Step | Hyp | Ref
| Expression |
1 | | xmetrel 13813 |
. . . . 5
β’ Rel
βMet |
2 | | relelfvdm 5547 |
. . . . 5
β’ ((Rel
βMet β§ π· β
(βMetβπ))
β π β dom
βMet) |
3 | 1, 2 | mpan 424 |
. . . 4
β’ (π· β (βMetβπ) β π β dom βMet) |
4 | 3 | adantr 276 |
. . 3
β’ ((π· β (βMetβπ) β§ π
β π) β π β dom βMet) |
5 | | simpr 110 |
. . 3
β’ ((π· β (βMetβπ) β§ π
β π) β π
β π) |
6 | 4, 5 | ssexd 4143 |
. 2
β’ ((π· β (βMetβπ) β§ π
β π) β π
β V) |
7 | | xmetf 13820 |
. . . 4
β’ (π· β (βMetβπ) β π·:(π Γ π)βΆβ*) |
8 | 7 | adantr 276 |
. . 3
β’ ((π· β (βMetβπ) β§ π
β π) β π·:(π Γ π)βΆβ*) |
9 | | xpss12 4733 |
. . . 4
β’ ((π
β π β§ π
β π) β (π
Γ π
) β (π Γ π)) |
10 | 5, 9 | sylancom 420 |
. . 3
β’ ((π· β (βMetβπ) β§ π
β π) β (π
Γ π
) β (π Γ π)) |
11 | 8, 10 | fssresd 5392 |
. 2
β’ ((π· β (βMetβπ) β§ π
β π) β (π· βΎ (π
Γ π
)):(π
Γ π
)βΆβ*) |
12 | | ovres 6013 |
. . . . 5
β’ ((π₯ β π
β§ π¦ β π
) β (π₯(π· βΎ (π
Γ π
))π¦) = (π₯π·π¦)) |
13 | 12 | adantl 277 |
. . . 4
β’ (((π· β (βMetβπ) β§ π
β π) β§ (π₯ β π
β§ π¦ β π
)) β (π₯(π· βΎ (π
Γ π
))π¦) = (π₯π·π¦)) |
14 | 13 | eqeq1d 2186 |
. . 3
β’ (((π· β (βMetβπ) β§ π
β π) β§ (π₯ β π
β§ π¦ β π
)) β ((π₯(π· βΎ (π
Γ π
))π¦) = 0 β (π₯π·π¦) = 0)) |
15 | | simpll 527 |
. . . 4
β’ (((π· β (βMetβπ) β§ π
β π) β§ (π₯ β π
β§ π¦ β π
)) β π· β (βMetβπ)) |
16 | | simplr 528 |
. . . . 5
β’ (((π· β (βMetβπ) β§ π
β π) β§ (π₯ β π
β§ π¦ β π
)) β π
β π) |
17 | | simprl 529 |
. . . . 5
β’ (((π· β (βMetβπ) β§ π
β π) β§ (π₯ β π
β§ π¦ β π
)) β π₯ β π
) |
18 | 16, 17 | sseldd 3156 |
. . . 4
β’ (((π· β (βMetβπ) β§ π
β π) β§ (π₯ β π
β§ π¦ β π
)) β π₯ β π) |
19 | | simprr 531 |
. . . . 5
β’ (((π· β (βMetβπ) β§ π
β π) β§ (π₯ β π
β§ π¦ β π
)) β π¦ β π
) |
20 | 16, 19 | sseldd 3156 |
. . . 4
β’ (((π· β (βMetβπ) β§ π
β π) β§ (π₯ β π
β§ π¦ β π
)) β π¦ β π) |
21 | | xmeteq0 13829 |
. . . 4
β’ ((π· β (βMetβπ) β§ π₯ β π β§ π¦ β π) β ((π₯π·π¦) = 0 β π₯ = π¦)) |
22 | 15, 18, 20, 21 | syl3anc 1238 |
. . 3
β’ (((π· β (βMetβπ) β§ π
β π) β§ (π₯ β π
β§ π¦ β π
)) β ((π₯π·π¦) = 0 β π₯ = π¦)) |
23 | 14, 22 | bitrd 188 |
. 2
β’ (((π· β (βMetβπ) β§ π
β π) β§ (π₯ β π
