ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  genpelxp GIF version

Theorem genpelxp 7049
Description: Set containing the result of adding or multiplying positive reals. (Contributed by Jim Kingdon, 5-Dec-2019.)
Hypothesis
Ref Expression
genpelvl.1 𝐹 = (𝑤P, 𝑣P ↦ ⟨{𝑥Q ∣ ∃𝑦Q𝑧Q (𝑦 ∈ (1st𝑤) ∧ 𝑧 ∈ (1st𝑣) ∧ 𝑥 = (𝑦𝐺𝑧))}, {𝑥Q ∣ ∃𝑦Q𝑧Q (𝑦 ∈ (2nd𝑤) ∧ 𝑧 ∈ (2nd𝑣) ∧ 𝑥 = (𝑦𝐺𝑧))}⟩)
Assertion
Ref Expression
genpelxp ((𝐴P𝐵P) → (𝐴𝐹𝐵) ∈ (𝒫 Q × 𝒫 Q))
Distinct variable groups:   𝑥,𝑦,𝑧,𝑤,𝑣,𝐴   𝑥,𝐵,𝑦,𝑧,𝑤,𝑣   𝑥,𝐺,𝑦,𝑧,𝑤,𝑣
Allowed substitution hints:   𝐹(𝑥,𝑦,𝑧,𝑤,𝑣)

Proof of Theorem genpelxp
StepHypRef Expression
1 ssrab2 3104 . . . . 5 {𝑥Q ∣ ∃𝑦Q𝑧Q (𝑦 ∈ (1st𝐴) ∧ 𝑧 ∈ (1st𝐵) ∧ 𝑥 = (𝑦𝐺𝑧))} ⊆ Q
2 nqex 6901 . . . . . 6 Q ∈ V
32elpw2 3985 . . . . 5 ({𝑥Q ∣ ∃𝑦Q𝑧Q (𝑦 ∈ (1st𝐴) ∧ 𝑧 ∈ (1st𝐵) ∧ 𝑥 = (𝑦𝐺𝑧))} ∈ 𝒫 Q ↔ {𝑥Q ∣ ∃𝑦Q𝑧Q (𝑦 ∈ (1st𝐴) ∧ 𝑧 ∈ (1st𝐵) ∧ 𝑥 = (𝑦𝐺𝑧))} ⊆ Q)
41, 3mpbir 144 . . . 4 {𝑥Q ∣ ∃𝑦Q𝑧Q (𝑦 ∈ (1st𝐴) ∧ 𝑧 ∈ (1st𝐵) ∧ 𝑥 = (𝑦𝐺𝑧))} ∈ 𝒫 Q
5 ssrab2 3104 . . . . 5 {𝑥Q ∣ ∃𝑦Q𝑧Q (𝑦 ∈ (2nd𝐴) ∧ 𝑧 ∈ (2nd𝐵) ∧ 𝑥 = (𝑦𝐺𝑧))} ⊆ Q
62elpw2 3985 . . . . 5 ({𝑥Q ∣ ∃𝑦Q𝑧Q (𝑦 ∈ (2nd𝐴) ∧ 𝑧 ∈ (2nd𝐵) ∧ 𝑥 = (𝑦𝐺𝑧))} ∈ 𝒫 Q ↔ {𝑥Q ∣ ∃𝑦Q𝑧Q (𝑦 ∈ (2nd𝐴) ∧ 𝑧 ∈ (2nd𝐵) ∧ 𝑥 = (𝑦𝐺𝑧))} ⊆ Q)
75, 6mpbir 144 . . . 4 {𝑥Q ∣ ∃𝑦Q𝑧Q (𝑦 ∈ (2nd𝐴) ∧ 𝑧 ∈ (2nd𝐵) ∧ 𝑥 = (𝑦𝐺𝑧))} ∈ 𝒫 Q
