ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  genpelxp GIF version

Theorem genpelxp 7501
Description: Set containing the result of adding or multiplying positive reals. (Contributed by Jim Kingdon, 5-Dec-2019.)
Hypothesis
Ref Expression
genpelvl.1 𝐹 = (𝑤P, 𝑣P ↦ ⟨{𝑥Q ∣ ∃𝑦Q𝑧Q (𝑦 ∈ (1st𝑤) ∧ 𝑧 ∈ (1st𝑣) ∧ 𝑥 = (𝑦𝐺𝑧))}, {𝑥Q ∣ ∃𝑦Q𝑧Q (𝑦 ∈ (2nd𝑤) ∧ 𝑧 ∈ (2nd𝑣) ∧ 𝑥 = (𝑦𝐺𝑧))}⟩)
Assertion
Ref Expression
genpelxp ((𝐴P𝐵P) → (𝐴𝐹𝐵) ∈ (𝒫 Q × 𝒫 Q))
Distinct variable groups:   𝑥,𝑦,𝑧,𝑤,𝑣,𝐴   𝑥,𝐵,𝑦,𝑧,𝑤,𝑣   𝑥,𝐺,𝑦,𝑧,𝑤,𝑣
Allowed substitution hints:   𝐹(𝑥,𝑦,𝑧,𝑤,𝑣)

Proof of Theorem genpelxp
StepHypRef Expression
1 ssrab2 3240 . . . . 5 {𝑥Q ∣ ∃𝑦Q𝑧Q (𝑦 ∈ (1st𝐴) ∧ 𝑧 ∈ (1st𝐵) ∧ 𝑥 = (𝑦𝐺𝑧))} ⊆ Q
2 nqex 7353 . . . . . 6 Q ∈ V
32elpw2 4154 . . . . 5 ({𝑥Q ∣ ∃𝑦Q𝑧Q (𝑦 ∈ (1st𝐴) ∧ 𝑧 ∈ (1st𝐵) ∧ 𝑥 = (𝑦𝐺𝑧))} ∈ 𝒫 Q ↔ {𝑥Q ∣ ∃𝑦Q𝑧Q (𝑦 ∈ (1st𝐴) ∧ 𝑧 ∈ (1st𝐵) ∧ 𝑥 = (𝑦𝐺𝑧))} ⊆ Q)
41, 3mpbir 146 . . . 4 {𝑥Q ∣ ∃𝑦Q𝑧Q (𝑦 ∈ (1st𝐴) ∧ 𝑧 ∈ (1st𝐵) ∧ 𝑥 = (𝑦𝐺𝑧))} ∈ 𝒫 Q
5 ssrab2 3240 . . . . 5 {𝑥Q ∣ ∃𝑦Q𝑧Q (𝑦 ∈ (2nd𝐴) ∧ 𝑧 ∈ (2nd𝐵) ∧ 𝑥 = (𝑦𝐺𝑧))} ⊆ Q
62elpw2 4154 . . . . 5 ({𝑥Q ∣ ∃𝑦Q𝑧Q (𝑦 ∈ (2nd𝐴) ∧ 𝑧 ∈ (2nd𝐵) ∧ 𝑥 = (𝑦𝐺𝑧))} ∈ 𝒫 Q ↔ {𝑥Q ∣ ∃𝑦Q𝑧Q (𝑦 ∈ (2nd𝐴) ∧ 𝑧 ∈ (2nd𝐵) ∧ 𝑥 = (𝑦𝐺𝑧))} ⊆ Q)
75, 6mpbir 146 . . . 4 {𝑥Q ∣ ∃𝑦Q𝑧Q (𝑦 ∈ (2nd𝐴) ∧ 𝑧 ∈ (2nd𝐵) ∧ 𝑥 = (𝑦𝐺𝑧))} ∈ 𝒫 Q
