ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  3ad2antl1 GIF version

Theorem 3ad2antl1 1154
Description: Deduction adding conjuncts to antecedent. (Contributed by NM, 4-Aug-2007.)
Hypothesis
Ref Expression
3ad2antl.1 ((𝜑𝜒) → 𝜃)
Assertion
Ref Expression
3ad2antl1 (((𝜑𝜓𝜏) ∧ 𝜒) → 𝜃)

Proof of Theorem 3ad2antl1
StepHypRef Expression
1 3ad2antl.1 . . 3 ((𝜑𝜒) → 𝜃)
21adantlr 474 . 2 (((𝜑𝜏) ∧ 𝜒) → 𝜃)
323adantl2 1149 1 (((𝜑𝜓𝜏) ∧ 𝜒) → 𝜃)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  w3a 973
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107
This theorem depends on definitions:  df-bi 116  df-3an 975
This theorem is referenced by:  acexmid  5852  ordiso2  7012  addlocpr  7498  distrlem1prl  7544  distrlem1pru  7545  ltsopr  7558  addcanprlemu  7577  fzo1fzo0n0  10139  prodfap0  11508  prodfrecap  11509  muldvds2  11779  dvds2add  11787  dvds2sub  11788  dvdstr  11790  cnpnei  13013  upxp  13066  lgsval4lem  13706
  Copyright terms: Public domain W3C validator