ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  isxmet2d GIF version

Theorem isxmet2d 13719
Description: It is safe to only require the triangle inequality when the values are real (so that we can use the standard addition over the reals), but in this case the nonnegativity constraint cannot be deduced and must be provided separately. (Counterexample: 𝐷(𝑥, 𝑦) = if(𝑥 = 𝑦, 0, -∞) satisfies all hypotheses except nonnegativity.) (Contributed by Mario Carneiro, 20-Aug-2015.)
Hypotheses
Ref Expression
isxmetd.0 (𝜑𝑋 ∈ V)
isxmetd.1 (𝜑𝐷:(𝑋 × 𝑋)⟶ℝ*)
isxmet2d.2 ((𝜑 ∧ (𝑥𝑋𝑦𝑋)) → 0 ≤ (𝑥𝐷𝑦))
isxmet2d.3 ((𝜑 ∧ (𝑥𝑋𝑦𝑋)) → ((𝑥𝐷𝑦) ≤ 0 ↔ 𝑥 = 𝑦))
isxmet2d.4 ((𝜑 ∧ (𝑥𝑋𝑦𝑋𝑧𝑋) ∧ ((𝑧𝐷𝑥) ∈ ℝ ∧ (𝑧𝐷𝑦) ∈ ℝ)) → (𝑥𝐷𝑦) ≤ ((𝑧𝐷𝑥) + (𝑧𝐷𝑦)))
Assertion
Ref Expression
isxmet2d (𝜑𝐷 ∈ (∞Met‘𝑋))
Distinct variable groups:   𝑥,𝑦,𝑧,𝐷   𝜑,𝑥,𝑦,𝑧   𝑥,𝑋,𝑦,𝑧

Proof of Theorem isxmet2d
StepHypRef Expression
1 isxmetd.0 . 2 (𝜑𝑋 ∈ V)
2 isxmetd.1 . 2 (𝜑𝐷:(𝑋 × 𝑋)⟶ℝ*)
32fovcdmda 6015 . . . 4 ((𝜑 ∧ (𝑥𝑋𝑦𝑋)) → (𝑥𝐷𝑦) ∈ ℝ*)
4 0xr 8000 . . . 4 0 ∈ ℝ*
5 xrletri3 9800 . . . 4 (((𝑥𝐷𝑦) ∈ ℝ* ∧ 0 ∈ ℝ*) → ((𝑥𝐷𝑦) = 0 ↔ ((𝑥𝐷𝑦) ≤ 0 ∧ 0 ≤ (𝑥𝐷𝑦))))
63, 4, 5sylancl 413 . . 3 ((𝜑 ∧ (𝑥𝑋𝑦𝑋)) → ((𝑥𝐷𝑦) = 0 ↔ ((𝑥𝐷𝑦) ≤ 0 ∧ 0 ≤ (𝑥𝐷𝑦))))
7 isxmet2d.2 . . . 4 ((𝜑 ∧ (𝑥𝑋𝑦𝑋)) → 0 ≤ (𝑥𝐷𝑦))
87biantrud 304 . . 3 ((𝜑 ∧ (𝑥𝑋𝑦𝑋)) → ((𝑥𝐷𝑦) ≤ 0 ↔ ((𝑥𝐷𝑦) ≤ 0 ∧ 0 ≤ (𝑥𝐷𝑦))))
9 isxmet2d.3 . . 3 ((𝜑 ∧ (𝑥𝑋𝑦𝑋)) → ((𝑥𝐷𝑦) ≤ 0 ↔ 𝑥 = 𝑦))
106, 8, 93bitr2d 216 . 2 ((𝜑 ∧ (𝑥𝑋𝑦𝑋)) → ((𝑥𝐷𝑦) = 0 ↔ 𝑥 = 𝑦))
11 isxmet2d.4 . . . . . . 7 ((𝜑 ∧ (𝑥𝑋𝑦𝑋𝑧𝑋) ∧ ((𝑧𝐷𝑥) ∈ ℝ ∧ (𝑧𝐷𝑦) ∈ ℝ)) → (𝑥𝐷𝑦) ≤ ((𝑧𝐷𝑥) + (𝑧𝐷𝑦)))
