ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  3anbi3d GIF version

Theorem 3anbi3d 1308
Description: Deduction adding conjuncts to an equivalence. (Contributed by NM, 8-Sep-2006.)
Hypothesis
Ref Expression
3anbi1d.1 (𝜑 → (𝜓𝜒))
Assertion
Ref Expression
3anbi3d (𝜑 → ((𝜃𝜏𝜓) ↔ (𝜃𝜏𝜒)))

Proof of Theorem 3anbi3d
StepHypRef Expression
1 biidd 171 . 2 (𝜑 → (𝜃𝜃))
2 3anbi1d.1 . 2 (𝜑 → (𝜓𝜒))
31, 23anbi13d 1304 1 (𝜑 → ((𝜃𝜏𝜓) ↔ (𝜃𝜏𝜒)))
Colors of variables: wff set class
Syntax hints:  wi 4  wb 104  w3a 968
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107
This theorem depends on definitions:  df-bi 116  df-3an 970
This theorem is referenced by:  ceqsex3v  2768  ceqsex4v  2769  ceqsex8v  2771  vtocl3gaf  2795  mob  2908  ordsoexmid  4539  tfr1onlemaccex  6316  tfrcllemaccex  6329  fseq1m1p1  10030  summodc  11324  fsum3  11328  divalglemnn  11855  divalglemeunn  11858  divalglemex  11859  divalglemeuneg  11860
  Copyright terms: Public domain W3C validator