ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  3anbi3d GIF version

Theorem 3anbi3d 1330
Description: Deduction adding conjuncts to an equivalence. (Contributed by NM, 8-Sep-2006.)
Hypothesis
Ref Expression
3anbi1d.1 (𝜑 → (𝜓𝜒))
Assertion
Ref Expression
3anbi3d (𝜑 → ((𝜃𝜏𝜓) ↔ (𝜃𝜏𝜒)))

Proof of Theorem 3anbi3d
StepHypRef Expression
1 biidd 172 . 2 (𝜑 → (𝜃𝜃))
2 3anbi1d.1 . 2 (𝜑 → (𝜓𝜒))
31, 23anbi13d 1326 1 (𝜑 → ((𝜃𝜏𝜓) ↔ (𝜃𝜏𝜒)))
Colors of variables: wff set class
Syntax hints:  wi 4  wb 105  w3a 980
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108
This theorem depends on definitions:  df-bi 117  df-3an 982
This theorem is referenced by:  ceqsex3v  2814  ceqsex4v  2815  ceqsex8v  2817  vtocl3gaf  2841  mob  2954  ordsoexmid  4608  tfr1onlemaccex  6424  tfrcllemaccex  6437  fseq1m1p1  10199  summodc  11613  fsum3  11617  divalglemnn  12148  divalglemeunn  12151  divalglemex  12152  divalglemeuneg  12153  mhmlem  13368  ring1  13739  lmodlema  13972  ivthreinc  15035  dvmptfsum  15115
  Copyright terms: Public domain W3C validator