ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  xmetres2 GIF version

Theorem xmetres2 13173
Description: Restriction of an extended metric. (Contributed by Mario Carneiro, 20-Aug-2015.)
Assertion
Ref Expression
xmetres2 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑅𝑋) → (𝐷 ↾ (𝑅 × 𝑅)) ∈ (∞Met‘𝑅))

Proof of Theorem xmetres2
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 xmetrel 13137 . . . . 5 Rel ∞Met
2 relelfvdm 5528 . . . . 5 ((Rel ∞Met ∧ 𝐷 ∈ (∞Met‘𝑋)) → 𝑋 ∈ dom ∞Met)
31, 2mpan 422 . . . 4 (𝐷 ∈ (∞Met‘𝑋) → 𝑋 ∈ dom ∞Met)
43adantr 274 . . 3 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑅𝑋) → 𝑋 ∈ dom ∞Met)
5 simpr 109 . . 3 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑅𝑋) → 𝑅𝑋)
64, 5ssexd 4129 . 2 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑅𝑋) → 𝑅 ∈ V)
7 xmetf 13144 . . . 4 (𝐷 ∈ (∞Met‘𝑋) → 𝐷:(𝑋 × 𝑋)⟶ℝ*)
87adantr 274 . . 3 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑅𝑋) → 𝐷:(𝑋 × 𝑋)⟶ℝ*)
9 xpss12 4718 . . . 4 ((𝑅𝑋𝑅𝑋) → (𝑅 × 𝑅) ⊆ (𝑋 × 𝑋))
105, 9sylancom 418 . . 3 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑅𝑋) → (𝑅 × 𝑅) ⊆ (𝑋 × 𝑋))
118, 10fssresd 5374 . 2 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑅𝑋) → (𝐷 ↾ (𝑅 × 𝑅)):(𝑅 × 𝑅)⟶ℝ*)
12 ovres 5992 . . . . 5 ((𝑥𝑅𝑦𝑅) → (𝑥(𝐷 ↾ (𝑅 × 𝑅))𝑦) = (𝑥𝐷𝑦))
1312adantl 275 . . . 4 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑅𝑋) ∧ (𝑥𝑅𝑦𝑅)) → (𝑥(𝐷 ↾ (𝑅 × 𝑅))𝑦) = (𝑥𝐷𝑦))
1413eqeq1d 2179 . . 3 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑅𝑋) ∧ (𝑥𝑅𝑦𝑅)) → ((𝑥(𝐷 ↾ (𝑅 × 𝑅))𝑦) = 0 ↔ (𝑥𝐷𝑦) = 0))
15 simpll 524 . . . 4 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑅𝑋) ∧ (𝑥𝑅𝑦𝑅)) → 𝐷 ∈ (∞Met‘𝑋))
16 simplr 525 . . . . 5 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑅𝑋) ∧ (𝑥𝑅𝑦𝑅)) → 𝑅𝑋)
17 simprl 526 . . . . 5 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑅𝑋) ∧ (𝑥𝑅𝑦𝑅)) → 𝑥𝑅)
1816, 17sseldd 3148 . . . 4 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑅𝑋) ∧ (𝑥𝑅𝑦𝑅)) → 𝑥𝑋)
19 simprr 527 . . . . 5 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑅𝑋) ∧ (𝑥𝑅𝑦𝑅)) → 𝑦𝑅)
2016, 19sseldd 3148 . . . 4 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑅𝑋) ∧ (𝑥𝑅𝑦𝑅)) → 𝑦𝑋)
21 xmeteq0 13153 . . . 4 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑥𝑋𝑦𝑋) → ((𝑥𝐷𝑦) = 0 ↔ 𝑥 = 𝑦))
2215, 18, 20, 21syl3anc 1233 . . 3 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑅𝑋) ∧ (𝑥𝑅𝑦𝑅)) → ((𝑥𝐷𝑦) = 0 ↔ 𝑥 = 𝑦))
2314, 22bitrd 187 . 2 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑅𝑋) ∧ (𝑥𝑅𝑦𝑅)) → ((𝑥(𝐷 ↾ (𝑅 × 𝑅))𝑦) = 0 ↔ 𝑥 = 𝑦))
24 simpll 524 . . . 4 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑅𝑋) ∧ (𝑥𝑅𝑦𝑅𝑧𝑅)) → 𝐷 ∈ (∞Met‘𝑋))
25 simplr 525 . . . . 5 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑅𝑋) ∧ (𝑥𝑅𝑦𝑅𝑧𝑅)) → 𝑅𝑋)
26 simpr3 1000 . . . . 5 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑅𝑋) ∧ (𝑥𝑅𝑦𝑅𝑧𝑅)) → 𝑧𝑅)
