Proof of Theorem isxmet2d
| Step | Hyp | Ref
| Expression |
| 1 | | isxmetd.0 |
. 2
⊢ (𝜑 → 𝑋 ∈ V) |
| 2 | | isxmetd.1 |
. 2
⊢ (𝜑 → 𝐷:(𝑋 × 𝑋)⟶ℝ*) |
| 3 | 2 | fovcdmda 6067 |
. . . 4
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋)) → (𝑥𝐷𝑦) ∈
ℝ*) |
| 4 | | 0xr 8073 |
. . . 4
⊢ 0 ∈
ℝ* |
| 5 | | xrletri3 9879 |
. . . 4
⊢ (((𝑥𝐷𝑦) ∈ ℝ* ∧ 0 ∈
ℝ*) → ((𝑥𝐷𝑦) = 0 ↔ ((𝑥𝐷𝑦) ≤ 0 ∧ 0 ≤ (𝑥𝐷𝑦)))) |
| 6 | 3, 4, 5 | sylancl 413 |
. . 3
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋)) → ((𝑥𝐷𝑦) = 0 ↔ ((𝑥𝐷𝑦) ≤ 0 ∧ 0 ≤ (𝑥𝐷𝑦)))) |
| 7 | | isxmet2d.2 |
. . . 4
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋)) → 0 ≤ (𝑥𝐷𝑦)) |
| 8 | 7 | biantrud 304 |
. . 3
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋)) → ((𝑥𝐷𝑦) ≤ 0 ↔ ((𝑥𝐷𝑦) ≤ 0 ∧ 0 ≤ (𝑥𝐷𝑦)))) |
| 9 | | isxmet2d.3 |
. . 3
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋)) → ((𝑥𝐷𝑦) ≤ 0 ↔ 𝑥 = 𝑦)) |
| 10 | 6, 8, 9 | 3bitr2d 216 |
. 2
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋)) → ((𝑥𝐷𝑦) = 0 ↔ 𝑥 = 𝑦)) |
| 11 | | isxmet2d.4 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋) ∧ ((𝑧𝐷𝑥) ∈ ℝ ∧ (𝑧𝐷𝑦) ∈ ℝ)) → (𝑥𝐷𝑦) ≤ ((𝑧𝐷𝑥) + (𝑧𝐷𝑦))) |
| 12 | 11 | 3expa 1205 |
. . . . . 6
⊢ (((𝜑 ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋)) ∧ ((𝑧𝐷𝑥) ∈ ℝ ∧ (𝑧𝐷𝑦) ∈ ℝ)) → (𝑥𝐷𝑦) ≤ ((𝑧𝐷𝑥) + (𝑧𝐷𝑦))) |
| 13 | | rexadd 9927 |
. . . . . . 7
⊢ (((𝑧𝐷𝑥) ∈ ℝ ∧ (𝑧𝐷𝑦) ∈ ℝ) → ((𝑧𝐷𝑥) +𝑒 (𝑧𝐷𝑦)) = ((𝑧𝐷𝑥) + (𝑧𝐷𝑦))) |
| 14 | 13 | adantl 277 |
. . . . . 6
⊢ (((𝜑 ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋)) ∧ ((𝑧𝐷𝑥) ∈ ℝ ∧ (𝑧𝐷𝑦) ∈ ℝ)) → ((𝑧𝐷𝑥) +𝑒 (𝑧𝐷𝑦)) = ((𝑧𝐷𝑥) + (𝑧𝐷𝑦))) |
| 15 | 12, 14 | breqtrrd 4061 |
. . . . 5
⊢ (((𝜑 ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋)) ∧ ((𝑧𝐷𝑥) ∈ ℝ ∧ (𝑧𝐷𝑦) ∈ ℝ)) → (𝑥𝐷𝑦) ≤ ((𝑧𝐷𝑥) +𝑒 (𝑧𝐷𝑦))) |
| 16 | 15 | anassrs 400 |
. . . 4
⊢ ((((𝜑 ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋)) ∧ (𝑧𝐷𝑥) ∈ ℝ) ∧ (𝑧𝐷𝑦) ∈ ℝ) → (𝑥𝐷𝑦) ≤ ((𝑧𝐷𝑥) +𝑒 (𝑧𝐷𝑦))) |
| 17 | 3 | 3adantr3 1160 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋)) → (𝑥𝐷𝑦) ∈
ℝ*) |
| 18 | | pnfge 9864 |
. . . . . . 7
⊢ ((𝑥𝐷𝑦) ∈ ℝ* → (𝑥𝐷𝑦) ≤ +∞) |
