ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  3ad2antl1 GIF version

Theorem 3ad2antl1 1149
Description: Deduction adding conjuncts to antecedent. (Contributed by NM, 4-Aug-2007.)
Hypothesis
Ref Expression
3ad2antl.1 ((𝜑𝜒) → 𝜃)
Assertion
Ref Expression
3ad2antl1 (((𝜑𝜓𝜏) ∧ 𝜒) → 𝜃)

Proof of Theorem 3ad2antl1
StepHypRef Expression
1 3ad2antl.1 . . 3 ((𝜑𝜒) → 𝜃)
21adantlr 469 . 2 (((𝜑𝜏) ∧ 𝜒) → 𝜃)
323adantl2 1144 1 (((𝜑𝜓𝜏) ∧ 𝜒) → 𝜃)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  w3a 968
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107
This theorem depends on definitions:  df-bi 116  df-3an 970
This theorem is referenced by:  acexmid  5841  ordiso2  7000  addlocpr  7477  distrlem1prl  7523  distrlem1pru  7524  ltsopr  7537  addcanprlemu  7556  fzo1fzo0n0  10118  prodfap0  11486  prodfrecap  11487  muldvds2  11757  dvds2add  11765  dvds2sub  11766  dvdstr  11768  cnpnei  12859  upxp  12912  lgsval4lem  13552
  Copyright terms: Public domain W3C validator