ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  3ad2antl1 GIF version

Theorem 3ad2antl1 1111
Description: Deduction adding conjuncts to antecedent. (Contributed by NM, 4-Aug-2007.)
Hypothesis
Ref Expression
3ad2antl.1 ((𝜑𝜒) → 𝜃)
Assertion
Ref Expression
3ad2antl1 (((𝜑𝜓𝜏) ∧ 𝜒) → 𝜃)

Proof of Theorem 3ad2antl1
StepHypRef Expression
1 3ad2antl.1 . . 3 ((𝜑𝜒) → 𝜃)
21adantlr 464 . 2 (((𝜑𝜏) ∧ 𝜒) → 𝜃)
323adantl2 1106 1 (((𝜑𝜓𝜏) ∧ 𝜒) → 𝜃)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  w3a 930
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107
This theorem depends on definitions:  df-bi 116  df-3an 932
This theorem is referenced by:  acexmid  5705  ordiso2  6835  addlocpr  7245  distrlem1prl  7291  distrlem1pru  7292  ltsopr  7305  addcanprlemu  7324  fzo1fzo0n0  9801  muldvds2  11314  dvds2add  11322  dvds2sub  11323  dvdstr  11325  cnpnei  12169  upxp  12222
  Copyright terms: Public domain W3C validator