| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 3anbi3d | GIF version | ||
| Description: Deduction adding conjuncts to an equivalence. (Contributed by NM, 8-Sep-2006.) |
| Ref | Expression |
|---|---|
| 3anbi1d.1 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
| Ref | Expression |
|---|---|
| 3anbi3d | ⊢ (𝜑 → ((𝜃 ∧ 𝜏 ∧ 𝜓) ↔ (𝜃 ∧ 𝜏 ∧ 𝜒))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | biidd 172 | . 2 ⊢ (𝜑 → (𝜃 ↔ 𝜃)) | |
| 2 | 3anbi1d.1 | . 2 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
| 3 | 1, 2 | 3anbi13d 1326 | 1 ⊢ (𝜑 → ((𝜃 ∧ 𝜏 ∧ 𝜓) ↔ (𝜃 ∧ 𝜏 ∧ 𝜒))) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ↔ wb 105 ∧ w3a 980 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 df-3an 982 |
| This theorem is referenced by: ceqsex3v 2814 ceqsex4v 2815 ceqsex8v 2817 vtocl3gaf 2841 mob 2954 ordsoexmid 4609 tfr1onlemaccex 6433 tfrcllemaccex 6446 fseq1m1p1 10216 summodc 11636 fsum3 11640 divalglemnn 12171 divalglemeunn 12174 divalglemex 12175 divalglemeuneg 12176 mhmlem 13392 ring1 13763 lmodlema 13996 ivthreinc 15059 dvmptfsum 15139 |
| Copyright terms: Public domain | W3C validator |