Step | Hyp | Ref
| Expression |
1 | | xmetrel 12983 |
. . . . 5
⊢ Rel
∞Met |
2 | | relelfvdm 5518 |
. . . . 5
⊢ ((Rel
∞Met ∧ 𝐷 ∈
(∞Met‘𝑋))
→ 𝑋 ∈ dom
∞Met) |
3 | 1, 2 | mpan 421 |
. . . 4
⊢ (𝐷 ∈ (∞Met‘𝑋) → 𝑋 ∈ dom ∞Met) |
4 | 3 | adantr 274 |
. . 3
⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑅 ⊆ 𝑋) → 𝑋 ∈ dom ∞Met) |
5 | | simpr 109 |
. . 3
⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑅 ⊆ 𝑋) → 𝑅 ⊆ 𝑋) |
6 | 4, 5 | ssexd 4122 |
. 2
⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑅 ⊆ 𝑋) → 𝑅 ∈ V) |
7 | | xmetf 12990 |
. . . 4
⊢ (𝐷 ∈ (∞Met‘𝑋) → 𝐷:(𝑋 × 𝑋)⟶ℝ*) |
8 | 7 | adantr 274 |
. . 3
⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑅 ⊆ 𝑋) → 𝐷:(𝑋 × 𝑋)⟶ℝ*) |
9 | | xpss12 4711 |
. . . 4
⊢ ((𝑅 ⊆ 𝑋 ∧ 𝑅 ⊆ 𝑋) → (𝑅 × 𝑅) ⊆ (𝑋 × 𝑋)) |
10 | 5, 9 | sylancom 417 |
. . 3
⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑅 ⊆ 𝑋) → (𝑅 × 𝑅) ⊆ (𝑋 × 𝑋)) |
11 | 8, 10 | fssresd 5364 |
. 2
⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑅 ⊆ 𝑋) → (𝐷 ↾ (𝑅 × 𝑅)):(𝑅 × 𝑅)⟶ℝ*) |
12 | | ovres 5981 |
. . . . 5
⊢ ((𝑥 ∈ 𝑅 ∧ 𝑦 ∈ 𝑅) → (𝑥(𝐷 ↾ (𝑅 × 𝑅))𝑦) = (𝑥𝐷𝑦)) |
13 | 12 | adantl 275 |
. . . 4
⊢ (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑅 ⊆ 𝑋) ∧ (𝑥 ∈ 𝑅 ∧ 𝑦 ∈ 𝑅)) → (𝑥(𝐷 ↾ (𝑅 × 𝑅))𝑦) = (𝑥𝐷𝑦)) |
14 | 13 | eqeq1d 2174 |
. . 3
⊢ (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑅 ⊆ 𝑋) ∧ (𝑥 ∈ 𝑅 ∧ 𝑦 ∈ 𝑅)) → ((𝑥(𝐷 ↾ (𝑅 × 𝑅))𝑦) = 0 ↔ (𝑥𝐷𝑦) = 0)) |
15 | | simpll 519 |
. . . 4
⊢ (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑅 ⊆ 𝑋) ∧ (𝑥 ∈ 𝑅 ∧ 𝑦 ∈ 𝑅)) → 𝐷 ∈ (∞Met‘𝑋)) |
16 | | simplr 520 |
. . . . 5
⊢ (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑅 ⊆ 𝑋) ∧ (𝑥 ∈ 𝑅 ∧ 𝑦 ∈ 𝑅)) → 𝑅 ⊆ 𝑋) |
17 | | simprl 521 |
. . . . 5
⊢ (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑅 ⊆ 𝑋) ∧ (𝑥 ∈ 𝑅 ∧ 𝑦 ∈ 𝑅)) → 𝑥 ∈ 𝑅) |
18 | 16, 17 | sseldd 3143 |
. . . 4
⊢ (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑅 ⊆ 𝑋) ∧ (𝑥 ∈ 𝑅 ∧ 𝑦 ∈ 𝑅)) → 𝑥 ∈ 𝑋) |
19 | | simprr 522 |
. . . . 5
⊢ (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑅 ⊆ 𝑋) ∧ (𝑥 ∈ 𝑅 ∧ 𝑦 ∈ 𝑅)) → 𝑦 ∈ 𝑅) |
20 | 16, 19 | sseldd 3143 |
. . . 4
⊢ (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑅 ⊆ 𝑋) ∧ (𝑥 ∈ 𝑅 ∧ 𝑦 ∈ 𝑅)) → 𝑦 ∈ 𝑋) |
21 | | xmeteq0 12999 |
. . . 4
⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋) → ((𝑥𝐷𝑦) = 0 ↔ 𝑥 = 𝑦)) |
22 | 15, 18, 20, 21 | syl3anc 1228 |
. . 3
⊢ (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑅 ⊆ 𝑋) ∧ (𝑥 ∈ 𝑅 ∧ 𝑦 ∈ 𝑅)) → ((𝑥𝐷𝑦) = 0 ↔ 𝑥 = 𝑦)) |
23 | 14, 22 | bitrd 187 |
. 2