8 opelxpi 4459 . . . 4 (({𝑥Q ∣ ∃𝑦Q𝑧Q (𝑦 ∈ (1st𝐴) ∧ 𝑧 ∈ (1st𝐵) ∧ 𝑥 = (𝑦𝐺𝑧))} ∈ 𝒫 Q ∧ {𝑥Q ∣ ∃𝑦Q𝑧Q (𝑦 ∈ (2nd𝐴) ∧ 𝑧 ∈ (2nd𝐵) ∧ 𝑥 = (𝑦𝐺𝑧))} ∈ 𝒫 Q) → ⟨{𝑥Q ∣ ∃𝑦Q𝑧Q (𝑦 ∈ (1st𝐴) ∧ 𝑧 ∈ (1st𝐵) ∧ 𝑥 = (𝑦𝐺𝑧))}, {𝑥Q ∣ ∃𝑦Q𝑧Q (𝑦 ∈ (2nd𝐴) ∧ 𝑧 ∈ (2nd𝐵) ∧ 𝑥 = (𝑦𝐺𝑧))}⟩ ∈ (𝒫 Q × 𝒫 Q))
94, 7, 8mp2an 417 . . 3 ⟨{𝑥Q ∣ ∃𝑦Q𝑧Q (𝑦 ∈ (1st𝐴) ∧ 𝑧 ∈ (1st𝐵) ∧ 𝑥 = (𝑦𝐺𝑧))}, {𝑥Q ∣ ∃𝑦Q𝑧Q (𝑦 ∈ (2nd𝐴) ∧ 𝑧 ∈ (2nd𝐵) ∧ 𝑥 = (𝑦𝐺𝑧))}⟩ ∈ (𝒫 Q × 𝒫 Q)
10 fveq2 5289 . . . . . . . . 9 (𝑤 = 𝐴 → (1st𝑤) = (1st𝐴))
1110eleq2d 2157 . . . . . . . 8 (𝑤 = 𝐴 → (𝑦 ∈ (1st𝑤) ↔ 𝑦 ∈ (1st𝐴)))
12113anbi1d 1252 . . . . . . 7 (𝑤 = 𝐴 → ((𝑦 ∈ (1st𝑤) ∧ 𝑧 ∈ (1st𝑣) ∧ 𝑥 = (𝑦𝐺𝑧)) ↔ (𝑦 ∈ (1st𝐴) ∧ 𝑧 ∈ (1st𝑣) ∧ 𝑥 = (𝑦𝐺𝑧))))
13122rexbidv 2403 . . . . . 6 (𝑤 = 𝐴 → (∃𝑦Q𝑧Q (𝑦 ∈ (1st𝑤) ∧ 𝑧 ∈ (1st𝑣) ∧ 𝑥 = (𝑦𝐺𝑧)) ↔ ∃𝑦Q𝑧Q (𝑦 ∈ (1st𝐴) ∧ 𝑧 ∈ (1st𝑣) ∧ 𝑥 = (𝑦𝐺𝑧))))
1413rabbidv 2608 . . . . 5 (𝑤 = 𝐴 → {𝑥Q ∣ ∃𝑦Q𝑧Q (𝑦 ∈ (1st𝑤) ∧ 𝑧 ∈ (1st𝑣) ∧ 𝑥 = (𝑦𝐺𝑧))} = {𝑥Q ∣ ∃𝑦Q𝑧Q (𝑦 ∈ (1st𝐴) ∧ 𝑧 ∈ (1st𝑣) ∧ 𝑥 = (𝑦𝐺𝑧))})
15 fveq2 5289 . . . . . . . . 9 (𝑤 = 𝐴 → (2nd𝑤) = (2nd𝐴))
1615eleq2d 2157 . . . . . . . 8 (𝑤 = 𝐴 → (𝑦 ∈ (2nd𝑤) ↔ 𝑦 ∈ (2nd𝐴)))
17163anbi1d 1252 . . . . . . 7 (𝑤 = 𝐴 → ((𝑦 ∈ (2nd𝑤) ∧ 𝑧 ∈ (2nd𝑣) ∧ 𝑥 = (𝑦𝐺𝑧)) ↔ (𝑦 ∈ (2nd𝐴) ∧ 𝑧 ∈ (2nd𝑣) ∧ 𝑥 = (𝑦𝐺𝑧))))
18172rexbidv 2403 . . . . . 6 (𝑤 = 𝐴 → (∃𝑦Q𝑧Q (𝑦 ∈ (2nd𝑤) ∧ 𝑧 ∈ (2nd𝑣) ∧ 𝑥 = (𝑦𝐺𝑧)) ↔ ∃𝑦Q𝑧Q (𝑦 ∈ (2nd𝐴) ∧ 𝑧 ∈ (2nd𝑣) ∧ 𝑥 = (𝑦𝐺𝑧))))
