![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > 3anbi3d | GIF version |
Description: Deduction adding conjuncts to an equivalence. (Contributed by NM, 8-Sep-2006.) |
Ref | Expression |
---|---|
3anbi1d.1 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
Ref | Expression |
---|---|
3anbi3d | ⊢ (𝜑 → ((𝜃 ∧ 𝜏 ∧ 𝜓) ↔ (𝜃 ∧ 𝜏 ∧ 𝜒))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | biidd 172 | . 2 ⊢ (𝜑 → (𝜃 ↔ 𝜃)) | |
2 | 3anbi1d.1 | . 2 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
3 | 1, 2 | 3anbi13d 1325 | 1 ⊢ (𝜑 → ((𝜃 ∧ 𝜏 ∧ 𝜓) ↔ (𝜃 ∧ 𝜏 ∧ 𝜒))) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 105 ∧ w3a 980 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
This theorem depends on definitions: df-bi 117 df-3an 982 |
This theorem is referenced by: ceqsex3v 2803 ceqsex4v 2804 ceqsex8v 2806 vtocl3gaf 2830 mob 2943 ordsoexmid 4595 tfr1onlemaccex 6403 tfrcllemaccex 6416 fseq1m1p1 10164 summodc 11529 fsum3 11533 divalglemnn 12062 divalglemeunn 12065 divalglemex 12066 divalglemeuneg 12067 mhmlem 13187 ring1 13558 lmodlema 13791 ivthreinc 14824 dvmptfsum 14904 |
Copyright terms: Public domain | W3C validator |