Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > 3anbi3d | GIF version |
Description: Deduction adding conjuncts to an equivalence. (Contributed by NM, 8-Sep-2006.) |
Ref | Expression |
---|---|
3anbi1d.1 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
Ref | Expression |
---|---|
3anbi3d | ⊢ (𝜑 → ((𝜃 ∧ 𝜏 ∧ 𝜓) ↔ (𝜃 ∧ 𝜏 ∧ 𝜒))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | biidd 171 | . 2 ⊢ (𝜑 → (𝜃 ↔ 𝜃)) | |
2 | 3anbi1d.1 | . 2 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
3 | 1, 2 | 3anbi13d 1304 | 1 ⊢ (𝜑 → ((𝜃 ∧ 𝜏 ∧ 𝜓) ↔ (𝜃 ∧ 𝜏 ∧ 𝜒))) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 104 ∧ w3a 968 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 |
This theorem depends on definitions: df-bi 116 df-3an 970 |
This theorem is referenced by: ceqsex3v 2768 ceqsex4v 2769 ceqsex8v 2771 vtocl3gaf 2795 mob 2908 ordsoexmid 4539 tfr1onlemaccex 6316 tfrcllemaccex 6329 fseq1m1p1 10030 summodc 11324 fsum3 11328 divalglemnn 11855 divalglemeunn 11858 divalglemex 11859 divalglemeuneg 11860 |
Copyright terms: Public domain | W3C validator |