1918rabbidv 2608 . . . . 5 (𝑤 = 𝐴 → {𝑥Q ∣ ∃𝑦Q𝑧Q (𝑦 ∈ (2nd𝑤) ∧ 𝑧 ∈ (2nd𝑣) ∧ 𝑥 = (𝑦𝐺𝑧))} = {𝑥Q ∣ ∃𝑦Q𝑧Q (𝑦 ∈ (2nd𝐴) ∧ 𝑧 ∈ (2nd𝑣) ∧ 𝑥 = (𝑦𝐺𝑧))})
2014, 19opeq12d 3625 . . . 4 (𝑤 = 𝐴 → ⟨{𝑥Q ∣ ∃𝑦Q𝑧Q (𝑦 ∈ (1st𝑤) ∧ 𝑧 ∈ (1st𝑣) ∧ 𝑥 = (𝑦𝐺𝑧))}, {𝑥Q ∣ ∃𝑦Q𝑧Q (𝑦 ∈ (2nd𝑤) ∧ 𝑧 ∈ (2nd𝑣) ∧ 𝑥 = (𝑦𝐺𝑧))}⟩ = ⟨{𝑥Q ∣ ∃𝑦Q𝑧Q (𝑦 ∈ (1st𝐴) ∧ 𝑧 ∈ (1st𝑣) ∧ 𝑥 = (𝑦𝐺𝑧))}, {𝑥Q ∣ ∃𝑦Q𝑧Q (𝑦 ∈ (2nd𝐴) ∧ 𝑧 ∈ (2nd𝑣) ∧ 𝑥 = (𝑦𝐺𝑧))}⟩)
21 fveq2 5289 . . . . . . . . 9 (𝑣 = 𝐵 → (1st𝑣) = (1st𝐵))
2221eleq2d 2157 . . . . . . . 8 (𝑣 = 𝐵 → (𝑧 ∈ (1st𝑣) ↔ 𝑧 ∈ (1st𝐵)))
23223anbi2d 1253 . . . . . . 7 (𝑣 = 𝐵 → ((𝑦 ∈ (1st𝐴) ∧ 𝑧 ∈ (1st𝑣) ∧ 𝑥 = (𝑦𝐺𝑧)) ↔ (𝑦 ∈ (1st𝐴) ∧ 𝑧 ∈ (1st𝐵) ∧ 𝑥 = (𝑦𝐺𝑧))))
24232rexbidv 2403 . . . . . 6 (𝑣 = 𝐵 → (∃𝑦Q𝑧Q (𝑦 ∈ (1st𝐴) ∧ 𝑧 ∈ (1st𝑣) ∧ 𝑥 = (𝑦𝐺𝑧)) ↔ ∃𝑦Q𝑧Q (𝑦 ∈ (1st𝐴) ∧ 𝑧 ∈ (1st𝐵) ∧ 𝑥 = (𝑦𝐺𝑧))))
2524rabbidv 2608 . . . . 5 (𝑣 = 𝐵 → {𝑥Q ∣ ∃𝑦Q𝑧Q (𝑦 ∈ (1st𝐴) ∧ 𝑧 ∈ (1st𝑣) ∧ 𝑥 = (𝑦𝐺𝑧))} = {𝑥Q ∣ ∃𝑦Q𝑧Q (𝑦 ∈ (1st𝐴) ∧ 𝑧 ∈ (1st𝐵) ∧ 𝑥 = (𝑦𝐺𝑧))})
26 fveq2 5289 . . . . . . . . 9 (𝑣 = 𝐵 → (2nd𝑣) = (2nd𝐵))
2726eleq2d 2157 . . . . . . . 8 (𝑣 = 𝐵 → (𝑧 ∈ (2nd𝑣) ↔ 𝑧 ∈ (2nd𝐵)))
28273anbi2d 1253 . . . . . . 7 (𝑣 = 𝐵 → ((𝑦 ∈ (2nd𝐴) ∧ 𝑧 ∈ (2nd𝑣) ∧ 𝑥 = (𝑦𝐺𝑧)) ↔ (𝑦 ∈ (2nd𝐴) ∧ 𝑧 ∈ (2nd𝐵) ∧ 𝑥 = (𝑦𝐺𝑧))))
29282rexbidv 2403 . . . . . 6 (𝑣 = 𝐵 → (∃𝑦Q𝑧Q (𝑦 ∈ (2nd𝐴) ∧ 𝑧 ∈ (2nd𝑣) ∧ 𝑥 = (𝑦𝐺𝑧)) ↔ ∃𝑦Q𝑧Q (𝑦 ∈ (2nd𝐴) ∧ 𝑧 ∈ (2nd𝐵) ∧ 𝑥 = (𝑦𝐺𝑧))))
