ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  3ad2antl1 GIF version

Theorem 3ad2antl1 1159
Description: Deduction adding conjuncts to antecedent. (Contributed by NM, 4-Aug-2007.)
Hypothesis
Ref Expression
3ad2antl.1 ((𝜑𝜒) → 𝜃)
Assertion
Ref Expression
3ad2antl1 (((𝜑𝜓𝜏) ∧ 𝜒) → 𝜃)

Proof of Theorem 3ad2antl1
StepHypRef Expression
1 3ad2antl.1 . . 3 ((𝜑𝜒) → 𝜃)
21adantlr 477 . 2 (((𝜑𝜏) ∧ 𝜒) → 𝜃)
323adantl2 1154 1 (((𝜑𝜓𝜏) ∧ 𝜒) → 𝜃)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  w3a 978
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108
This theorem depends on definitions:  df-bi 117  df-3an 980
This theorem is referenced by:  acexmid  5873  ordiso2  7033  addlocpr  7534  distrlem1prl  7580  distrlem1pru  7581  ltsopr  7594  addcanprlemu  7613  fzo1fzo0n0  10182  prodfap0  11552  prodfrecap  11553  muldvds2  11823  dvds2add  11831  dvds2sub  11832  dvdstr  11834  qusaddvallemg  12751  mulgnnsubcl  12994  mulgpropdg  13023  ringidss  13210  cnpnei  13689  upxp  13742  lgsval4lem  14382
  Copyright terms: Public domain W3C validator