ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  3adant3r3 GIF version

Theorem 3adant3r3 1238
Description: Deduction adding a conjunct to antecedent. (Contributed by NM, 18-Feb-2008.)
Hypothesis
Ref Expression
3exp.1 ((𝜑𝜓𝜒) → 𝜃)
Assertion
Ref Expression
3adant3r3 ((𝜑 ∧ (𝜓𝜒𝜏)) → 𝜃)

Proof of Theorem 3adant3r3
StepHypRef Expression
1 3exp.1 . . 3 ((𝜑𝜓𝜒) → 𝜃)
213expb 1228 . 2 ((𝜑 ∧ (𝜓𝜒)) → 𝜃)
323adantr3 1182 1 ((𝜑 ∧ (𝜓𝜒𝜏)) → 𝜃)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  w3a 1002
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108
This theorem depends on definitions:  df-bi 117  df-3an 1004
This theorem is referenced by:  imasmnd2  13493  imasmnd  13494  grpaddsubass  13631  grpsubsub4  13634  grpnpncan  13636  imasgrp2  13655  imasgrp  13656  cmn12  13851  abladdsub  13860  imasrng  13927  imasring  14035  opprrng  14048  opprring  14050  dvrass  14111  lss1  14334  mettri2  15044  xmetrtri  15058
  Copyright terms: Public domain W3C validator