Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > 3anbi3d | GIF version |
Description: Deduction adding conjuncts to an equivalence. (Contributed by NM, 8-Sep-2006.) |
Ref | Expression |
---|---|
3anbi1d.1 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
Ref | Expression |
---|---|
3anbi3d | ⊢ (𝜑 → ((𝜃 ∧ 𝜏 ∧ 𝜓) ↔ (𝜃 ∧ 𝜏 ∧ 𝜒))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | biidd 172 | . 2 ⊢ (𝜑 → (𝜃 ↔ 𝜃)) | |
2 | 3anbi1d.1 | . 2 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
3 | 1, 2 | 3anbi13d 1314 | 1 ⊢ (𝜑 → ((𝜃 ∧ 𝜏 ∧ 𝜓) ↔ (𝜃 ∧ 𝜏 ∧ 𝜒))) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 105 ∧ w3a 978 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
This theorem depends on definitions: df-bi 117 df-3an 980 |
This theorem is referenced by: ceqsex3v 2777 ceqsex4v 2778 ceqsex8v 2780 vtocl3gaf 2804 mob 2917 ordsoexmid 4555 tfr1onlemaccex 6339 tfrcllemaccex 6352 fseq1m1p1 10065 summodc 11359 fsum3 11363 divalglemnn 11890 divalglemeunn 11893 divalglemex 11894 divalglemeuneg 11895 mhmlem 12848 ring1 13041 |
Copyright terms: Public domain | W3C validator |