ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  3adant3r3 GIF version

Theorem 3adant3r3 1238
Description: Deduction adding a conjunct to antecedent. (Contributed by NM, 18-Feb-2008.)
Hypothesis
Ref Expression
3exp.1 ((𝜑𝜓𝜒) → 𝜃)
Assertion
Ref Expression
3adant3r3 ((𝜑 ∧ (𝜓𝜒𝜏)) → 𝜃)

Proof of Theorem 3adant3r3
StepHypRef Expression
1 3exp.1 . . 3 ((𝜑𝜓𝜒) → 𝜃)
213expb 1228 . 2 ((𝜑 ∧ (𝜓𝜒)) → 𝜃)
323adantr3 1182 1 ((𝜑 ∧ (𝜓𝜒𝜏)) → 𝜃)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  w3a 1002
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108
This theorem depends on definitions:  df-bi 117  df-3an 1004
This theorem is referenced by:  imasmnd2  13471  imasmnd  13472  grpaddsubass  13609  grpsubsub4  13612  grpnpncan  13614  imasgrp2  13633  imasgrp  13634  cmn12  13829  abladdsub  13838  imasrng  13905  imasring  14013  opprrng  14026  opprring  14028  dvrass  14088  lss1  14311  mettri2  15021  xmetrtri  15035
  Copyright terms: Public domain W3C validator