ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  3anbi3d GIF version

Theorem 3anbi3d 1330
Description: Deduction adding conjuncts to an equivalence. (Contributed by NM, 8-Sep-2006.)
Hypothesis
Ref Expression
3anbi1d.1 (𝜑 → (𝜓𝜒))
Assertion
Ref Expression
3anbi3d (𝜑 → ((𝜃𝜏𝜓) ↔ (𝜃𝜏𝜒)))

Proof of Theorem 3anbi3d
StepHypRef Expression
1 biidd 172 . 2 (𝜑 → (𝜃𝜃))
2 3anbi1d.1 . 2 (𝜑 → (𝜓𝜒))
31, 23anbi13d 1326 1 (𝜑 → ((𝜃𝜏𝜓) ↔ (𝜃𝜏𝜒)))
Colors of variables: wff set class
Syntax hints:  wi 4  wb 105  w3a 980
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108
This theorem depends on definitions:  df-bi 117  df-3an 982
This theorem is referenced by:  ceqsex3v  2814  ceqsex4v  2815  ceqsex8v  2817  vtocl3gaf  2841  mob  2954  ordsoexmid  4609  tfr1onlemaccex  6433  tfrcllemaccex  6446  fseq1m1p1  10216  summodc  11636  fsum3  11640  divalglemnn  12171  divalglemeunn  12174  divalglemex  12175  divalglemeuneg  12176  mhmlem  13392  ring1  13763  lmodlema  13996  ivthreinc  15059  dvmptfsum  15139
  Copyright terms: Public domain W3C validator