3029rabbidv 2608 . . . . 5 (𝑣 = 𝐵 → {𝑥Q ∣ ∃𝑦Q𝑧Q (𝑦 ∈ (2nd𝐴) ∧ 𝑧 ∈ (2nd𝑣) ∧ 𝑥 = (𝑦𝐺𝑧))} = {𝑥Q ∣ ∃𝑦Q𝑧Q (𝑦 ∈ (2nd𝐴) ∧ 𝑧 ∈ (2nd𝐵) ∧ 𝑥 = (𝑦𝐺𝑧))})
3125, 30opeq12d 3625 . . . 4 (𝑣 = 𝐵 → ⟨{𝑥Q ∣ ∃𝑦Q𝑧Q (𝑦 ∈ (1st𝐴) ∧ 𝑧 ∈ (1st𝑣) ∧ 𝑥 = (𝑦𝐺𝑧))}, {𝑥Q ∣ ∃𝑦Q𝑧Q (𝑦 ∈ (2nd𝐴) ∧ 𝑧 ∈ (2nd𝑣) ∧ 𝑥 = (𝑦𝐺𝑧))}⟩ = ⟨{𝑥Q ∣ ∃𝑦Q𝑧Q (𝑦 ∈ (1st𝐴) ∧ 𝑧 ∈ (1st𝐵) ∧ 𝑥 = (𝑦𝐺𝑧))}, {𝑥Q ∣ ∃𝑦Q𝑧Q (𝑦 ∈ (2nd𝐴) ∧ 𝑧 ∈ (2nd𝐵) ∧ 𝑥 = (𝑦𝐺𝑧))}⟩)
32 genpelvl.1 . . . 4 𝐹 = (𝑤P, 𝑣P ↦ ⟨{𝑥Q ∣ ∃𝑦Q𝑧Q (𝑦 ∈ (1st𝑤) ∧ 𝑧 ∈ (1st𝑣) ∧ 𝑥 = (𝑦𝐺𝑧))}, {𝑥Q ∣ ∃𝑦Q𝑧Q (𝑦 ∈ (2nd𝑤) ∧ 𝑧 ∈ (2nd𝑣) ∧ 𝑥 = (𝑦𝐺𝑧))}⟩)
3320, 31, 32ovmpt2g 5761 . . 3 ((𝐴P𝐵P ∧ ⟨{𝑥Q ∣ ∃𝑦Q𝑧Q (𝑦 ∈ (1st𝐴) ∧ 𝑧 ∈ (1st𝐵) ∧ 𝑥 = (𝑦𝐺𝑧))}, {𝑥Q ∣ ∃𝑦Q𝑧Q (𝑦 ∈ (2nd𝐴) ∧ 𝑧 ∈ (2nd𝐵) ∧ 𝑥 = (𝑦𝐺𝑧))}⟩ ∈ (𝒫 Q × 𝒫 Q)) → (𝐴𝐹𝐵) = ⟨{𝑥Q ∣ ∃𝑦Q𝑧Q (𝑦 ∈ (1st𝐴) ∧ 𝑧 ∈ (1st𝐵) ∧ 𝑥 = (𝑦𝐺𝑧))}, {𝑥Q ∣ ∃𝑦Q𝑧Q (𝑦 ∈ (2nd𝐴) ∧ 𝑧 ∈ (2nd𝐵) ∧ 𝑥 = (𝑦𝐺𝑧))}⟩)
349, 33mp3an3 1262 . 2 ((𝐴P𝐵P) → (𝐴𝐹𝐵) = ⟨{𝑥Q ∣ ∃𝑦Q𝑧Q (𝑦 ∈ (1st𝐴) ∧ 𝑧 ∈ (1st𝐵) ∧ 𝑥 = (𝑦𝐺𝑧))}, {𝑥Q ∣ ∃𝑦Q𝑧Q (𝑦 ∈ (2nd𝐴) ∧ 𝑧 ∈ (2nd𝐵) ∧ 𝑥 = (𝑦𝐺𝑧))}⟩)
3534, 9syl6eqel 2178 1 ((𝐴P𝐵P) → (𝐴𝐹𝐵) ∈ (𝒫 Q × 𝒫 Q))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 102  w3a 924   = wceq 1289  wcel 1438  wrex 2360  {crab 2363  wss 2997  𝒫 cpw 3425  cop 3444   × cxp 4426  cfv 5002  (class class class)co 5634  cmpt2 5636  1st c1st 5891  2nd c2nd 5892  Qcnq 6818  Pcnp 6829