12113expa 1203 . . . . . 6 (((𝜑 ∧ (𝑥𝑋𝑦𝑋𝑧𝑋)) ∧ ((𝑧𝐷𝑥) ∈ ℝ ∧ (𝑧𝐷𝑦) ∈ ℝ)) → (𝑥𝐷𝑦) ≤ ((𝑧𝐷𝑥) + (𝑧𝐷𝑦)))
13 rexadd 9848 . . . . . . 7 (((𝑧𝐷𝑥) ∈ ℝ ∧ (𝑧𝐷𝑦) ∈ ℝ) → ((𝑧𝐷𝑥) +𝑒 (𝑧𝐷𝑦)) = ((𝑧𝐷𝑥) + (𝑧𝐷𝑦)))
1413adantl 277 . . . . . 6 (((𝜑 ∧ (𝑥𝑋𝑦𝑋𝑧𝑋)) ∧ ((𝑧𝐷𝑥) ∈ ℝ ∧ (𝑧𝐷𝑦) ∈ ℝ)) → ((𝑧𝐷𝑥) +𝑒 (𝑧𝐷𝑦)) = ((𝑧𝐷𝑥) + (𝑧𝐷𝑦)))
1512, 14breqtrrd 4030 . . . . 5 (((𝜑 ∧ (𝑥𝑋𝑦𝑋𝑧𝑋)) ∧ ((𝑧𝐷𝑥) ∈ ℝ ∧ (𝑧𝐷𝑦) ∈ ℝ)) → (𝑥𝐷𝑦) ≤ ((𝑧𝐷𝑥) +𝑒 (𝑧𝐷𝑦)))
1615anassrs 400 . . . 4 ((((𝜑 ∧ (𝑥𝑋𝑦𝑋𝑧𝑋)) ∧ (𝑧𝐷𝑥) ∈ ℝ) ∧ (𝑧𝐷𝑦) ∈ ℝ) → (𝑥𝐷𝑦) ≤ ((𝑧𝐷𝑥) +𝑒 (𝑧𝐷𝑦)))
1733adantr3 1158 . . . . . . 7 ((𝜑 ∧ (𝑥𝑋𝑦𝑋𝑧𝑋)) → (𝑥𝐷𝑦) ∈ ℝ*)
18 pnfge 9785 . . . . . . 7 ((𝑥𝐷𝑦) ∈ ℝ* → (𝑥𝐷𝑦) ≤ +∞)
1917, 18syl 14 . . . . . 6 ((𝜑 ∧ (𝑥𝑋𝑦𝑋𝑧𝑋)) → (𝑥𝐷𝑦) ≤ +∞)
2019ad2antrr 488 . . . . 5 ((((𝜑 ∧ (𝑥𝑋𝑦𝑋𝑧𝑋)) ∧ (𝑧𝐷𝑥) ∈ ℝ) ∧ (𝑧𝐷𝑦) = +∞) → (𝑥𝐷𝑦) ≤ +∞)
21 oveq2 5880 . . . . . 6 ((𝑧𝐷𝑦) = +∞ → ((𝑧𝐷𝑥) +𝑒 (𝑧𝐷𝑦)) = ((𝑧𝐷𝑥) +𝑒 +∞))
222ffnd 5365 . . . . . . . . . . 11 (𝜑𝐷 Fn (𝑋 × 𝑋))
23 elxrge0 9974 . . . . . . . . . . . . 13 ((𝑥𝐷𝑦) ∈ (0[,]+∞) ↔ ((𝑥𝐷𝑦) ∈ ℝ* ∧ 0 ≤ (𝑥𝐷𝑦)))
243, 7, 23sylanbrc 417 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑥𝑋𝑦𝑋)) → (𝑥𝐷𝑦) ∈ (0[,]+∞))
2524ralrimivva 2559 . . . . . . . . . . 11 (𝜑 → ∀𝑥𝑋𝑦𝑋 (𝑥𝐷𝑦) ∈ (0[,]+∞))
26 ffnov 5976 . . . . . . . . . . 11 (𝐷:(𝑋 × 𝑋)⟶(0[,]+∞) ↔ (𝐷 Fn (𝑋 × 𝑋) ∧ ∀𝑥𝑋𝑦𝑋 (𝑥𝐷𝑦) ∈ (0[,]+∞)))
2722, 25, 26sylanbrc 417 . . . . . . . . . 10 (𝜑𝐷:(𝑋 × 𝑋)⟶(0[,]+∞))
2827adantr 276 . . . . . . . . 9 ((𝜑 ∧ (𝑥𝑋𝑦𝑋𝑧𝑋)) → 𝐷:(𝑋 × 𝑋)⟶(0[,]+∞))
29 simpr3 1005 . . . . . . . . 9 ((𝜑 ∧ (𝑥𝑋𝑦𝑋𝑧𝑋)) → 𝑧𝑋)
30 simpr1 1003 . . . . . . . . 9 ((𝜑 ∧ (𝑥𝑋𝑦𝑋𝑧𝑋)) → 𝑥𝑋)
3128, 29, 30fovcdmd 6016 . . . . . . . 8 ((𝜑 ∧ (𝑥𝑋𝑦𝑋𝑧𝑋)) → (𝑧𝐷𝑥) ∈ (0[,]+∞))