2725, 26sseldd 3148 . . . 4 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑅𝑋) ∧ (𝑥𝑅𝑦𝑅𝑧𝑅)) → 𝑧𝑋)
28183adantr3 1153 . . . 4 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑅𝑋) ∧ (𝑥𝑅𝑦𝑅𝑧𝑅)) → 𝑥𝑋)
29203adantr3 1153 . . . 4 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑅𝑋) ∧ (𝑥𝑅𝑦𝑅𝑧𝑅)) → 𝑦𝑋)
30 xmettri2 13155 . . . 4 ((𝐷 ∈ (∞Met‘𝑋) ∧ (𝑧𝑋𝑥𝑋𝑦𝑋)) → (𝑥𝐷𝑦) ≤ ((𝑧𝐷𝑥) +𝑒 (𝑧𝐷𝑦)))
3124, 27, 28, 29, 30syl13anc 1235 . . 3 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑅𝑋) ∧ (𝑥𝑅𝑦𝑅𝑧𝑅)) → (𝑥𝐷𝑦) ≤ ((𝑧𝐷𝑥) +𝑒 (𝑧𝐷𝑦)))
32133adantr3 1153 . . 3 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑅𝑋) ∧ (𝑥𝑅𝑦𝑅𝑧𝑅)) → (𝑥(𝐷 ↾ (𝑅 × 𝑅))𝑦) = (𝑥𝐷𝑦))
33 simpr1 998 . . . . 5 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑅𝑋) ∧ (𝑥𝑅𝑦𝑅𝑧𝑅)) → 𝑥𝑅)
3426, 33ovresd 5993 . . . 4 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑅𝑋) ∧ (𝑥𝑅𝑦𝑅𝑧𝑅)) → (𝑧(𝐷 ↾ (𝑅 × 𝑅))𝑥) = (𝑧𝐷𝑥))
35 simpr2 999 . . . . 5 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑅𝑋) ∧ (𝑥𝑅𝑦𝑅𝑧𝑅)) → 𝑦𝑅)
3626, 35ovresd 5993 . . . 4 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑅𝑋) ∧ (𝑥𝑅𝑦𝑅𝑧𝑅)) → (𝑧(𝐷 ↾ (𝑅 × 𝑅))𝑦) = (𝑧𝐷𝑦))
3734, 36oveq12d 5871 . . 3 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑅𝑋) ∧ (𝑥𝑅𝑦𝑅𝑧𝑅)) → ((𝑧(𝐷 ↾ (𝑅 × 𝑅))𝑥) +𝑒 (𝑧(𝐷 ↾ (𝑅 × 𝑅))𝑦)) = ((𝑧𝐷𝑥) +𝑒 (𝑧𝐷𝑦)))
3831, 32, 373brtr4d 4021 . 2 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑅𝑋) ∧ (𝑥𝑅𝑦𝑅𝑧𝑅)) → (𝑥(𝐷 ↾ (𝑅 × 𝑅))𝑦) ≤ ((𝑧(𝐷 ↾ (𝑅 × 𝑅))𝑥) +𝑒 (𝑧(𝐷 ↾ (𝑅 × 𝑅))𝑦)))
396, 11, 23, 38isxmetd 13141 1 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑅𝑋) → (𝐷 ↾ (𝑅 × 𝑅)) ∈ (∞Met‘𝑅))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104  w3a 973   = wceq 1348  wcel 2141  wss 3121   class class class wbr 3989   × cxp 4609  dom cdm 4611  cres 4613  Rel wrel 4616  wf 5194  cfv 5198  (class class class)co 5853  0cc0 7774  *cxr 7953  cle 7955   +𝑒 cxad 9727  ∞Metcxmet 12774
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-sep 4107  ax-pow 4160  ax-pr 4194  ax-un 4418  ax-setind 4521  ax-cnex 7865  ax-resscn 7866
This theorem depends on definitions:  df-bi 116  df-3an 975  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ne 2341  df-ral 2453  df-rex 2454  df-rab 2457  df-v 2732  df-sbc 2956  df-csb 3050  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-iun 3875  df-br 3990  df-opab 4051  df-mpt 4052  df-id 4278  df-xp 4617  df-rel 4618  df-cnv 4619  df-co 4620  df-dm 4621  df-rn 4622  df-res 4623  df-ima 4624  df-iota 5160  df-fun 5200  df-fn 5201  df-f 5202  df-fv 5206  df-ov 5856  df-oprab 5857  df-mpo 5858  df-1st 6119  df-2nd 6120  df-map 6628  df-pnf 7956  df-mnf 7957  df-xr 7958  df-xmet 12782
This theorem is referenced by:  metres2  13175  xmetres  13176  xmetresbl  13234  metrest  13300  divcnap  13349  cncfmet  13373  limcimolemlt  13427  cnplimcim  13430  cnplimclemr  13432  limccnpcntop  13438  limccnp2cntop  13440
  Copyright terms: Public domain W3C validator