| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 3anbi3d | GIF version | ||
| Description: Deduction adding conjuncts to an equivalence. (Contributed by NM, 8-Sep-2006.) |
| Ref | Expression |
|---|---|
| 3anbi1d.1 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
| Ref | Expression |
|---|---|
| 3anbi3d | ⊢ (𝜑 → ((𝜃 ∧ 𝜏 ∧ 𝜓) ↔ (𝜃 ∧ 𝜏 ∧ 𝜒))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | biidd 172 | . 2 ⊢ (𝜑 → (𝜃 ↔ 𝜃)) | |
| 2 | 3anbi1d.1 | . 2 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
| 3 | 1, 2 | 3anbi13d 1326 | 1 ⊢ (𝜑 → ((𝜃 ∧ 𝜏 ∧ 𝜓) ↔ (𝜃 ∧ 𝜏 ∧ 𝜒))) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ↔ wb 105 ∧ w3a 980 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 df-3an 982 |
| This theorem is referenced by: ceqsex3v 2814 ceqsex4v 2815 ceqsex8v 2817 vtocl3gaf 2841 mob 2954 ordsoexmid 4609 tfr1onlemaccex 6433 tfrcllemaccex 6446 fseq1m1p1 10216 summodc 11665 fsum3 11669 divalglemnn 12200 divalglemeunn 12203 divalglemex 12204 divalglemeuneg 12205 mhmlem 13421 ring1 13792 lmodlema 14025 ivthreinc 15088 dvmptfsum 15168 |
| Copyright terms: Public domain | W3C validator |