| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 3ad2antl1 | GIF version | ||
| Description: Deduction adding conjuncts to antecedent. (Contributed by NM, 4-Aug-2007.) |
| Ref | Expression |
|---|---|
| 3ad2antl.1 | ⊢ ((𝜑 ∧ 𝜒) → 𝜃) |
| Ref | Expression |
|---|---|
| 3ad2antl1 | ⊢ (((𝜑 ∧ 𝜓 ∧ 𝜏) ∧ 𝜒) → 𝜃) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3ad2antl.1 | . . 3 ⊢ ((𝜑 ∧ 𝜒) → 𝜃) | |
| 2 | 1 | adantlr 477 | . 2 ⊢ (((𝜑 ∧ 𝜏) ∧ 𝜒) → 𝜃) |
| 3 | 2 | 3adantl2 1157 | 1 ⊢ (((𝜑 ∧ 𝜓 ∧ 𝜏) ∧ 𝜒) → 𝜃) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ∧ w3a 981 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 df-3an 983 |
| This theorem is referenced by: acexmid 5966 f1oen4g 6866 f1dom4g 6867 ordiso2 7163 addlocpr 7684 distrlem1prl 7730 distrlem1pru 7731 ltsopr 7744 addcanprlemu 7763 fzo1fzo0n0 10344 pfxsuffeqwrdeq 11189 prodfap0 11971 prodfrecap 11972 muldvds2 12243 dvds2add 12251 dvds2sub 12252 dvdstr 12254 qusaddvallemg 13280 mulgnnsubcl 13585 mulgpropdg 13615 ringidss 13906 lmodprop2d 14225 cnpnei 14806 upxp 14859 lgsval4lem 15603 |
| Copyright terms: Public domain | W3C validator |