ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  3adant3r3 GIF version

Theorem 3adant3r3 1217
Description: Deduction adding a conjunct to antecedent. (Contributed by NM, 18-Feb-2008.)
Hypothesis
Ref Expression
3exp.1 ((𝜑𝜓𝜒) → 𝜃)
Assertion
Ref Expression
3adant3r3 ((𝜑 ∧ (𝜓𝜒𝜏)) → 𝜃)

Proof of Theorem 3adant3r3
StepHypRef Expression
1 3exp.1 . . 3 ((𝜑𝜓𝜒) → 𝜃)
213expb 1207 . 2 ((𝜑 ∧ (𝜓𝜒)) → 𝜃)
323adantr3 1161 1 ((𝜑 ∧ (𝜓𝜒𝜏)) → 𝜃)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  w3a 981
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108
This theorem depends on definitions:  df-bi 117  df-3an 983
This theorem is referenced by:  imasmnd2  13354  imasmnd  13355  grpaddsubass  13492  grpsubsub4  13495  grpnpncan  13497  imasgrp2  13516  imasgrp  13517  cmn12  13712  abladdsub  13721  imasrng  13788  imasring  13896  opprrng  13909  opprring  13911  dvrass  13971  lss1  14194  mettri2  14904  xmetrtri  14918
  Copyright terms: Public domain W3C validator