ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  3adant3r3 GIF version

Theorem 3adant3r3 1215
Description: Deduction adding a conjunct to antecedent. (Contributed by NM, 18-Feb-2008.)
Hypothesis
Ref Expression
3exp.1 ((𝜑𝜓𝜒) → 𝜃)
Assertion
Ref Expression
3adant3r3 ((𝜑 ∧ (𝜓𝜒𝜏)) → 𝜃)

Proof of Theorem 3adant3r3
StepHypRef Expression
1 3exp.1 . . 3 ((𝜑𝜓𝜒) → 𝜃)
213expb 1205 . 2 ((𝜑 ∧ (𝜓𝜒)) → 𝜃)
323adantr3 1159 1 ((𝜑 ∧ (𝜓𝜒𝜏)) → 𝜃)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  w3a 979
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108
This theorem depends on definitions:  df-bi 117  df-3an 981
This theorem is referenced by:  grpaddsubass  12986  grpsubsub4  12989  grpnpncan  12991  imasgrp2  13004  imasgrp  13005  cmn12  13142  abladdsub  13151  imasring  13307  opprrng  13320  opprring  13322  dvrass  13382  lss1  13546  mettri2  14133  xmetrtri  14147
  Copyright terms: Public domain W3C validator