ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  3adant3r3 GIF version

Theorem 3adant3r3 1216
Description: Deduction adding a conjunct to antecedent. (Contributed by NM, 18-Feb-2008.)
Hypothesis
Ref Expression
3exp.1 ((𝜑𝜓𝜒) → 𝜃)
Assertion
Ref Expression
3adant3r3 ((𝜑 ∧ (𝜓𝜒𝜏)) → 𝜃)

Proof of Theorem 3adant3r3
StepHypRef Expression
1 3exp.1 . . 3 ((𝜑𝜓𝜒) → 𝜃)
213expb 1206 . 2 ((𝜑 ∧ (𝜓𝜒)) → 𝜃)
323adantr3 1160 1 ((𝜑 ∧ (𝜓𝜒𝜏)) → 𝜃)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  w3a 980
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108
This theorem depends on definitions:  df-bi 117  df-3an 982
This theorem is referenced by:  grpaddsubass  13222  grpsubsub4  13225  grpnpncan  13227  imasgrp2  13240  imasgrp  13241  cmn12  13436  abladdsub  13445  imasrng  13512  imasring  13620  opprrng  13633  opprring  13635  dvrass  13695  lss1  13918  mettri2  14598  xmetrtri  14612
  Copyright terms: Public domain W3C validator