𝐷𝑦) ≤ ((𝑧𝐷𝑥) + (𝑧𝐷𝑦)))
13 rexadd 9635 . . . . . . 7 (((𝑧𝐷𝑥) ∈ ℝ ∧ (𝑧𝐷𝑦) ∈ ℝ) → ((𝑧𝐷𝑥) +𝑒 (𝑧𝐷𝑦)) = ((𝑧𝐷𝑥) + (𝑧𝐷𝑦)))
1413adantl 275 . . . . . 6 (((𝜑 ∧ (𝑥𝑋𝑦𝑋𝑧𝑋)) ∧ ((𝑧𝐷𝑥) ∈ ℝ ∧ (𝑧𝐷𝑦) ∈ ℝ)) → ((𝑧𝐷𝑥) +𝑒 (𝑧𝐷𝑦)) = ((𝑧𝐷𝑥) + (𝑧𝐷𝑦)))
1512, 14breqtrrd 3956 . . . . 5 (((𝜑 ∧ (𝑥𝑋𝑦𝑋𝑧𝑋)) ∧ ((𝑧𝐷𝑥) ∈ ℝ ∧ (𝑧𝐷𝑦) ∈ ℝ)) → (𝑥𝐷𝑦) ≤ ((𝑧𝐷𝑥) +𝑒 (𝑧𝐷𝑦)))
1615anassrs 397 . . . 4 ((((𝜑 ∧ (𝑥𝑋𝑦𝑋𝑧𝑋)) ∧ (𝑧𝐷𝑥) ∈ ℝ) ∧ (𝑧𝐷𝑦) ∈ ℝ) → (𝑥𝐷𝑦) ≤ ((𝑧𝐷𝑥) +𝑒 (𝑧𝐷𝑦)))
1733adantr3 1142 . . . . . . 7 ((𝜑 ∧ (𝑥𝑋𝑦𝑋𝑧𝑋)) → (𝑥𝐷𝑦) ∈ ℝ*)
18 pnfge 9575 . . . . . . 7 ((𝑥𝐷𝑦) ∈ ℝ* → (𝑥𝐷𝑦) ≤ +∞)
1917, 18syl 14 . . . . . 6 ((𝜑 ∧ (𝑥𝑋𝑦𝑋𝑧𝑋)) → (𝑥𝐷𝑦) ≤ +∞)
2019ad2antrr 479 . . . . 5 ((((𝜑 ∧ (𝑥𝑋𝑦𝑋𝑧𝑋)) ∧ (𝑧𝐷𝑥) ∈ ℝ) ∧ (𝑧𝐷𝑦) = +∞) → (𝑥𝐷𝑦) ≤ +∞)
21 oveq2 5782 . . . . . 6 ((𝑧𝐷𝑦) = +∞ → ((𝑧𝐷𝑥) +𝑒 (𝑧𝐷𝑦)) = ((𝑧𝐷𝑥) +𝑒 +∞))
222ffnd 5273 . . . . . . . . . . 11 (𝜑𝐷 Fn (𝑋 × 𝑋))
23 elxrge0 9761 . . . . . . . . . . . . 13 ((𝑥𝐷𝑦) ∈ (0[,]+∞) ↔ ((𝑥𝐷𝑦) ∈ ℝ* ∧ 0 ≤ (𝑥𝐷𝑦)))
243, 7, 23sylanbrc 413 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑥𝑋𝑦𝑋)) → (𝑥𝐷𝑦) ∈ (0[,]+∞))
2524ralrimivva 2514 . . . . . . . . . . 11 (𝜑 → ∀𝑥𝑋𝑦𝑋 (𝑥𝐷𝑦) ∈ (0[,]+∞))
26 ffnov 5875 . . . . . . . . . . 11 (𝐷:(𝑋 × 𝑋)⟶(0[,]+∞) ↔ (𝐷 Fn (𝑋 × 𝑋) ∧ ∀𝑥𝑋𝑦𝑋 (𝑥𝐷𝑦) ∈ (0[,]+∞)))
2722, 25, 26sylanbrc 413 . . . . . . . . . 10 (𝜑𝐷:(𝑋 × 𝑋)⟶(0[,]+∞))
2827adantr 274 . . . . . . . . 9 ((𝜑 ∧ (𝑥𝑋𝑦𝑋𝑧𝑋)) → 𝐷:(𝑋 × 𝑋)⟶(0[,]+∞))
29 simpr3 989 . . . . . . . . 9 ((𝜑 ∧ (𝑥𝑋𝑦𝑋𝑧𝑋)) → 𝑧𝑋)
30 simpr1 987 . . . . . . . . 9 ((𝜑 ∧ (𝑥𝑋𝑦𝑋𝑧𝑋)) → 𝑥𝑋)
3128, 29, 30fovrnd 5915 . . . . . . . 8 ((𝜑 ∧ (𝑥𝑋𝑦𝑋𝑧𝑋)) → (𝑧𝐷𝑥) ∈ (0[,]+∞))
32 elxrge0 9761 . . . . . . . . 9 ((𝑧𝐷𝑥) ∈ (0[,]+∞) ↔ ((𝑧𝐷𝑥) ∈ ℝ* ∧ 0 ≤ (𝑧𝐷𝑥)))