⊢ (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑅 ⊆ 𝑋) ∧ (𝑥 ∈ 𝑅 ∧ 𝑦 ∈ 𝑅)) → ((𝑥(𝐷 ↾ (𝑅 × 𝑅))𝑦) = 0 ↔ 𝑥 = 𝑦)) |
24 | | simpll 519 |
. . . 4
⊢ (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑅 ⊆ 𝑋) ∧ (𝑥 ∈ 𝑅 ∧ 𝑦 ∈ 𝑅 ∧ 𝑧 ∈ 𝑅)) → 𝐷 ∈ (∞Met‘𝑋)) |
25 | | simplr 520 |
. . . . 5
⊢ (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑅 ⊆ 𝑋) ∧ (𝑥 ∈ 𝑅 ∧ 𝑦 ∈ 𝑅 ∧ 𝑧 ∈ 𝑅)) → 𝑅 ⊆ 𝑋) |
26 | | simpr3 995 |
. . . . 5
⊢ (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑅 ⊆ 𝑋) ∧ (𝑥 ∈ 𝑅 ∧ 𝑦 ∈ 𝑅 ∧ 𝑧 ∈ 𝑅)) → 𝑧 ∈ 𝑅) |
27 | 25, 26 | sseldd 3143 |
. . . 4
⊢ (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑅 ⊆ 𝑋) ∧ (𝑥 ∈ 𝑅 ∧ 𝑦 ∈ 𝑅 ∧ 𝑧 ∈ 𝑅)) → 𝑧 ∈ 𝑋) |
28 | 18 | 3adantr3 1148 |
. . . 4
⊢ (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑅 ⊆ 𝑋) ∧ (𝑥 ∈ 𝑅 ∧ 𝑦 ∈ 𝑅 ∧ 𝑧 ∈ 𝑅)) → 𝑥 ∈ 𝑋) |
29 | 20 | 3adantr3 1148 |
. . . 4
⊢ (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑅 ⊆ 𝑋) ∧ (𝑥 ∈ 𝑅 ∧ 𝑦 ∈ 𝑅 ∧ 𝑧 ∈ 𝑅)) → 𝑦 ∈ 𝑋) |
30 | | xmettri2 13001 |
. . . 4
⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ (𝑧 ∈ 𝑋 ∧ 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋)) → (𝑥𝐷𝑦) ≤ ((𝑧𝐷𝑥) +𝑒 (𝑧𝐷𝑦))) |
31 | 24, 27, 28, 29, 30 | syl13anc 1230 |
. . 3
⊢ (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑅 ⊆ 𝑋) ∧ (𝑥 ∈ 𝑅 ∧ 𝑦 ∈ 𝑅 ∧ 𝑧 ∈ 𝑅)) → (𝑥𝐷𝑦) ≤ ((𝑧𝐷𝑥) +𝑒 (𝑧𝐷𝑦))) |
32 | 13 | 3adantr3 1148 |
. . 3
⊢ (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑅 ⊆ 𝑋) ∧ (𝑥 ∈ 𝑅 ∧ 𝑦 ∈ 𝑅 ∧ 𝑧 ∈ 𝑅)) → (𝑥(𝐷 ↾ (𝑅 × 𝑅))𝑦) = (𝑥𝐷𝑦)) |
33 | | simpr1 993 |
. . . . 5
⊢ (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑅 ⊆ 𝑋) ∧ (𝑥 ∈ 𝑅 ∧ 𝑦 ∈ 𝑅 ∧ 𝑧 ∈ 𝑅)) → 𝑥 ∈ 𝑅) |
34 | 26, 33 | ovresd 5982 |
. . . 4
⊢ (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑅 ⊆ 𝑋) ∧ (𝑥 ∈ 𝑅 ∧ 𝑦 ∈ 𝑅 ∧ 𝑧 ∈ 𝑅)) → (𝑧(𝐷 ↾ (𝑅 × 𝑅))𝑥) = (𝑧𝐷𝑥)) |
35 | | simpr2 994 |
. . . . 5
⊢ (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑅 ⊆ 𝑋) ∧ (𝑥 ∈ 𝑅 ∧ 𝑦 ∈ 𝑅 ∧ 𝑧 ∈ 𝑅)) → 𝑦 ∈ 𝑅) |
36 | 26, 35 | ovresd 5982 |
. . . 4
⊢ (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑅 ⊆ 𝑋) ∧ (𝑥 ∈ 𝑅 ∧ 𝑦 ∈ 𝑅 ∧ 𝑧 ∈ 𝑅)) → (𝑧(𝐷 ↾ (𝑅 × 𝑅))𝑦) = (𝑧𝐷𝑦)) |
37 | 34, 36 | oveq12d 5860 |
. . 3
⊢ (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑅 ⊆ 𝑋) ∧ (𝑥 ∈ 𝑅 ∧ 𝑦 ∈ 𝑅 ∧ 𝑧 ∈ 𝑅)) → ((𝑧(𝐷 ↾ (𝑅 × 𝑅))𝑥) +𝑒 (𝑧(𝐷 ↾ (𝑅 × 𝑅))𝑦)) = ((𝑧𝐷𝑥) +𝑒 (𝑧𝐷𝑦))) |
38 | 31, 32, 37 | 3brtr4d 4014 |
. 2
⊢ (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑅 ⊆ 𝑋) ∧ (𝑥 ∈ 𝑅 ∧ 𝑦 ∈ 𝑅 ∧ 𝑧 ∈ 𝑅)) → (𝑥(𝐷 ↾ (𝑅 × 𝑅))𝑦) ≤ ((𝑧(𝐷 ↾ (𝑅 × 𝑅))𝑥) +𝑒 (𝑧(𝐷 ↾ (𝑅 × 𝑅))𝑦))) |
39 | 6, 11, 23, 38 | isxmetd 12987 |
1
⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑅 ⊆ 𝑋) → (𝐷 ↾ (𝑅 × 𝑅)) ∈ (∞Met‘𝑅)) |