ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  3adant3r3 GIF version

Theorem 3adant3r3 1216
Description: Deduction adding a conjunct to antecedent. (Contributed by NM, 18-Feb-2008.)
Hypothesis
Ref Expression
3exp.1 ((𝜑𝜓𝜒) → 𝜃)
Assertion
Ref Expression
3adant3r3 ((𝜑 ∧ (𝜓𝜒𝜏)) → 𝜃)

Proof of Theorem 3adant3r3
StepHypRef Expression
1 3exp.1 . . 3 ((𝜑𝜓𝜒) → 𝜃)
213expb 1206 . 2 ((𝜑 ∧ (𝜓𝜒)) → 𝜃)
323adantr3 1160 1 ((𝜑 ∧ (𝜓𝜒𝜏)) → 𝜃)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  w3a 980
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108
This theorem depends on definitions:  df-bi 117  df-3an 982
This theorem is referenced by:  imasmnd2  13156  imasmnd  13157  grpaddsubass  13294  grpsubsub4  13297  grpnpncan  13299  imasgrp2  13318  imasgrp  13319  cmn12  13514  abladdsub  13523  imasrng  13590  imasring  13698  opprrng  13711  opprring  13713  dvrass  13773  lss1  13996  mettri2  14706  xmetrtri  14720
  Copyright terms: Public domain W3C validator