ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  3ad2antl1 GIF version

Theorem 3ad2antl1 1161
Description: Deduction adding conjuncts to antecedent. (Contributed by NM, 4-Aug-2007.)
Hypothesis
Ref Expression
3ad2antl.1 ((𝜑𝜒) → 𝜃)
Assertion
Ref Expression
3ad2antl1 (((𝜑𝜓𝜏) ∧ 𝜒) → 𝜃)

Proof of Theorem 3ad2antl1
StepHypRef Expression
1 3ad2antl.1 . . 3 ((𝜑𝜒) → 𝜃)
21adantlr 477 . 2 (((𝜑𝜏) ∧ 𝜒) → 𝜃)
323adantl2 1156 1 (((𝜑𝜓𝜏) ∧ 𝜒) → 𝜃)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  w3a 980
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108
This theorem depends on definitions:  df-bi 117  df-3an 982
This theorem is referenced by:  acexmid  5924  ordiso2  7110  addlocpr  7622  distrlem1prl  7668  distrlem1pru  7669  ltsopr  7682  addcanprlemu  7701  fzo1fzo0n0  10278  prodfap0  11729  prodfrecap  11730  muldvds2  12001  dvds2add  12009  dvds2sub  12010  dvdstr  12012  qusaddvallemg  13037  mulgnnsubcl  13342  mulgpropdg  13372  ringidss  13663  lmodprop2d  13982  cnpnei  14563  upxp  14616  lgsval4lem  15360
  Copyright terms: Public domain W3C validator