32 elxrge0 9974 . . . . . . . . 9 ((𝑧𝐷𝑥) ∈ (0[,]+∞) ↔ ((𝑧𝐷𝑥) ∈ ℝ* ∧ 0 ≤ (𝑧𝐷𝑥)))
3332simplbi 274 . . . . . . . 8 ((𝑧𝐷𝑥) ∈ (0[,]+∞) → (𝑧𝐷𝑥) ∈ ℝ*)
3431, 33syl 14 . . . . . . 7 ((𝜑 ∧ (𝑥𝑋𝑦𝑋𝑧𝑋)) → (𝑧𝐷𝑥) ∈ ℝ*)
35 renemnf 8002 . . . . . . 7 ((𝑧𝐷𝑥) ∈ ℝ → (𝑧𝐷𝑥) ≠ -∞)
36 xaddpnf1 9842 . . . . . . 7 (((𝑧𝐷𝑥) ∈ ℝ* ∧ (𝑧𝐷𝑥) ≠ -∞) → ((𝑧𝐷𝑥) +𝑒 +∞) = +∞)
3734, 35, 36syl2an 289 . . . . . 6 (((𝜑 ∧ (𝑥𝑋𝑦𝑋𝑧𝑋)) ∧ (𝑧𝐷𝑥) ∈ ℝ) → ((𝑧𝐷𝑥) +𝑒 +∞) = +∞)
3821, 37sylan9eqr 2232 . . . . 5 ((((𝜑 ∧ (𝑥𝑋𝑦𝑋𝑧𝑋)) ∧ (𝑧𝐷𝑥) ∈ ℝ) ∧ (𝑧𝐷𝑦) = +∞) → ((𝑧𝐷𝑥) +𝑒 (𝑧𝐷𝑦)) = +∞)
3920, 38breqtrrd 4030 . . . 4 ((((𝜑 ∧ (𝑥𝑋𝑦𝑋𝑧𝑋)) ∧ (𝑧𝐷𝑥) ∈ ℝ) ∧ (𝑧𝐷𝑦) = +∞) → (𝑥𝐷𝑦) ≤ ((𝑧𝐷𝑥) +𝑒 (𝑧𝐷𝑦)))
40 simpr2 1004 . . . . . . . . . . 11 ((𝜑 ∧ (𝑥𝑋𝑦𝑋𝑧𝑋)) → 𝑦𝑋)
4128, 29, 40fovcdmd 6016 . . . . . . . . . 10 ((𝜑 ∧ (𝑥𝑋𝑦𝑋𝑧𝑋)) → (𝑧𝐷𝑦) ∈ (0[,]+∞))
42 elxrge0 9974 . . . . . . . . . . 11 ((𝑧𝐷𝑦) ∈ (0[,]+∞) ↔ ((𝑧𝐷𝑦) ∈ ℝ* ∧ 0 ≤ (𝑧𝐷𝑦)))
4342simplbi 274 . . . . . . . . . 10 ((𝑧𝐷𝑦) ∈ (0[,]+∞) → (𝑧𝐷𝑦) ∈ ℝ*)
4441, 43syl 14 . . . . . . . . 9 ((𝜑 ∧ (𝑥𝑋𝑦𝑋𝑧𝑋)) → (𝑧𝐷𝑦) ∈ ℝ*)
4542simprbi 275 . . . . . . . . . 10 ((𝑧𝐷𝑦) ∈ (0[,]+∞) → 0 ≤ (𝑧𝐷𝑦))
4641, 45syl 14 . . . . . . . . 9 ((𝜑 ∧ (𝑥𝑋𝑦𝑋𝑧𝑋)) → 0 ≤ (𝑧𝐷𝑦))
47 ge0nemnf 9820 . . . . . . . . 9 (((𝑧𝐷𝑦) ∈ ℝ* ∧ 0 ≤ (𝑧𝐷𝑦)) → (𝑧𝐷𝑦) ≠ -∞)
4844, 46, 47syl2anc 411 . . . . . . . 8 ((𝜑 ∧ (𝑥𝑋𝑦𝑋𝑧𝑋)) → (𝑧𝐷𝑦) ≠ -∞)
4948neneqd 2368 . . . . . . 7 ((𝜑 ∧ (𝑥𝑋𝑦𝑋𝑧𝑋)) → ¬ (𝑧𝐷𝑦) = -∞)
5049pm2.21d 619 . . . . . 6 ((𝜑 ∧ (𝑥𝑋𝑦𝑋𝑧𝑋)) → ((𝑧𝐷𝑦) = -∞ → (𝑥𝐷𝑦) ≤ ((𝑧𝐷𝑥) +𝑒 (𝑧𝐷𝑦))))
5150adantr 276 . . . . 5 (((𝜑 ∧ (𝑥𝑋𝑦𝑋𝑧𝑋)) ∧ (𝑧𝐷𝑥) ∈ ℝ) → ((𝑧𝐷𝑦) = -∞ → (𝑥𝐷𝑦) ≤ ((𝑧𝐷𝑥) +𝑒 (𝑧𝐷𝑦))))
