ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  3anbi3d GIF version

Theorem 3anbi3d 1264
Description: Deduction adding conjuncts to an equivalence. (Contributed by NM, 8-Sep-2006.)
Hypothesis
Ref Expression
3anbi1d.1 (𝜑 → (𝜓𝜒))
Assertion
Ref Expression
3anbi3d (𝜑 → ((𝜃𝜏𝜓) ↔ (𝜃𝜏𝜒)))

Proof of Theorem 3anbi3d
StepHypRef Expression
1 biidd 171 . 2 (𝜑 → (𝜃𝜃))
2 3anbi1d.1 . 2 (𝜑 → (𝜓𝜒))
31, 23anbi13d 1260 1 (𝜑 → ((𝜃𝜏𝜓) ↔ (𝜃𝜏𝜒)))
Colors of variables: wff set class
Syntax hints:  wi 4  wb 104  w3a 930
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107
This theorem depends on definitions:  df-bi 116  df-3an 932
This theorem is referenced by:  ceqsex3v  2683  ceqsex4v  2684  ceqsex8v  2686  vtocl3gaf  2710  mob  2819  ordsoexmid  4415  tfr1onlemaccex  6175  tfrcllemaccex  6188  fseq1m1p1  9716  summodc  10991  fsum3  10995  divalglemnn  11410  divalglemeunn  11413  divalglemex  11414  divalglemeuneg  11415
  Copyright terms: Public domain W3C validator