| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > 3anbi2d | GIF version | ||
| Description: Deduction adding conjuncts to an equivalence. (Contributed by NM, 8-Sep-2006.) | 
| Ref | Expression | 
|---|---|
| 3anbi1d.1 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | 
| Ref | Expression | 
|---|---|
| 3anbi2d | ⊢ (𝜑 → ((𝜃 ∧ 𝜓 ∧ 𝜏) ↔ (𝜃 ∧ 𝜒 ∧ 𝜏))) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | biidd 172 | . 2 ⊢ (𝜑 → (𝜃 ↔ 𝜃)) | |
| 2 | 3anbi1d.1 | . 2 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
| 3 | 1, 2 | 3anbi12d 1324 | 1 ⊢ (𝜑 → ((𝜃 ∧ 𝜓 ∧ 𝜏) ↔ (𝜃 ∧ 𝜒 ∧ 𝜏))) | 
| Colors of variables: wff set class | 
| Syntax hints: → wi 4 ↔ wb 105 ∧ w3a 980 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 | 
| This theorem depends on definitions: df-bi 117 df-3an 982 | 
| This theorem is referenced by: vtocl3gaf 2833 ordsoexmid 4598 ereq2 6600 genpelxp 7578 seq3f1olemp 10607 qexpclz 10652 mhmlem 13244 opprsubgg 13640 lmodlema 13848 ivthreinc 14881 | 
| Copyright terms: Public domain | W3C validator |