5251imp 124 . . . 4 ((((𝜑 ∧ (𝑥𝑋𝑦𝑋𝑧𝑋)) ∧ (𝑧𝐷𝑥) ∈ ℝ) ∧ (𝑧𝐷𝑦) = -∞) → (𝑥𝐷𝑦) ≤ ((𝑧𝐷𝑥) +𝑒 (𝑧𝐷𝑦)))
5344adantr 276 . . . . 5 (((𝜑 ∧ (𝑥𝑋𝑦𝑋𝑧𝑋)) ∧ (𝑧𝐷𝑥) ∈ ℝ) → (𝑧𝐷𝑦) ∈ ℝ*)
54 elxr 9772 . . . . 5 ((𝑧𝐷𝑦) ∈ ℝ* ↔ ((𝑧𝐷𝑦) ∈ ℝ ∨ (𝑧𝐷𝑦) = +∞ ∨ (𝑧𝐷𝑦) = -∞))
5553, 54sylib 122 . . . 4 (((𝜑 ∧ (𝑥𝑋𝑦𝑋𝑧𝑋)) ∧ (𝑧𝐷𝑥) ∈ ℝ) → ((𝑧𝐷𝑦) ∈ ℝ ∨ (𝑧𝐷𝑦) = +∞ ∨ (𝑧𝐷𝑦) = -∞))
5616, 39, 52, 55mpjao3dan 1307 . . 3 (((𝜑 ∧ (𝑥𝑋𝑦𝑋𝑧𝑋)) ∧ (𝑧𝐷𝑥) ∈ ℝ) → (𝑥𝐷𝑦) ≤ ((𝑧𝐷𝑥) +𝑒 (𝑧𝐷𝑦)))
5719adantr 276 . . . 4 (((𝜑 ∧ (𝑥𝑋𝑦𝑋𝑧𝑋)) ∧ (𝑧𝐷𝑥) = +∞) → (𝑥𝐷𝑦) ≤ +∞)
58 oveq1 5879 . . . . 5 ((𝑧𝐷𝑥) = +∞ → ((𝑧𝐷𝑥) +𝑒 (𝑧𝐷𝑦)) = (+∞ +𝑒 (𝑧𝐷𝑦)))
59 xaddpnf2 9843 . . . . . 6 (((𝑧𝐷𝑦) ∈ ℝ* ∧ (𝑧𝐷𝑦) ≠ -∞) → (+∞ +𝑒 (𝑧𝐷𝑦)) = +∞)
6044, 48, 59syl2anc 411 . . . . 5 ((𝜑 ∧ (𝑥𝑋𝑦𝑋𝑧𝑋)) → (+∞ +𝑒 (𝑧𝐷𝑦)) = +∞)
6158, 60sylan9eqr 2232 . . . 4 (((𝜑 ∧ (𝑥𝑋𝑦𝑋𝑧𝑋)) ∧ (𝑧𝐷𝑥) = +∞) → ((𝑧𝐷𝑥) +𝑒 (𝑧𝐷𝑦)) = +∞)
6257, 61breqtrrd 4030 . . 3 (((𝜑 ∧ (𝑥𝑋𝑦𝑋𝑧𝑋)) ∧ (𝑧𝐷𝑥) = +∞) → (𝑥𝐷𝑦) ≤ ((𝑧𝐷𝑥) +𝑒 (𝑧𝐷𝑦)))
6332simprbi 275 . . . . . . . 8 ((𝑧𝐷𝑥) ∈ (0[,]+∞) → 0 ≤ (𝑧𝐷𝑥))
6431, 63syl 14 . . . . . . 7 ((𝜑 ∧ (𝑥𝑋𝑦𝑋𝑧𝑋)) → 0 ≤ (𝑧𝐷𝑥))
65 ge0nemnf 9820 . . . . . . 7 (((𝑧𝐷𝑥) ∈ ℝ* ∧ 0 ≤ (𝑧𝐷𝑥)) → (𝑧𝐷𝑥) ≠ -∞)
6634, 64, 65syl2anc 411 . . . . . 6 ((𝜑 ∧ (𝑥𝑋𝑦𝑋𝑧𝑋)) → (𝑧𝐷𝑥) ≠ -∞)
6766neneqd 2368 . . . . 5 ((𝜑 ∧ (𝑥𝑋𝑦𝑋𝑧𝑋)) → ¬ (𝑧𝐷𝑥) = -∞)
6867pm2.21d 619 . . . 4 ((𝜑 ∧ (𝑥𝑋𝑦𝑋𝑧𝑋)) → ((𝑧𝐷𝑥) = -∞ → (𝑥𝐷𝑦) ≤ ((𝑧𝐷𝑥) +𝑒 (𝑧𝐷𝑦))))
6968imp 124 . . 3 (((𝜑 ∧ (𝑥𝑋𝑦𝑋𝑧𝑋)) ∧ (𝑧𝐷𝑥) = -∞) → (𝑥𝐷𝑦) ≤ ((𝑧𝐷𝑥) +𝑒 (𝑧𝐷𝑦)))
70 elxr 9772 . . . 4 ((𝑧𝐷𝑥) ∈ ℝ* ↔ ((𝑧𝐷𝑥) ∈ ℝ ∨ (𝑧𝐷𝑥) = +∞ ∨ (𝑧𝐷𝑥) = -∞))
7134, 70sylib 122 . . 3 ((𝜑 ∧ (𝑥𝑋𝑦𝑋𝑧𝑋)) → ((𝑧𝐷𝑥) ∈ ℝ ∨ (𝑧𝐷𝑥) = +∞ ∨ (𝑧𝐷𝑥) = -∞))
