| Step | Hyp | Ref
| Expression |
| 1 | | xmetrel 14663 |
. . . . 5
⊢ Rel
∞Met |
| 2 | | relelfvdm 5593 |
. . . . 5
⊢ ((Rel
∞Met ∧ 𝐷 ∈
(∞Met‘𝑋))
→ 𝑋 ∈ dom
∞Met) |
| 3 | 1, 2 | mpan 424 |
. . . 4
⊢ (𝐷 ∈ (∞Met‘𝑋) → 𝑋 ∈ dom ∞Met) |
| 4 | 3 | adantr 276 |
. . 3
⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑅 ⊆ 𝑋) → 𝑋 ∈ dom ∞Met) |
| 5 | | simpr 110 |
. . 3
⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑅 ⊆ 𝑋) → 𝑅 ⊆ 𝑋) |
| 6 | 4, 5 | ssexd 4174 |
. 2
⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑅 ⊆ 𝑋) → 𝑅 ∈ V) |
| 7 | | xmetf 14670 |
. . . 4
⊢ (𝐷 ∈ (∞Met‘𝑋) → 𝐷:(𝑋 × 𝑋)⟶ℝ*) |
| 8 | 7 | adantr 276 |
. . 3
⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑅 ⊆ 𝑋) → 𝐷:(𝑋 × 𝑋)⟶ℝ*) |
| 9 | | xpss12 4771 |
. . . 4
⊢ ((𝑅 ⊆ 𝑋 ∧ 𝑅 ⊆ 𝑋) → (𝑅 × 𝑅) ⊆ (𝑋 × 𝑋)) |
| 10 | 5, 9 | sylancom 420 |
. . 3
⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑅 ⊆ 𝑋) → (𝑅 × 𝑅) ⊆ (𝑋 × 𝑋)) |
| 11 | 8, 10 | fssresd 5437 |
. 2
⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑅 ⊆ 𝑋) → (𝐷 ↾ (𝑅 × 𝑅)):(𝑅 × 𝑅)⟶ℝ*) |
| 12 | | ovres 6067 |
. . . . 5
⊢ ((𝑥 ∈ 𝑅 ∧ 𝑦 ∈ 𝑅) → (𝑥(𝐷 ↾ (𝑅 × 𝑅))𝑦) = (𝑥𝐷𝑦)) |
| 13 | 12 | adantl 277 |
. . . 4
⊢ (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑅 ⊆ 𝑋) ∧ (𝑥 ∈ 𝑅 ∧ 𝑦 ∈ 𝑅)) → (𝑥(𝐷 ↾ (𝑅 × 𝑅))𝑦) = (𝑥𝐷𝑦)) |
| 14 | 13 | eqeq1d 2205 |
. . 3
⊢ (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑅 ⊆ 𝑋) ∧ (𝑥 ∈ 𝑅 ∧ 𝑦 ∈ 𝑅)) → ((𝑥(𝐷 ↾ (𝑅 × 𝑅))𝑦) = 0 ↔ (𝑥𝐷𝑦) = 0)) |
| 15 | | simpll 527 |
. . . 4
⊢ (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑅 ⊆ 𝑋) ∧ (𝑥 ∈ 𝑅 ∧ 𝑦 ∈ 𝑅)) → 𝐷 ∈ (∞Met‘𝑋)) |
| 16 | | simplr 528 |
. . . . 5
⊢ (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑅 ⊆ 𝑋) ∧ (𝑥 ∈ 𝑅 ∧ 𝑦 ∈ 𝑅)) → 𝑅 ⊆ 𝑋) |
| 17 | | simprl 529 |
. . . . 5
⊢ (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑅 ⊆ 𝑋) ∧ (𝑥 ∈ 𝑅 ∧ 𝑦 ∈ 𝑅)) → 𝑥 ∈ 𝑅) |
| 18 | 16, 17 | sseldd 3185 |
. . . 4
⊢ (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑅 ⊆ 𝑋) ∧ (𝑥 ∈ 𝑅 ∧ 𝑦 ∈ 𝑅)) → 𝑥 ∈ 𝑋) |
| 19 | | simprr 531 |
. . . . 5
⊢ (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑅 ⊆ 𝑋) ∧ (𝑥 ∈ 𝑅 ∧ 𝑦 ∈ 𝑅)) → 𝑦 ∈ 𝑅) |
| 20 | 16, 19 | sseldd 3185 |
. . . 4
⊢ (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑅 ⊆ 𝑋) ∧ (𝑥 ∈ 𝑅 ∧ 𝑦 ∈ 𝑅)) → 𝑦 ∈ 𝑋) |
| 21 | | xmeteq0 14679 |
. . . 4
⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋) → ((𝑥𝐷𝑦) = 0 ↔ 𝑥 = 𝑦)) |
| 22 | 15, 18, 20, 21 | syl3anc 1249 |
. . 3
⊢ (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑅 ⊆ 𝑋) ∧ (𝑥 ∈ 𝑅 ∧ 𝑦 ∈ 𝑅)) → ((𝑥𝐷𝑦) = 0 ↔ 𝑥 = 𝑦)) |
| 23 | 14, 22 | bitrd 188 |
. 2
