ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  3ad2antl1 GIF version

Theorem 3ad2antl1 1162
Description: Deduction adding conjuncts to antecedent. (Contributed by NM, 4-Aug-2007.)
Hypothesis
Ref Expression
3ad2antl.1 ((𝜑𝜒) → 𝜃)
Assertion
Ref Expression
3ad2antl1 (((𝜑𝜓𝜏) ∧ 𝜒) → 𝜃)

Proof of Theorem 3ad2antl1
StepHypRef Expression
1 3ad2antl.1 . . 3 ((𝜑𝜒) → 𝜃)
21adantlr 477 . 2 (((𝜑𝜏) ∧ 𝜒) → 𝜃)
323adantl2 1157 1 (((𝜑𝜓𝜏) ∧ 𝜒) → 𝜃)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  w3a 981
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108
This theorem depends on definitions:  df-bi 117  df-3an 983
This theorem is referenced by:  acexmid  5943  f1oen4g  6843  f1dom4g  6844  ordiso2  7137  addlocpr  7649  distrlem1prl  7695  distrlem1pru  7696  ltsopr  7709  addcanprlemu  7728  fzo1fzo0n0  10307  prodfap0  11856  prodfrecap  11857  muldvds2  12128  dvds2add  12136  dvds2sub  12137  dvdstr  12139  qusaddvallemg  13165  mulgnnsubcl  13470  mulgpropdg  13500  ringidss  13791  lmodprop2d  14110  cnpnei  14691  upxp  14744  lgsval4lem  15488
  Copyright terms: Public domain W3C validator