3332simplbi 272 . . . . . . . 8 ((𝑧𝐷𝑥) ∈ (0[,]+∞) → (𝑧𝐷𝑥) ∈ ℝ*)
3431, 33syl 14 . . . . . . 7 ((𝜑 ∧ (𝑥𝑋𝑦𝑋𝑧𝑋)) → (𝑧𝐷𝑥) ∈ ℝ*)
35 renemnf 7814 . . . . . . 7 ((𝑧𝐷𝑥) ∈ ℝ → (𝑧𝐷𝑥) ≠ -∞)
36 xaddpnf1 9629 . . . . . . 7 (((𝑧𝐷𝑥) ∈ ℝ* ∧ (𝑧𝐷𝑥) ≠ -∞) → ((𝑧𝐷𝑥) +𝑒 +∞) = +∞)
3734, 35, 36syl2an 287 . . . . . 6 (((𝜑 ∧ (𝑥𝑋𝑦𝑋𝑧𝑋)) ∧ (𝑧𝐷𝑥) ∈ ℝ) → ((𝑧𝐷𝑥) +𝑒 +∞) = +∞)
3821, 37sylan9eqr 2194 . . . . 5 ((((𝜑 ∧ (𝑥𝑋𝑦𝑋𝑧𝑋)) ∧ (𝑧𝐷𝑥) ∈ ℝ) ∧ (𝑧𝐷𝑦) = +∞) → ((𝑧𝐷𝑥) +𝑒 (𝑧𝐷𝑦)) = +∞)
3920, 38breqtrrd 3956 . . . 4 ((((𝜑 ∧ (𝑥𝑋𝑦𝑋𝑧𝑋)) ∧ (𝑧𝐷𝑥) ∈ ℝ) ∧ (𝑧𝐷𝑦) = +∞) → (𝑥𝐷𝑦) ≤ ((𝑧𝐷𝑥) +𝑒 (𝑧𝐷𝑦)))
40 simpr2 988 . . . . . . . . . . 11 ((𝜑 ∧ (𝑥𝑋𝑦𝑋𝑧𝑋)) → 𝑦𝑋)
4128, 29, 40fovrnd 5915 . . . . . . . . . 10 ((𝜑 ∧ (𝑥𝑋𝑦𝑋𝑧𝑋)) → (𝑧𝐷𝑦) ∈ (0[,]+∞))
42 elxrge0 9761 . . . . . . . . . . 11 ((𝑧𝐷𝑦) ∈ (0[,]+∞) ↔ ((𝑧𝐷𝑦) ∈ ℝ* ∧ 0 ≤ (𝑧𝐷𝑦)))
4342simplbi 272 . . . . . . . . . 10 ((𝑧𝐷𝑦) ∈ (0[,]+∞) → (𝑧𝐷𝑦) ∈ ℝ*)
4441, 43syl 14 . . . . . . . . 9 ((𝜑 ∧ (𝑥𝑋𝑦𝑋𝑧𝑋)) → (𝑧𝐷𝑦) ∈ ℝ*)
4542simprbi 273 . . . . . . . . . 10 ((𝑧𝐷𝑦) ∈ (0[,]+∞) → 0 ≤ (𝑧𝐷𝑦))
4641, 45syl 14 . . . . . . . . 9 ((𝜑 ∧ (𝑥𝑋𝑦𝑋𝑧𝑋)) → 0 ≤ (𝑧𝐷𝑦))
47 ge0nemnf 9607 . . . . . . . . 9 (((𝑧𝐷𝑦) ∈ ℝ* ∧ 0 ≤ (𝑧𝐷𝑦)) → (𝑧𝐷𝑦) ≠ -∞)
4844, 46, 47syl2anc 408 . . . . . . . 8 ((𝜑 ∧ (𝑥𝑋𝑦𝑋𝑧𝑋)) → (𝑧𝐷𝑦) ≠ -∞)
4948neneqd 2329 . . . . . . 7 ((𝜑 ∧ (𝑥𝑋𝑦𝑋𝑧𝑋)) → ¬ (𝑧𝐷𝑦) = -∞)
5049pm2.21d 608 . . . . . 6 ((𝜑 ∧ (𝑥𝑋𝑦𝑋𝑧𝑋)) → ((𝑧𝐷𝑦) = -∞ → (𝑥𝐷𝑦) ≤ ((𝑧𝐷𝑥) +𝑒 (𝑧𝐷𝑦))))
5150adantr 274 . . . . 5 (((𝜑 ∧ (𝑥𝑋𝑦𝑋𝑧𝑋)) ∧ (𝑧𝐷𝑥) ∈ ℝ) → ((𝑧𝐷𝑦) = -∞ → (𝑥𝐷𝑦) ≤ ((𝑧𝐷𝑥) +𝑒 (𝑧𝐷𝑦))))
5251imp 123 . . . 4 ((((𝜑 ∧ (𝑥𝑋𝑦𝑋𝑧𝑋)) ∧ (𝑧𝐷𝑥) ∈ ℝ) ∧ (𝑧𝐷𝑦) = -∞) → (𝑥𝐷𝑦) ≤ ((𝑧𝐷𝑥) +𝑒 (𝑧𝐷𝑦)))
