Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > 3ad2antl1 | GIF version |
Description: Deduction adding conjuncts to antecedent. (Contributed by NM, 4-Aug-2007.) |
Ref | Expression |
---|---|
3ad2antl.1 | ⊢ ((𝜑 ∧ 𝜒) → 𝜃) |
Ref | Expression |
---|---|
3ad2antl1 | ⊢ (((𝜑 ∧ 𝜓 ∧ 𝜏) ∧ 𝜒) → 𝜃) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3ad2antl.1 | . . 3 ⊢ ((𝜑 ∧ 𝜒) → 𝜃) | |
2 | 1 | adantlr 474 | . 2 ⊢ (((𝜑 ∧ 𝜏) ∧ 𝜒) → 𝜃) |
3 | 2 | 3adantl2 1149 | 1 ⊢ (((𝜑 ∧ 𝜓 ∧ 𝜏) ∧ 𝜒) → 𝜃) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 ∧ w3a 973 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 |
This theorem depends on definitions: df-bi 116 df-3an 975 |
This theorem is referenced by: acexmid 5852 ordiso2 7012 addlocpr 7498 distrlem1prl 7544 distrlem1pru 7545 ltsopr 7558 addcanprlemu 7577 fzo1fzo0n0 10139 prodfap0 11508 prodfrecap 11509 muldvds2 11779 dvds2add 11787 dvds2sub 11788 dvdstr 11790 cnpnei 13013 upxp 13066 lgsval4lem 13706 |
Copyright terms: Public domain | W3C validator |