⊢ (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑅 ⊆ 𝑋) ∧ (𝑥 ∈ 𝑅 ∧ 𝑦 ∈ 𝑅)) → ((𝑥(𝐷 ↾ (𝑅 × 𝑅))𝑦) = 0 ↔ 𝑥 = 𝑦)) |
| 24 | | simpll 527 |
. . . 4
⊢ (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑅 ⊆ 𝑋) ∧ (𝑥 ∈ 𝑅 ∧ 𝑦 ∈ 𝑅 ∧ 𝑧 ∈ 𝑅)) → 𝐷 ∈ (∞Met‘𝑋)) |
| 25 | | simplr 528 |
. . . . 5
⊢ (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑅 ⊆ 𝑋) ∧ (𝑥 ∈ 𝑅 ∧ 𝑦 ∈ 𝑅 ∧ 𝑧 ∈ 𝑅)) → 𝑅 ⊆ 𝑋) |
| 26 | | simpr3 1007 |
. . . . 5
⊢ (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑅 ⊆ 𝑋) ∧ (𝑥 ∈ 𝑅 ∧ 𝑦 ∈ 𝑅 ∧ 𝑧 ∈ 𝑅)) → 𝑧 ∈ 𝑅) |
| 27 | 25, 26 | sseldd 3185 |
. . . 4
⊢ (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑅 ⊆ 𝑋) ∧ (𝑥 ∈ 𝑅 ∧ 𝑦 ∈ 𝑅 ∧ 𝑧 ∈ 𝑅)) → 𝑧 ∈ 𝑋) |
| 28 | 18 | 3adantr3 1160 |
. . . 4
⊢ (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑅 ⊆ 𝑋) ∧ (𝑥 ∈ 𝑅 ∧ 𝑦 ∈ 𝑅 ∧ 𝑧 ∈ 𝑅)) → 𝑥 ∈ 𝑋) |
| 29 | 20 | 3adantr3 1160 |
. . . 4
⊢ (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑅 ⊆ 𝑋) ∧ (𝑥 ∈ 𝑅 ∧ 𝑦 ∈ 𝑅 ∧ 𝑧 ∈ 𝑅)) → 𝑦 ∈ 𝑋) |
| 30 | | xmettri2 14681 |
. . . 4
⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ (𝑧 ∈ 𝑋 ∧ 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋)) → (𝑥𝐷𝑦) ≤ ((𝑧𝐷𝑥) +𝑒 (𝑧𝐷𝑦))) |
| 31 | 24, 27, 28, 29, 30 | syl13anc 1251 |
. . 3
⊢ (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑅 ⊆ 𝑋) ∧ (𝑥 ∈ 𝑅 ∧ 𝑦 ∈ 𝑅 ∧ 𝑧 ∈ 𝑅)) → (𝑥𝐷𝑦) ≤ ((𝑧𝐷𝑥) +𝑒 (𝑧𝐷𝑦))) |
| 32 | 13 | 3adantr3 1160 |
. . 3
⊢ (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑅 ⊆ 𝑋) ∧ (𝑥 ∈ 𝑅 ∧ 𝑦 ∈ 𝑅 ∧ 𝑧 ∈ 𝑅)) → (𝑥(𝐷 ↾ (𝑅 × 𝑅))𝑦) = (𝑥𝐷𝑦)) |
| 33 | | simpr1 1005 |
. . . . 5
⊢ (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑅 ⊆ 𝑋) ∧ (𝑥 ∈ 𝑅 ∧ 𝑦 ∈ 𝑅 ∧ 𝑧 ∈ 𝑅)) → 𝑥 ∈ 𝑅) |
| 34 | 26, 33 | ovresd 6068 |
. . . 4
⊢ (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑅 ⊆ 𝑋) ∧ (𝑥 ∈ 𝑅 ∧ 𝑦 ∈ 𝑅 ∧ 𝑧 ∈ 𝑅)) → (𝑧(𝐷 ↾ (𝑅 × 𝑅))𝑥) = (𝑧𝐷𝑥)) |
| 35 | | simpr2 1006 |
. . . . 5
⊢ (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑅 ⊆ 𝑋) ∧ (𝑥 ∈ 𝑅 ∧ 𝑦 ∈ 𝑅 ∧ 𝑧 ∈ 𝑅)) → 𝑦 ∈ 𝑅) |
| 36 | 26, 35 | ovresd 6068 |
. . . 4
⊢ (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑅 ⊆ 𝑋) ∧ (𝑥 ∈ 𝑅 ∧ 𝑦 ∈ 𝑅 ∧ 𝑧 ∈ 𝑅)) → (𝑧(𝐷 ↾ (𝑅 × 𝑅))𝑦) = (𝑧𝐷𝑦)) |
| 37 | 34, 36 | oveq12d 5943 |
. . 3
⊢ (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑅 ⊆ 𝑋) ∧ (𝑥 ∈ 𝑅 ∧ 𝑦 ∈ 𝑅 ∧ 𝑧 ∈ 𝑅)) → ((𝑧(𝐷 ↾ (𝑅 × 𝑅))𝑥) +𝑒 (𝑧(𝐷 ↾ (𝑅 × 𝑅))𝑦)) = ((𝑧𝐷𝑥) +𝑒 (𝑧𝐷𝑦))) |
| 38 | 31, 32, 37 | 3brtr4d 4066 |
. 2
⊢ (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑅 ⊆ 𝑋) ∧ (𝑥 ∈ 𝑅 ∧ 𝑦 ∈ 𝑅 ∧ 𝑧 ∈ 𝑅)) → (𝑥(𝐷 ↾ (𝑅 × 𝑅))𝑦) ≤ ((𝑧(𝐷 ↾ (𝑅 × 𝑅))𝑥) +𝑒 (𝑧(𝐷 ↾ (𝑅 × 𝑅))𝑦))) |
| 39 | 6, 11, 23, 38 | isxmetd 14667 |
1
⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑅 ⊆ 𝑋) → (𝐷 ↾ (𝑅 × 𝑅)) ∈ (∞Met‘𝑅)) |