5344adantr 274 . . . . 5 (((𝜑 ∧ (𝑥𝑋𝑦𝑋𝑧𝑋)) ∧ (𝑧𝐷𝑥) ∈ ℝ) → (𝑧𝐷𝑦) ∈ ℝ*)
54 elxr 9563 . . . . 5 ((𝑧𝐷𝑦) ∈ ℝ* ↔ ((𝑧𝐷𝑦) ∈ ℝ ∨ (𝑧𝐷𝑦) = +∞ ∨ (𝑧𝐷𝑦) = -∞))
5553, 54sylib 121 . . . 4 (((𝜑 ∧ (𝑥𝑋𝑦𝑋𝑧𝑋)) ∧ (𝑧𝐷𝑥) ∈ ℝ) → ((𝑧𝐷𝑦) ∈ ℝ ∨ (𝑧𝐷𝑦) = +∞ ∨ (𝑧𝐷𝑦) = -∞))
5616, 39, 52, 55mpjao3dan 1285 . . 3 (((𝜑 ∧ (𝑥𝑋𝑦𝑋𝑧𝑋)) ∧ (𝑧𝐷𝑥) ∈ ℝ) → (𝑥𝐷𝑦) ≤ ((𝑧𝐷𝑥) +𝑒 (𝑧𝐷𝑦)))
5719adantr 274 . . . 4 (((𝜑 ∧ (𝑥𝑋𝑦𝑋𝑧𝑋)) ∧ (𝑧𝐷𝑥) = +∞) → (𝑥𝐷𝑦) ≤ +∞)
58 oveq1 5781 . . . . 5 ((𝑧𝐷𝑥) = +∞ → ((𝑧𝐷𝑥) +𝑒 (𝑧𝐷𝑦)) = (+∞ +𝑒 (𝑧𝐷𝑦)))
59 xaddpnf2 9630 . . . . . 6 (((𝑧𝐷𝑦) ∈ ℝ* ∧ (𝑧𝐷𝑦) ≠ -∞) → (+∞ +𝑒 (𝑧𝐷𝑦)) = +∞)
6044, 48, 59syl2anc 408 . . . . 5 ((𝜑 ∧ (𝑥𝑋𝑦𝑋𝑧𝑋)) → (+∞ +𝑒 (𝑧𝐷𝑦)) = +∞)
6158, 60sylan9eqr 2194 . . . 4 (((𝜑 ∧ (𝑥𝑋𝑦𝑋𝑧𝑋)) ∧ (𝑧𝐷𝑥) = +∞) → ((𝑧𝐷𝑥) +𝑒 (𝑧𝐷𝑦)) = +∞)
6257, 61breqtrrd 3956 . . 3 (((𝜑 ∧ (𝑥𝑋𝑦𝑋𝑧𝑋)) ∧ (𝑧𝐷𝑥) = +∞) → (𝑥𝐷𝑦) ≤ ((𝑧𝐷𝑥) +𝑒 (𝑧𝐷𝑦)))
6332simprbi 273 . . . . . . . 8 ((𝑧𝐷𝑥) ∈ (0[,]+∞) → 0 ≤ (𝑧𝐷𝑥))
6431, 63syl 14 . . . . . . 7 ((𝜑 ∧ (𝑥𝑋𝑦𝑋𝑧𝑋)) → 0 ≤ (𝑧𝐷𝑥))
65 ge0nemnf 9607 . . . . . . 7 (((𝑧𝐷𝑥) ∈ ℝ* ∧ 0 ≤ (𝑧𝐷𝑥)) → (𝑧𝐷𝑥) ≠ -∞)
6634, 64, 65syl2anc 408 . . . . . 6 ((𝜑 ∧ (𝑥𝑋𝑦𝑋𝑧𝑋)) → (𝑧𝐷𝑥) ≠ -∞)
6766neneqd 2329 . . . . 5 ((𝜑 ∧ (𝑥𝑋𝑦𝑋𝑧𝑋)) → ¬ (𝑧𝐷𝑥) = -∞)
6867pm2.21d 608 . . . 4 ((𝜑 ∧ (𝑥𝑋𝑦𝑋𝑧𝑋)) → ((𝑧𝐷𝑥) = -∞ → (𝑥𝐷𝑦) ≤ ((𝑧𝐷𝑥) +𝑒 (𝑧𝐷𝑦))))
6968imp 123 . . 3 (((𝜑 ∧ (𝑥𝑋𝑦𝑋𝑧𝑋)) ∧ (𝑧𝐷𝑥) = -∞) → (𝑥𝐷𝑦) ≤ ((𝑧𝐷𝑥) +𝑒 (𝑧𝐷𝑦)))
70 elxr 9563 . . . 4 ((𝑧𝐷𝑥) ∈ ℝ* ↔ ((𝑧𝐷𝑥) ∈ ℝ ∨ (𝑧𝐷𝑥) = +∞ ∨ (𝑧𝐷𝑥) = -∞))
7134, 70sylib 121 . . 3 ((𝜑 ∧ (𝑥𝑋𝑦𝑋𝑧𝑋)) → ((𝑧𝐷𝑥) ∈ ℝ ∨ (𝑧𝐷𝑥) = +∞ ∨ (𝑧𝐷𝑥) = -∞))
7256, 62, 69, 71mpjao3dan 1285 . 2 ((𝜑 ∧ (𝑥𝑋𝑦𝑋𝑧𝑋)) → (𝑥𝐷𝑦) ≤ ((𝑧𝐷𝑥) +𝑒 (𝑧𝐷𝑦)))
