| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 3ad2antl1 | GIF version | ||
| Description: Deduction adding conjuncts to antecedent. (Contributed by NM, 4-Aug-2007.) |
| Ref | Expression |
|---|---|
| 3ad2antl.1 | ⊢ ((𝜑 ∧ 𝜒) → 𝜃) |
| Ref | Expression |
|---|---|
| 3ad2antl1 | ⊢ (((𝜑 ∧ 𝜓 ∧ 𝜏) ∧ 𝜒) → 𝜃) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3ad2antl.1 | . . 3 ⊢ ((𝜑 ∧ 𝜒) → 𝜃) | |
| 2 | 1 | adantlr 477 | . 2 ⊢ (((𝜑 ∧ 𝜏) ∧ 𝜒) → 𝜃) |
| 3 | 2 | 3adantl2 1156 | 1 ⊢ (((𝜑 ∧ 𝜓 ∧ 𝜏) ∧ 𝜒) → 𝜃) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ∧ w3a 980 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 df-3an 982 |
| This theorem is referenced by: acexmid 5921 ordiso2 7101 addlocpr 7603 distrlem1prl 7649 distrlem1pru 7650 ltsopr 7663 addcanprlemu 7682 fzo1fzo0n0 10259 prodfap0 11710 prodfrecap 11711 muldvds2 11982 dvds2add 11990 dvds2sub 11991 dvdstr 11993 qusaddvallemg 12976 mulgnnsubcl 13264 mulgpropdg 13294 ringidss 13585 lmodprop2d 13904 cnpnei 14455 upxp 14508 lgsval4lem 15252 |
| Copyright terms: Public domain | W3C validator |