ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  3ad2antl1 GIF version

Theorem 3ad2antl1 1161
Description: Deduction adding conjuncts to antecedent. (Contributed by NM, 4-Aug-2007.)
Hypothesis
Ref Expression
3ad2antl.1 ((𝜑𝜒) → 𝜃)
Assertion
Ref Expression
3ad2antl1 (((𝜑𝜓𝜏) ∧ 𝜒) → 𝜃)

Proof of Theorem 3ad2antl1
StepHypRef Expression
1 3ad2antl.1 . . 3 ((𝜑𝜒) → 𝜃)
21adantlr 477 . 2 (((𝜑𝜏) ∧ 𝜒) → 𝜃)
323adantl2 1156 1 (((𝜑𝜓𝜏) ∧ 𝜒) → 𝜃)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  w3a 980
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108
This theorem depends on definitions:  df-bi 117  df-3an 982
This theorem is referenced by:  acexmid  5942  f1oen4g  6842  f1dom4g  6843  ordiso2  7136  addlocpr  7648  distrlem1prl  7694  distrlem1pru  7695  ltsopr  7708  addcanprlemu  7727  fzo1fzo0n0  10305  prodfap0  11827  prodfrecap  11828  muldvds2  12099  dvds2add  12107  dvds2sub  12108  dvdstr  12110  qusaddvallemg  13136  mulgnnsubcl  13441  mulgpropdg  13471  ringidss  13762  lmodprop2d  14081  cnpnei  14662  upxp  14715  lgsval4lem  15459
  Copyright terms: Public domain W3C validator