731, 2, 10, 72isxmetd 12516 1 (𝜑𝐷 ∈ (∞Met‘𝑋))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104  w3o 961  w3a 962   = wceq 1331  wcel 1480  wne 2308  wral 2416  Vcvv 2686   class class class wbr 3929   × cxp 4537   Fn wfn 5118  wf 5119  cfv 5123  (class class class)co 5774  cr 7619  0cc0 7620   + caddc 7623  +∞cpnf 7797  -∞cmnf 7798  *cxr 7799  cle 7801   +𝑒 cxad 9557  [,]cicc 9674  ∞Metcxmet 12149
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-sep 4046  ax-pow 4098  ax-pr 4131  ax-un 4355  ax-setind 4452  ax-cnex 7711  ax-resscn 7712  ax-1re 7714  ax-addrcl 7717  ax-rnegex 7729  ax-pre-ltirr 7732  ax-pre-ltwlin 7733  ax-pre-lttrn 7734  ax-pre-apti 7735
This theorem depends on definitions:  df-bi 116  df-dc 820  df-3or 963  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2002  df-mo 2003  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ne 2309  df-nel 2404  df-ral 2421  df-rex 2422  df-rab 2425  df-v 2688  df-sbc 2910  df-csb 3004  df-dif 3073  df-un 3075  df-in 3077  df-ss 3084  df-if 3475  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-uni 3737  df-iun 3815  df-br 3930  df-opab 3990  df-mpt 3991  df-id 4215  df-po 4218  df-iso 4219  df-xp 4545  df-rel 4546  df-cnv 4547  df-co 4548  df-dm 4549  df-rn 4550  df-res 4551  df-ima 4552  df-iota 5088  df-fun 5125  df-fn 5126  df-f 5127  df-fv 5131  df-ov 5777  df-oprab 5778  df-mpo 5779  df-1st 6038  df-2nd 6039  df-map 6544  df-pnf 7802  df-mnf 7803  df-xr 7804  df-ltxr 7805  df-le 7806  df-xadd 9560  df-icc 9678  df-xmet 12157
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator