ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  xmetres2 GIF version

Theorem xmetres2 12548
Description: Restriction of an extended metric. (Contributed by Mario Carneiro, 20-Aug-2015.)
Assertion
Ref Expression
xmetres2 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑅𝑋) → (𝐷 ↾ (𝑅 × 𝑅)) ∈ (∞Met‘𝑅))

Proof of Theorem xmetres2
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 xmetrel 12512 . . . . 5 Rel ∞Met
2 relelfvdm 5453 . . . . 5 ((Rel ∞Met ∧ 𝐷 ∈ (∞Met‘𝑋)) → 𝑋 ∈ dom ∞Met)
31, 2mpan 420 . . . 4 (𝐷 ∈ (∞Met‘𝑋) → 𝑋 ∈ dom ∞Met)
43adantr 274 . . 3 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑅𝑋) → 𝑋 ∈ dom ∞Met)
5 simpr 109 . . 3 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑅𝑋) → 𝑅𝑋)
64, 5ssexd 4068 . 2 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑅𝑋) → 𝑅 ∈ V)
7 xmetf 12519 . . . 4 (𝐷 ∈ (∞Met‘𝑋) → 𝐷:(𝑋 × 𝑋)⟶ℝ*)
87adantr 274 . . 3 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑅𝑋) → 𝐷:(𝑋 × 𝑋)⟶ℝ*)
9 xpss12 4646 . . . 4 ((𝑅𝑋𝑅𝑋) → (𝑅 × 𝑅) ⊆ (𝑋 × 𝑋))
105, 9sylancom 416 . . 3 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑅𝑋) → (𝑅 × 𝑅) ⊆ (𝑋 × 𝑋))
118, 10fssresd 5299 . 2 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑅𝑋) → (𝐷 ↾ (𝑅 × 𝑅)):(𝑅 × 𝑅)⟶ℝ*)
12 ovres 5910 . . . . 5 ((𝑥𝑅𝑦𝑅) → (𝑥(𝐷 ↾ (𝑅 × 𝑅))𝑦) = (𝑥𝐷𝑦))
1312adantl 275 . . . 4 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑅𝑋) ∧ (𝑥𝑅𝑦𝑅)) → (𝑥(𝐷 ↾ (𝑅 × 𝑅))𝑦) = (𝑥𝐷𝑦))
1413eqeq1d 2148 . . 3 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑅𝑋) ∧ (𝑥𝑅𝑦𝑅)) → ((𝑥(𝐷 ↾ (𝑅 × 𝑅))𝑦) = 0 ↔ (𝑥𝐷𝑦) = 0))
15 simpll 518 . . . 4 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑅𝑋) ∧ (𝑥𝑅𝑦𝑅)) → 𝐷 ∈ (∞Met‘𝑋))
16 simplr 519 . . . . 5 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑅𝑋) ∧ (𝑥𝑅𝑦𝑅)) → 𝑅𝑋)
17 simprl 520 . . . . 5 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑅𝑋) ∧ (𝑥𝑅𝑦𝑅)) → 𝑥𝑅)
1816, 17sseldd 3098 . . . 4 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑅𝑋) ∧ (𝑥𝑅𝑦𝑅)) → 𝑥𝑋)
19 simprr 521 . . . . 5 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑅𝑋) ∧ (𝑥𝑅𝑦𝑅)) → 𝑦𝑅)
2016, 19sseldd 3098 . . . 4 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑅𝑋) ∧ (𝑥𝑅𝑦𝑅)) → 𝑦𝑋)
21 xmeteq0 12528 . . . 4 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑥𝑋𝑦𝑋) → ((𝑥𝐷𝑦) = 0 ↔ 𝑥 = 𝑦))
2215, 18, 20, 21syl3anc 1216 . . 3 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑅𝑋) ∧ (𝑥𝑅𝑦𝑅)) → ((𝑥𝐷𝑦) = 0 ↔ 𝑥 = 𝑦))
2314, 22bitrd 187 . 2 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑅𝑋) ∧ (𝑥𝑅𝑦𝑅)) → ((𝑥(𝐷 ↾ (𝑅 × 𝑅))𝑦) = 0 ↔ 𝑥 = 𝑦))
24 simpll 518 . . . 4 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑅𝑋) ∧ (𝑥𝑅𝑦𝑅𝑧𝑅)) → 𝐷 ∈ (∞Met‘𝑋))
25 simplr 519 . . . . 5 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑅𝑋) ∧ (𝑥𝑅𝑦𝑅𝑧𝑅)) → 𝑅𝑋)
26 simpr3 989 . . . . 5 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑅𝑋) ∧ (𝑥𝑅𝑦𝑅𝑧𝑅)) → 𝑧𝑅)
2725, 26sseldd 3098 . . . 4 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑅𝑋) ∧ (𝑥𝑅𝑦𝑅𝑧𝑅)) → 𝑧𝑋)
28183adantr3 1142 . . . 4 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑅𝑋) ∧ (𝑥𝑅𝑦𝑅𝑧𝑅)) → 𝑥𝑋)
29203adantr3 1142 . . . 4 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑅𝑋) ∧ (𝑥𝑅𝑦𝑅𝑧𝑅)) → 𝑦𝑋)
30 xmettri2 12530 . . . 4 ((𝐷 ∈ (∞Met‘𝑋) ∧ (𝑧𝑋𝑥𝑋𝑦𝑋)) → (𝑥𝐷𝑦) ≤ ((𝑧𝐷𝑥) +𝑒 (𝑧𝐷𝑦)))
3124, 27, 28, 29, 30syl13anc 1218 . . 3 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑅𝑋) ∧ (𝑥𝑅𝑦𝑅𝑧𝑅)) → (𝑥𝐷𝑦) ≤ ((𝑧𝐷𝑥) +𝑒 (𝑧𝐷𝑦)))
32133adantr3 1142 . . 3 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑅𝑋) ∧ (𝑥𝑅𝑦𝑅𝑧𝑅)) → (𝑥(𝐷 ↾ (𝑅 × 𝑅))𝑦) = (𝑥𝐷𝑦))
33 simpr1 987 . . . . 5 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑅𝑋) ∧ (𝑥𝑅𝑦𝑅𝑧𝑅)) → 𝑥𝑅)
3426, 33ovresd 5911 . . . 4 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑅𝑋) ∧ (𝑥𝑅𝑦𝑅𝑧𝑅)) → (𝑧(𝐷 ↾ (𝑅 × 𝑅))𝑥) = (𝑧𝐷𝑥))
35 simpr2 988 . . . . 5 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑅𝑋) ∧ (𝑥𝑅𝑦𝑅𝑧𝑅)) → 𝑦𝑅)
3626, 35ovresd 5911 . . . 4 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑅𝑋) ∧ (𝑥𝑅𝑦𝑅𝑧𝑅)) → (𝑧(𝐷 ↾ (𝑅 × 𝑅))𝑦) = (𝑧𝐷𝑦))
3734, 36oveq12d 5792 . . 3 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑅𝑋) ∧ (𝑥𝑅𝑦𝑅𝑧𝑅)) → ((𝑧(𝐷 ↾ (𝑅 × 𝑅))𝑥) +𝑒 (𝑧(𝐷 ↾ (𝑅 × 𝑅))𝑦)) = ((𝑧𝐷𝑥) +𝑒 (𝑧𝐷𝑦)))
3831, 32, 373brtr4d 3960 . 2 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑅𝑋) ∧ (𝑥𝑅𝑦𝑅𝑧𝑅)) → (𝑥(𝐷 ↾ (𝑅 × 𝑅))𝑦) ≤ ((𝑧(𝐷 ↾ (𝑅 × 𝑅))𝑥) +𝑒 (𝑧(𝐷 ↾ (𝑅 × 𝑅))𝑦)))
396, 11, 23, 38isxmetd 12516 1 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑅𝑋) → (𝐷 ↾ (𝑅 × 𝑅)) ∈ (∞Met‘𝑅))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104  w3a 962   = wceq 1331  wcel 1480  wss 3071   class class class wbr 3929   × cxp 4537  dom cdm 4539  cres 4541  Rel wrel 4544  wf 5119  cfv 5123  (class class class)co 5774  0cc0 7620  *cxr 7799  cle 7801   +𝑒 cxad 9557  ∞Metcxmet 12149
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-sep 4046  ax-pow 4098  ax-pr 4131  ax-un 4355  ax-setind 4452  ax-cnex 7711  ax-resscn 7712
This theorem depends on definitions:  df-bi 116  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2002  df-mo 2003  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ne 2309  df-ral 2421  df-rex 2422  df-rab 2425  df-v 2688  df-sbc 2910  df-csb 3004  df-dif 3073  df-un 3075  df-in 3077  df-ss 3084  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-uni 3737  df-iun 3815  df-br 3930  df-opab 3990  df-mpt 3991  df-id 4215  df-xp 4545  df-rel 4546  df-cnv 4547  df-co 4548  df-dm 4549  df-rn 4550  df-res 4551  df-ima 4552  df-iota 5088  df-fun 5125  df-fn 5126  df-f 5127  df-fv 5131  df-ov 5777  df-oprab 5778  df-mpo 5779  df-1st 6038  df-2nd 6039  df-map 6544  df-pnf 7802  df-mnf 7803  df-xr 7804  df-xmet 12157
This theorem is referenced by:  metres2  12550  xmetres  12551  xmetresbl  12609  metrest  12675  divcnap  12724  cncfmet  12748  limcimolemlt  12802  cnplimcim  12805  cnplimclemr  12807  limccnpcntop  12813  limccnp2cntop  12815
  Copyright terms: Public domain W3C validator