| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > 3anbi3d | GIF version | ||
| Description: Deduction adding conjuncts to an equivalence. (Contributed by NM, 8-Sep-2006.) | 
| Ref | Expression | 
|---|---|
| 3anbi1d.1 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | 
| Ref | Expression | 
|---|---|
| 3anbi3d | ⊢ (𝜑 → ((𝜃 ∧ 𝜏 ∧ 𝜓) ↔ (𝜃 ∧ 𝜏 ∧ 𝜒))) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | biidd 172 | . 2 ⊢ (𝜑 → (𝜃 ↔ 𝜃)) | |
| 2 | 3anbi1d.1 | . 2 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
| 3 | 1, 2 | 3anbi13d 1325 | 1 ⊢ (𝜑 → ((𝜃 ∧ 𝜏 ∧ 𝜓) ↔ (𝜃 ∧ 𝜏 ∧ 𝜒))) | 
| Colors of variables: wff set class | 
| Syntax hints: → wi 4 ↔ wb 105 ∧ w3a 980 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 | 
| This theorem depends on definitions: df-bi 117 df-3an 982 | 
| This theorem is referenced by: ceqsex3v 2806 ceqsex4v 2807 ceqsex8v 2809 vtocl3gaf 2833 mob 2946 ordsoexmid 4598 tfr1onlemaccex 6406 tfrcllemaccex 6419 fseq1m1p1 10170 summodc 11548 fsum3 11552 divalglemnn 12083 divalglemeunn 12086 divalglemex 12087 divalglemeuneg 12088 mhmlem 13244 ring1 13615 lmodlema 13848 ivthreinc 14881 dvmptfsum 14961 | 
| Copyright terms: Public domain | W3C validator |