ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  3anbi3d GIF version

Theorem 3anbi3d 1329
Description: Deduction adding conjuncts to an equivalence. (Contributed by NM, 8-Sep-2006.)
Hypothesis
Ref Expression
3anbi1d.1 (𝜑 → (𝜓𝜒))
Assertion
Ref Expression
3anbi3d (𝜑 → ((𝜃𝜏𝜓) ↔ (𝜃𝜏𝜒)))

Proof of Theorem 3anbi3d
StepHypRef Expression
1 biidd 172 . 2 (𝜑 → (𝜃𝜃))
2 3anbi1d.1 . 2 (𝜑 → (𝜓𝜒))
31, 23anbi13d 1325 1 (𝜑 → ((𝜃𝜏𝜓) ↔ (𝜃𝜏𝜒)))
Colors of variables: wff set class
Syntax hints:  wi 4  wb 105  w3a 980
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108
This theorem depends on definitions:  df-bi 117  df-3an 982
This theorem is referenced by:  ceqsex3v  2806  ceqsex4v  2807  ceqsex8v  2809  vtocl3gaf  2833  mob  2946  ordsoexmid  4598  tfr1onlemaccex  6406  tfrcllemaccex  6419  fseq1m1p1  10170  summodc  11548  fsum3  11552  divalglemnn  12083  divalglemeunn  12086  divalglemex  12087  divalglemeuneg  12088  mhmlem  13244  ring1  13615  lmodlema  13848  ivthreinc  14881  dvmptfsum  14961
  Copyright terms: Public domain W3C validator