7256, 62, 69, 71mpjao3dan 1307 . 2 ((𝜑 ∧ (𝑥𝑋𝑦𝑋𝑧𝑋)) → (𝑥𝐷𝑦) ≤ ((𝑧𝐷𝑥) +𝑒 (𝑧𝐷𝑦)))
731, 2, 10, 72isxmetd 13718 1 (𝜑𝐷 ∈ (∞Met‘𝑋))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  w3o 977  w3a 978   = wceq 1353  wcel 2148  wne 2347  wral 2455  Vcvv 2737   class class class wbr 4002   × cxp 4623   Fn wfn 5210  wf 5211  cfv 5215  (class class class)co 5872  cr 7807  0cc0 7808   + caddc 7811  +∞cpnf 7985  -∞cmnf 7986  *cxr 7987  cle 7989   +𝑒 cxad 9766  [,]cicc 9887  ∞Metcxmet 13309
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-sep 4120  ax-pow 4173  ax-pr 4208  ax-un 4432  ax-setind 4535  ax-cnex 7899  ax-resscn 7900  ax-1re 7902  ax-addrcl 7905  ax-rnegex 7917  ax-pre-ltirr 7920  ax-pre-ltwlin 7921  ax-pre-lttrn 7922  ax-pre-apti 7923
This theorem depends on definitions:  df-bi 117  df-dc 835  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-nel 2443  df-ral 2460  df-rex 2461  df-rab 2464  df-v 2739  df-sbc 2963  df-csb 3058  df-dif 3131  df-un 3133  df-in 3135  df-ss 3142  df-if 3535  df-pw 3577  df-sn 3598  df-pr 3599  df-op 3601  df-uni 3810  df-iun 3888  df-br 4003  df-opab 4064  df-mpt 4065  df-id 4292  df-po 4295  df-iso 4296  df-xp 4631  df-rel 4632  df-cnv 4633  df-co 4634  df-dm 4635  df-rn 4636  df-res 4637  df-ima 4638  df-iota 5177  df-fun 5217  df-fn 5218  df-f 5219  df-fv 5223  df-ov 5875  df-oprab 5876  df-mpo 5877  df-1st 6138  df-2nd 6139  df-map 6647  df-pnf 7990  df-mnf 7991  df-xr 7992  df-ltxr 7993  df-le 7994  df-xadd 9769  df-icc 9891  df-xmet 13317
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator