| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 3ad2antl1 | GIF version | ||
| Description: Deduction adding conjuncts to antecedent. (Contributed by NM, 4-Aug-2007.) |
| Ref | Expression |
|---|---|
| 3ad2antl.1 | ⊢ ((𝜑 ∧ 𝜒) → 𝜃) |
| Ref | Expression |
|---|---|
| 3ad2antl1 | ⊢ (((𝜑 ∧ 𝜓 ∧ 𝜏) ∧ 𝜒) → 𝜃) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3ad2antl.1 | . . 3 ⊢ ((𝜑 ∧ 𝜒) → 𝜃) | |
| 2 | 1 | adantlr 477 | . 2 ⊢ (((𝜑 ∧ 𝜏) ∧ 𝜒) → 𝜃) |
| 3 | 2 | 3adantl2 1156 | 1 ⊢ (((𝜑 ∧ 𝜓 ∧ 𝜏) ∧ 𝜒) → 𝜃) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ∧ w3a 980 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 df-3an 982 |
| This theorem is referenced by: acexmid 5942 f1oen4g 6842 f1dom4g 6843 ordiso2 7136 addlocpr 7648 distrlem1prl 7694 distrlem1pru 7695 ltsopr 7708 addcanprlemu 7727 fzo1fzo0n0 10305 prodfap0 11827 prodfrecap 11828 muldvds2 12099 dvds2add 12107 dvds2sub 12108 dvdstr 12110 qusaddvallemg 13136 mulgnnsubcl 13441 mulgpropdg 13471 ringidss 13762 lmodprop2d 14081 cnpnei 14662 upxp 14715 lgsval4lem 15459 |
| Copyright terms: Public domain | W3C validator |