β§ π¦ β π
)) β ((π₯(π· βΎ (π
Γ π
))π¦) = 0 β π₯ = π¦)) |
24 | | simpll 527 |
. . . 4
β’ (((π· β (βMetβπ) β§ π
β π) β§ (π₯ β π
β§ π¦ β π
β§ π§ β π
)) β π· β (βMetβπ)) |
25 | | simplr 528 |
. . . . 5
β’ (((π· β (βMetβπ) β§ π
β π) β§ (π₯ β π
β§ π¦ β π
β§ π§ β π
)) β π
β π) |
26 | | simpr3 1005 |
. . . . 5
β’ (((π· β (βMetβπ) β§ π
β π) β§ (π₯ β π
β§ π¦ β π
β§ π§ β π
)) β π§ β π
) |
27 | 25, 26 | sseldd 3156 |
. . . 4
β’ (((π· β (βMetβπ) β§ π
β π) β§ (π₯ β π
β§ π¦ β π
β§ π§ β π
)) β π§ β π) |
28 | 18 | 3adantr3 1158 |
. . . 4
β’ (((π· β (βMetβπ) β§ π
β π) β§ (π₯ β π
β§ π¦ β π
β§ π§ β π
)) β π₯ β π) |
29 | 20 | 3adantr3 1158 |
. . . 4
β’ (((π· β (βMetβπ) β§ π
β π) β§ (π₯ β π
β§ π¦ β π
β§ π§ β π
)) β π¦ β π) |
30 | | xmettri2 13831 |
. . . 4
β’ ((π· β (βMetβπ) β§ (π§ β π β§ π₯ β π β§ π¦ β π)) β (π₯π·π¦) β€ ((π§π·π₯) +π (π§π·π¦))) |
31 | 24, 27, 28, 29, 30 | syl13anc 1240 |
. . 3
β’ (((π· β (βMetβπ) β§ π
β π) β§ (π₯ β π
β§ π¦ β π
β§ π§ β π
)) β (π₯π·π¦) β€ ((π§π·π₯) +π (π§π·π¦))) |
32 | 13 | 3adantr3 1158 |
. . 3
β’ (((π· β (βMetβπ) β§ π
β π) β§ (π₯ β π
β§ π¦ β π
β§ π§ β π
)) β (π₯(π· βΎ (π
Γ π
))π¦) = (π₯π·π¦)) |
33 | | simpr1 1003 |
. . . . 5
β’ (((π· β (βMetβπ) β§ π
β π) β§ (π₯ β π
β§ π¦ β π
β§ π§ β π
)) β π₯ β π
) |
34 | 26, 33 | ovresd 6014 |
. . . 4
β’ (((π· β (βMetβπ) β§ π
β π) β§ (π₯ β π
β§ π¦ β π
β§ π§ β π
)) β (π§(π· βΎ (π
Γ π
))π₯) = (π§π·π₯)) |
35 | | simpr2 1004 |
. . . . 5
β’ (((π· β (βMetβπ) β§ π
β π) β§ (π₯ β π
β§ π¦ β π
β§ π§ β π
)) β π¦ β π
) |
36 | 26, 35 | ovresd 6014 |
. . . 4
β’ (((π· β (βMetβπ) β§ π
β π) β§ (π₯ β π
β§ π¦ β π
β§ π§ β π
)) β (π§(π· βΎ (π
Γ π
))π¦) = (π§π·π¦)) |
37 | 34, 36 | oveq12d 5892 |
. . 3
β’ (((π· β (βMetβπ) β§ π
β π) β§ (π₯ β π
β§ π¦ β π
β§ π§ β π
)) β ((π§(π· βΎ (π
Γ π
))π₯) +π (π§(π· βΎ (π
Γ π
))π¦)) = ((π§π·π₯) +π (π§π·π¦))) |
38 | 31, 32, 37 | 3brtr4d 4035 |
. 2
β’ (((π· β (βMetβπ) β§ π
β π) β§ (π₯ β π
β§ π¦ β π
β§ π§ β π
)) β (π₯(π· βΎ (π
Γ π
))π¦) β€ ((π§(π· βΎ (π
Γ π
))π₯) +π (π§(π· βΎ (π
Γ π
))π¦))) |
39 | 6, 11, 23, 38 | isxmetd 13817 |
1
β’ ((π· β (βMetβπ) β§ π
β π) β (π· βΎ (π
Γ π
)) β (βMetβπ
)) |