| 19 | 17, 18 | syl 14 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋)) → (𝑥𝐷𝑦) ≤ +∞) |
| 20 | 19 | ad2antrr 488 |
. . . . 5
⊢ ((((𝜑 ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋)) ∧ (𝑧𝐷𝑥) ∈ ℝ) ∧ (𝑧𝐷𝑦) = +∞) → (𝑥𝐷𝑦) ≤ +∞) |
| 21 | | oveq2 5930 |
. . . . . 6
⊢ ((𝑧𝐷𝑦) = +∞ → ((𝑧𝐷𝑥) +𝑒 (𝑧𝐷𝑦)) = ((𝑧𝐷𝑥) +𝑒
+∞)) |
| 22 | 2 | ffnd 5408 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝐷 Fn (𝑋 × 𝑋)) |
| 23 | | elxrge0 10053 |
. . . . . . . . . . . . 13
⊢ ((𝑥𝐷𝑦) ∈ (0[,]+∞) ↔ ((𝑥𝐷𝑦) ∈ ℝ* ∧ 0 ≤
(𝑥𝐷𝑦))) |
| 24 | 3, 7, 23 | sylanbrc 417 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋)) → (𝑥𝐷𝑦) ∈ (0[,]+∞)) |
| 25 | 24 | ralrimivva 2579 |
. . . . . . . . . . 11
⊢ (𝜑 → ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 (𝑥𝐷𝑦) ∈ (0[,]+∞)) |
| 26 | | ffnov 6026 |
. . . . . . . . . . 11
⊢ (𝐷:(𝑋 × 𝑋)⟶(0[,]+∞) ↔ (𝐷 Fn (𝑋 × 𝑋) ∧ ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 (𝑥𝐷𝑦) ∈ (0[,]+∞))) |
| 27 | 22, 25, 26 | sylanbrc 417 |
. . . . . . . . . 10
⊢ (𝜑 → 𝐷:(𝑋 × 𝑋)⟶(0[,]+∞)) |
| 28 | 27 | adantr 276 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋)) → 𝐷:(𝑋 × 𝑋)⟶(0[,]+∞)) |
| 29 | | simpr3 1007 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋)) → 𝑧 ∈ 𝑋) |
| 30 | | simpr1 1005 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋)) → 𝑥 ∈ 𝑋) |
| 31 | 28, 29, 30 | fovcdmd 6068 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋)) → (𝑧𝐷𝑥) ∈ (0[,]+∞)) |
| 32 | | elxrge0 10053 |
. . . . . . . . 9
⊢ ((𝑧𝐷𝑥) ∈ (0[,]+∞) ↔ ((𝑧𝐷𝑥) ∈ ℝ* ∧ 0 ≤
(𝑧𝐷𝑥))) |
| 33 | 32 | simplbi 274 |
. . . . . . . 8
⊢ ((𝑧𝐷𝑥) ∈ (0[,]+∞) → (𝑧𝐷𝑥) ∈
ℝ*) |
| 34 | 31, 33 | syl 14 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋)) → (𝑧𝐷𝑥) ∈
ℝ*) |
| 35 | | renemnf 8075 |
. . . . . . 7
⊢ ((𝑧𝐷𝑥) ∈ ℝ → (𝑧𝐷𝑥) ≠ -∞) |
| 36 | | xaddpnf1 9921 |
. . . . . . 7
⊢ (((𝑧𝐷𝑥) ∈ ℝ* ∧ (𝑧𝐷𝑥) ≠ -∞) → ((𝑧𝐷𝑥) +𝑒 +∞) =
+∞) |
| 37 | 34, 35, 36 | syl2an 289 |
. . . . . 6
⊢ (((𝜑 ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋)) ∧ (𝑧𝐷𝑥) ∈ ℝ) → ((𝑧𝐷𝑥) +𝑒 +∞) =
+∞) |
| 38 | 21, 37 | sylan9eqr 2251 |
. . . . 5