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 579  ax-in2 580  ax-io 665  ax-5 1381  ax-7 1382  ax-gen 1383  ax-ie1 1427  ax-ie2 1428  ax-8 1440  ax-10 1441  ax-11 1442  ax-i12 1443  ax-bndl 1444  ax-4 1445  ax-13 1449  ax-14 1450  ax-17 1464  ax-i9 1468  ax-ial 1472  ax-i5r 1473  ax-ext 2070  ax-coll 3946  ax-sep 3949  ax-pow 4001  ax-pr 4027  ax-un 4251  ax-setind 4343  ax-iinf 4393
This theorem depends on definitions:  df-bi 115  df-3an 926  df-tru 1292  df-fal 1295  df-nf 1395  df-sb 1693  df-eu 1951  df-mo 1952  df-clab 2075  df-cleq 2081  df-clel 2084  df-nfc 2217  df-ne 2256  df-ral 2364  df-rex 2365  df-reu 2366  df-rab 2368  df-v 2621  df-sbc 2839  df-csb 2932  df-dif 2999  df-un 3001  df-in 3003  df-ss 3010  df-pw 3427  df-sn 3447  df-pr 3448  df-op 3450  df-uni 3649  df-int 3684  df-iun 3727  df-br 3838  df-opab 3892  df-mpt 3893  df-id 4111  df-iom 4396  df-xp 4434  df-rel 4435  df-cnv 4436  df-co 4437  df-dm 4438  df-rn 4439  df-res 4440  df-ima 4441  df-iota 4967  df-fun 5004  df-fn 5005  df-f 5006  df-f1 5007  df-fo 5008  df-f1o 5009  df-fv 5010  df-ov 5637  df-oprab 5638  df-mpt2 5639  df-qs 6278  df-ni 6842  df-nqqs 6886
This theorem is referenced by:  addclpr  7075  mulclpr  7110
  Copyright terms: Public domain W3C validator