| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 3ad2antl1 | GIF version | ||
| Description: Deduction adding conjuncts to antecedent. (Contributed by NM, 4-Aug-2007.) |
| Ref | Expression |
|---|---|
| 3ad2antl.1 | ⊢ ((𝜑 ∧ 𝜒) → 𝜃) |
| Ref | Expression |
|---|---|
| 3ad2antl1 | ⊢ (((𝜑 ∧ 𝜓 ∧ 𝜏) ∧ 𝜒) → 𝜃) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3ad2antl.1 | . . 3 ⊢ ((𝜑 ∧ 𝜒) → 𝜃) | |
| 2 | 1 | adantlr 477 | . 2 ⊢ (((𝜑 ∧ 𝜏) ∧ 𝜒) → 𝜃) |
| 3 | 2 | 3adantl2 1178 | 1 ⊢ (((𝜑 ∧ 𝜓 ∧ 𝜏) ∧ 𝜒) → 𝜃) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ∧ w3a 1002 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 |
| This theorem is referenced by: acexmid 5999 f1oen4g 6901 f1dom4g 6902 ordiso2 7198 addlocpr 7719 distrlem1prl 7765 distrlem1pru 7766 ltsopr 7779 addcanprlemu 7798 fzo1fzo0n0 10379 pfxsuffeqwrdeq 11225 prodfap0 12051 prodfrecap 12052 muldvds2 12323 dvds2add 12331 dvds2sub 12332 dvdstr 12334 qusaddvallemg 13361 mulgnnsubcl 13666 mulgpropdg 13696 ringidss 13987 lmodprop2d 14306 cnpnei 14887 upxp 14940 lgsval4lem 15684 |
| Copyright terms: Public domain | W3C validator |