ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  3anbi3d GIF version

Theorem 3anbi3d 1329
Description: Deduction adding conjuncts to an equivalence. (Contributed by NM, 8-Sep-2006.)
Hypothesis
Ref Expression
3anbi1d.1 (𝜑 → (𝜓𝜒))
Assertion
Ref Expression
3anbi3d (𝜑 → ((𝜃𝜏𝜓) ↔ (𝜃𝜏𝜒)))

Proof of Theorem 3anbi3d
StepHypRef Expression
1 biidd 172 . 2 (𝜑 → (𝜃𝜃))
2 3anbi1d.1 . 2 (𝜑 → (𝜓𝜒))
31, 23anbi13d 1325 1 (𝜑 → ((𝜃𝜏𝜓) ↔ (𝜃𝜏𝜒)))
Colors of variables: wff set class
Syntax hints:  wi 4  wb 105  w3a 980
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108
This theorem depends on definitions:  df-bi 117  df-3an 982
This theorem is referenced by:  ceqsex3v  2803  ceqsex4v  2804  ceqsex8v  2806  vtocl3gaf  2830  mob  2943  ordsoexmid  4595  tfr1onlemaccex  6403  tfrcllemaccex  6416  fseq1m1p1  10164  summodc  11529  fsum3  11533  divalglemnn  12062  divalglemeunn  12065  divalglemex  12066  divalglemeuneg  12067  mhmlem  13187  ring1  13558  lmodlema  13791  ivthreinc  14824  dvmptfsum  14904
  Copyright terms: Public domain W3C validator