8 opelxpi 4655 . . . 4 (({𝑥Q ∣ ∃𝑦Q𝑧Q (𝑦 ∈ (1st𝐴) ∧ 𝑧 ∈ (1st𝐵) ∧ 𝑥 = (𝑦𝐺𝑧))} ∈ 𝒫 Q ∧ {𝑥Q ∣ ∃𝑦Q𝑧Q (𝑦 ∈ (2nd𝐴) ∧ 𝑧 ∈ (2nd𝐵) ∧ 𝑥 = (𝑦𝐺𝑧))} ∈ 𝒫 Q) → ⟨{𝑥Q ∣ ∃𝑦Q𝑧Q (𝑦 ∈ (1st𝐴) ∧ 𝑧 ∈ (1st𝐵) ∧ 𝑥 = (𝑦𝐺𝑧))}, {𝑥Q ∣ ∃𝑦Q𝑧Q (𝑦 ∈ (2nd𝐴) ∧ 𝑧 ∈ (2nd𝐵) ∧ 𝑥 = (𝑦𝐺𝑧))}⟩ ∈ (𝒫 Q × 𝒫 Q))
94, 7, 8mp2an 426 . . 3 ⟨{𝑥Q ∣ ∃𝑦Q𝑧Q (𝑦 ∈ (1st𝐴) ∧ 𝑧 ∈ (1st𝐵) ∧ 𝑥 = (𝑦𝐺𝑧))}, {𝑥Q ∣ ∃𝑦Q𝑧Q (𝑦 ∈ (2nd𝐴) ∧ 𝑧 ∈ (2nd𝐵) ∧ 𝑥 = (𝑦𝐺𝑧))}⟩ ∈ (𝒫 Q × 𝒫 Q)
10 fveq2 5511 . . . . . . . . 9 (𝑤 = 𝐴 → (1st𝑤) = (1st𝐴))
1110eleq2d 2247 . . . . . . . 8 (𝑤 = 𝐴 → (𝑦 ∈ (1st𝑤) ↔ 𝑦 ∈ (1st𝐴)))
12113anbi1d 1316 . . . . . . 7 (𝑤 = 𝐴 → ((𝑦 ∈ (1st𝑤) ∧ 𝑧 ∈ (1st𝑣) ∧ 𝑥 = (𝑦𝐺𝑧)) ↔ (𝑦 ∈ (1st𝐴) ∧ 𝑧 ∈ (1st𝑣) ∧ 𝑥 = (𝑦𝐺𝑧))))
13122rexbidv 2502 . . . . . 6 (𝑤 = 𝐴 → (∃𝑦Q𝑧Q (𝑦 ∈ (1st𝑤) ∧ 𝑧 ∈ (1st𝑣) ∧ 𝑥 = (𝑦𝐺𝑧)) ↔ ∃𝑦Q𝑧Q (𝑦 ∈ (1st𝐴) ∧ 𝑧 ∈ (1st𝑣) ∧ 𝑥 = (𝑦𝐺𝑧))))
1413rabbidv 2726 . . . . 5 (𝑤 = 𝐴 → {𝑥Q ∣ ∃𝑦Q𝑧Q (𝑦 ∈ (1st𝑤) ∧ 𝑧 ∈ (1st𝑣) ∧ 𝑥 = (𝑦𝐺𝑧))} = {𝑥Q ∣ ∃𝑦Q𝑧Q (𝑦 ∈ (1st𝐴) ∧ 𝑧 ∈ (1st𝑣) ∧ 𝑥 = (𝑦𝐺𝑧))})
15 fveq2 5511 . . . . . . . . 9 (𝑤 = 𝐴 → (2nd𝑤) = (2nd𝐴))
1615eleq2d 2247 . . . . . . . 8 (𝑤 = 𝐴 → (𝑦 ∈ (2nd𝑤) ↔ 𝑦 ∈ (2nd𝐴)))
17163anbi1d 1316 . . . . . . 7 (𝑤 = 𝐴 → ((𝑦 ∈ (2nd𝑤) ∧ 𝑧 ∈ (2nd𝑣) ∧ 𝑥 = (𝑦𝐺𝑧)) ↔ (𝑦 ∈ (2nd𝐴) ∧ 𝑧 ∈ (2nd𝑣) ∧ 𝑥 = (𝑦𝐺𝑧))))
18172rexbidv 2502 . . . . . 6 (𝑤 = 𝐴 → (∃𝑦Q𝑧Q (𝑦 ∈ (2nd𝑤) ∧ 𝑧 ∈ (2nd𝑣) ∧ 𝑥 = (𝑦𝐺𝑧)) ↔ ∃𝑦Q𝑧Q (𝑦 ∈ (2nd𝐴) ∧ 𝑧 ∈ (2nd𝑣) ∧ 𝑥 = (𝑦𝐺𝑧))))
1918rabbidv 2726 . . . . 5 (𝑤 = 𝐴 → {𝑥Q ∣ ∃𝑦Q𝑧Q (𝑦 ∈ (2nd𝑤) ∧ 𝑧 ∈ (2nd𝑣) ∧ 𝑥 = (𝑦𝐺𝑧))} = {𝑥Q ∣ ∃𝑦Q𝑧Q (𝑦 ∈ (2nd𝐴) ∧ 𝑧 ∈ (2nd𝑣) ∧ 𝑥 = (𝑦𝐺𝑧))})