⊢ ((((𝜑 ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋)) ∧ (𝑧𝐷𝑥) ∈ ℝ) ∧ (𝑧𝐷𝑦) = +∞) → ((𝑧𝐷𝑥) +𝑒 (𝑧𝐷𝑦)) = +∞) |
| 39 | 20, 38 | breqtrrd 4061 |
. . . 4
⊢ ((((𝜑 ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋)) ∧ (𝑧𝐷𝑥) ∈ ℝ) ∧ (𝑧𝐷𝑦) = +∞) → (𝑥𝐷𝑦) ≤ ((𝑧𝐷𝑥) +𝑒 (𝑧𝐷𝑦))) |
| 40 | | simpr2 1006 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋)) → 𝑦 ∈ 𝑋) |
| 41 | 28, 29, 40 | fovcdmd 6068 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋)) → (𝑧𝐷𝑦) ∈ (0[,]+∞)) |
| 42 | | elxrge0 10053 |
. . . . . . . . . . 11
⊢ ((𝑧𝐷𝑦) ∈ (0[,]+∞) ↔ ((𝑧𝐷𝑦) ∈ ℝ* ∧ 0 ≤
(𝑧𝐷𝑦))) |
| 43 | 42 | simplbi 274 |
. . . . . . . . . 10
⊢ ((𝑧𝐷𝑦) ∈ (0[,]+∞) → (𝑧𝐷𝑦) ∈
ℝ*) |
| 44 | 41, 43 | syl 14 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋)) → (𝑧𝐷𝑦) ∈
ℝ*) |
| 45 | 42 | simprbi 275 |
. . . . . . . . . 10
⊢ ((𝑧𝐷𝑦) ∈ (0[,]+∞) → 0 ≤ (𝑧𝐷𝑦)) |
| 46 | 41, 45 | syl 14 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋)) → 0 ≤ (𝑧𝐷𝑦)) |
| 47 | | ge0nemnf 9899 |
. . . . . . . . 9
⊢ (((𝑧𝐷𝑦) ∈ ℝ* ∧ 0 ≤
(𝑧𝐷𝑦)) → (𝑧𝐷𝑦) ≠ -∞) |
| 48 | 44, 46, 47 | syl2anc 411 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋)) → (𝑧𝐷𝑦) ≠ -∞) |
| 49 | 48 | neneqd 2388 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋)) → ¬ (𝑧𝐷𝑦) = -∞) |
| 50 | 49 | pm2.21d 620 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋)) → ((𝑧𝐷𝑦) = -∞ → (𝑥𝐷𝑦) ≤ ((𝑧𝐷𝑥) +𝑒 (𝑧𝐷𝑦)))) |
| 51 | 50 | adantr 276 |
. . . . 5
⊢ (((𝜑 ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋)) ∧ (𝑧𝐷𝑥) ∈ ℝ) → ((𝑧𝐷𝑦) = -∞ → (𝑥𝐷𝑦) ≤ ((𝑧𝐷𝑥) +𝑒 (𝑧𝐷𝑦)))) |
| 52 | 51 | imp 124 |
. . . 4
⊢ ((((𝜑 ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋)) ∧ (𝑧𝐷𝑥) ∈ ℝ) ∧ (𝑧𝐷𝑦) = -∞) → (𝑥𝐷𝑦) ≤ ((𝑧𝐷𝑥) +𝑒 (𝑧𝐷𝑦))) |
| 53 | 44 | adantr 276 |
. . . . 5
⊢ (((𝜑 ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋)) ∧ (𝑧𝐷𝑥) ∈ ℝ) → (𝑧𝐷𝑦) ∈
ℝ*) |
| 54 | | elxr 9851 |
. . . . 5
⊢ ((𝑧𝐷𝑦) ∈ ℝ* ↔ ((𝑧𝐷𝑦) ∈ ℝ ∨ (𝑧𝐷𝑦) = +∞ ∨ (𝑧𝐷𝑦) = -∞)) |
| 55 | 53, 54 | sylib 122 |
. . . 4
⊢ (((𝜑 ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋)) ∧ (𝑧𝐷𝑥) ∈ ℝ) → ((𝑧𝐷𝑦) ∈ ℝ ∨ (𝑧𝐷𝑦) = +∞ ∨ (𝑧𝐷𝑦) = -∞)) |
