ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  3anbi2d GIF version

Theorem 3anbi2d 1312
Description: Deduction adding conjuncts to an equivalence. (Contributed by NM, 8-Sep-2006.)
Hypothesis
Ref Expression
3anbi1d.1 (𝜑 → (𝜓𝜒))
Assertion
Ref Expression
3anbi2d (𝜑 → ((𝜃𝜓𝜏) ↔ (𝜃𝜒𝜏)))

Proof of Theorem 3anbi2d
StepHypRef Expression
1 biidd 171 . 2 (𝜑 → (𝜃𝜃))
2 3anbi1d.1 . 2 (𝜑 → (𝜓𝜒))
31, 23anbi12d 1308 1 (𝜑 → ((𝜃𝜓𝜏) ↔ (𝜃𝜒𝜏)))
Colors of variables: wff set class
Syntax hints:  wi 4  wb 104  w3a 973
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107
This theorem depends on definitions:  df-bi 116  df-3an 975
This theorem is referenced by:  vtocl3gaf  2799  ordsoexmid  4544  ereq2  6517  genpelxp  7460  seq3f1olemp  10445  qexpclz  10484
  Copyright terms: Public domain W3C validator