ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  3anbi2d Unicode version

Theorem 3anbi2d 1253
Description: Deduction adding conjuncts to an equivalence. (Contributed by NM, 8-Sep-2006.)
Hypothesis
Ref Expression
3anbi1d.1  |-  ( ph  ->  ( ps  <->  ch )
)
Assertion
Ref Expression
3anbi2d  |-  ( ph  ->  ( ( th  /\  ps  /\  ta )  <->  ( th  /\  ch  /\  ta )
) )

Proof of Theorem 3anbi2d
StepHypRef Expression
1 biidd 170 . 2  |-  ( ph  ->  ( th  <->  th )
)
2 3anbi1d.1 . 2  |-  ( ph  ->  ( ps  <->  ch )
)
31, 23anbi12d 1249 1  |-  ( ph  ->  ( ( th  /\  ps  /\  ta )  <->  ( th  /\  ch  /\  ta )
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 103    /\ w3a 924
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106
This theorem depends on definitions:  df-bi 115  df-3an 926
This theorem is referenced by:  vtocl3gaf  2688  ordsoexmid  4378  ereq2  6300  genpelxp  7070  seq3f1olemp  9931  qexpclz  9976
  Copyright terms: Public domain W3C validator