| 56 | 16, 39, 52, 55 | mpjao3dan 1318 |
. . 3
⊢ (((𝜑 ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋)) ∧ (𝑧𝐷𝑥) ∈ ℝ) → (𝑥𝐷𝑦) ≤ ((𝑧𝐷𝑥) +𝑒 (𝑧𝐷𝑦))) |
| 57 | 19 | adantr 276 |
. . . 4
⊢ (((𝜑 ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋)) ∧ (𝑧𝐷𝑥) = +∞) → (𝑥𝐷𝑦) ≤ +∞) |
| 58 | | oveq1 5929 |
. . . . 5
⊢ ((𝑧𝐷𝑥) = +∞ → ((𝑧𝐷𝑥) +𝑒 (𝑧𝐷𝑦)) = (+∞ +𝑒 (𝑧𝐷𝑦))) |
| 59 | | xaddpnf2 9922 |
. . . . . 6
⊢ (((𝑧𝐷𝑦) ∈ ℝ* ∧ (𝑧𝐷𝑦) ≠ -∞) → (+∞
+𝑒 (𝑧𝐷𝑦)) = +∞) |
| 60 | 44, 48, 59 | syl2anc 411 |
. . . . 5
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋)) → (+∞ +𝑒
(𝑧𝐷𝑦)) = +∞) |
| 61 | 58, 60 | sylan9eqr 2251 |
. . . 4
⊢ (((𝜑 ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋)) ∧ (𝑧𝐷𝑥) = +∞) → ((𝑧𝐷𝑥) +𝑒 (𝑧𝐷𝑦)) = +∞) |
| 62 | 57, 61 | breqtrrd 4061 |
. . 3
⊢ (((𝜑 ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋)) ∧ (𝑧𝐷𝑥) = +∞) → (𝑥𝐷𝑦) ≤ ((𝑧𝐷𝑥) +𝑒 (𝑧𝐷𝑦))) |
| 63 | 32 | simprbi 275 |
. . . . . . . 8
⊢ ((𝑧𝐷𝑥) ∈ (0[,]+∞) → 0 ≤ (𝑧𝐷𝑥)) |
| 64 | 31, 63 | syl 14 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋)) → 0 ≤ (𝑧𝐷𝑥)) |
| 65 | | ge0nemnf 9899 |
. . . . . . 7
⊢ (((𝑧𝐷𝑥) ∈ ℝ* ∧ 0 ≤
(𝑧𝐷𝑥)) → (𝑧𝐷𝑥) ≠ -∞) |
| 66 | 34, 64, 65 | syl2anc 411 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋)) → (𝑧𝐷𝑥) ≠ -∞) |
| 67 | 66 | neneqd 2388 |
. . . . 5
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋)) → ¬ (𝑧𝐷𝑥) = -∞) |
| 68 | 67 | pm2.21d 620 |
. . . 4
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋)) → ((𝑧𝐷𝑥) = -∞ → (𝑥𝐷𝑦) ≤ ((𝑧𝐷𝑥) +𝑒 (𝑧𝐷𝑦)))) |
| 69 | 68 | imp 124 |
. . 3
⊢ (((𝜑 ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋)) ∧ (𝑧𝐷𝑥) = -∞) → (𝑥𝐷𝑦) ≤ ((𝑧𝐷𝑥) +𝑒 (𝑧𝐷𝑦))) |
| 70 | | elxr 9851 |
. . . 4
⊢ ((𝑧𝐷𝑥) ∈ ℝ* ↔ ((𝑧𝐷𝑥) ∈ ℝ ∨ (𝑧𝐷𝑥) = +∞ ∨ (𝑧𝐷𝑥) = -∞)) |
| 71 | 34, 70 | sylib 122 |
. . 3
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋)) → ((𝑧𝐷𝑥) ∈ ℝ ∨ (𝑧𝐷𝑥) = +∞ ∨ (𝑧𝐷𝑥) = -∞)) |
| 72 | 56, 62, 69, 71 | mpjao3dan 1318 |
. 2
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋)) → (𝑥𝐷𝑦) ≤ ((𝑧𝐷𝑥) +𝑒 (𝑧𝐷𝑦))) |
| 73 | 1, 2, 10, 72 | isxmetd 14583 |
1
⊢ (𝜑 → 𝐷 ∈ (∞Met‘𝑋)) |