2014, 19opeq12d 3784 . . . 4 (𝑤 = 𝐴 → ⟨{𝑥Q ∣ ∃𝑦Q𝑧Q (𝑦 ∈ (1st𝑤) ∧ 𝑧 ∈ (1st𝑣) ∧ 𝑥 = (𝑦𝐺𝑧))}, {𝑥Q ∣ ∃𝑦Q𝑧Q (𝑦 ∈ (2nd𝑤) ∧ 𝑧 ∈ (2nd𝑣) ∧ 𝑥 = (𝑦𝐺𝑧))}⟩ = ⟨{𝑥Q ∣ ∃𝑦Q𝑧Q (𝑦 ∈ (1st𝐴) ∧ 𝑧 ∈ (1st𝑣) ∧ 𝑥 = (𝑦𝐺𝑧))}, {𝑥Q ∣ ∃𝑦Q𝑧Q (𝑦 ∈ (2nd𝐴) ∧ 𝑧 ∈ (2nd𝑣) ∧ 𝑥 = (𝑦𝐺𝑧))}⟩)
21 fveq2 5511 . . . . . . . . 9 (𝑣 = 𝐵 → (1st𝑣) = (1st𝐵))
2221eleq2d 2247 . . . . . . . 8 (𝑣 = 𝐵 → (𝑧 ∈ (1st𝑣) ↔ 𝑧 ∈ (1st𝐵)))
23223anbi2d 1317 . . . . . . 7 (𝑣 = 𝐵 → ((𝑦 ∈ (1st𝐴) ∧ 𝑧 ∈ (1st𝑣) ∧ 𝑥 = (𝑦𝐺𝑧)) ↔ (𝑦 ∈ (1st𝐴) ∧ 𝑧 ∈ (1st𝐵) ∧ 𝑥 = (𝑦𝐺𝑧))))
24232rexbidv 2502 . . . . . 6 (𝑣 = 𝐵 → (∃𝑦Q𝑧Q (𝑦 ∈ (1st𝐴) ∧ 𝑧 ∈ (1st𝑣) ∧ 𝑥 = (𝑦𝐺𝑧)) ↔ ∃𝑦Q𝑧Q (𝑦 ∈ (1st𝐴) ∧ 𝑧 ∈ (1st𝐵) ∧ 𝑥 = (𝑦𝐺𝑧))))
2524rabbidv 2726 . . . . 5 (𝑣 = 𝐵 → {𝑥Q ∣ ∃𝑦Q𝑧Q (𝑦 ∈ (1st𝐴) ∧ 𝑧 ∈ (1st𝑣) ∧ 𝑥 = (𝑦𝐺𝑧))} = {𝑥Q ∣ ∃𝑦Q𝑧Q (𝑦 ∈ (1st𝐴) ∧ 𝑧 ∈ (1st𝐵) ∧ 𝑥 = (𝑦𝐺𝑧))})
26 fveq2 5511 . . . . . . . . 9 (𝑣 = 𝐵 → (2nd𝑣) = (2nd𝐵))
2726eleq2d 2247 . . . . . . . 8 (𝑣 = 𝐵 → (𝑧 ∈ (2nd𝑣) ↔ 𝑧 ∈ (2nd𝐵)))
28273anbi2d 1317 . . . . . . 7 (𝑣 = 𝐵 → ((𝑦 ∈ (2nd𝐴) ∧ 𝑧 ∈ (2nd𝑣) ∧ 𝑥 = (𝑦𝐺𝑧)) ↔ (𝑦 ∈ (2nd𝐴) ∧ 𝑧 ∈ (2nd𝐵) ∧ 𝑥 = (𝑦𝐺𝑧))))
29282rexbidv 2502 . . . . . 6 (𝑣 = 𝐵 → (∃𝑦Q𝑧Q (𝑦 ∈ (2nd𝐴) ∧ 𝑧 ∈ (2nd𝑣) ∧ 𝑥 = (𝑦𝐺𝑧)) ↔ ∃𝑦Q𝑧Q (𝑦 ∈ (2nd𝐴) ∧ 𝑧 ∈ (2nd𝐵) ∧ 𝑥 = (𝑦𝐺𝑧))))
3029rabbidv 2726 . . . . 5 (𝑣 = 𝐵 → {𝑥Q ∣ ∃𝑦Q𝑧Q (𝑦 ∈ (2nd𝐴) ∧ 𝑧 ∈ (2nd𝑣) ∧ 𝑥 = (𝑦𝐺𝑧))} = {𝑥Q ∣ ∃𝑦Q𝑧Q (𝑦 ∈ (2nd𝐴) ∧ 𝑧 ∈ (2nd𝐵) ∧ 𝑥 = (𝑦𝐺𝑧))})
3125, 30opeq12d 3784 . . . 4 (𝑣 = 𝐵 → ⟨{𝑥Q ∣ ∃𝑦Q𝑧Q (𝑦 ∈ (1st𝐴) ∧ 𝑧 ∈ (1st𝑣) ∧ 𝑥 = (𝑦𝐺𝑧))}, {𝑥Q ∣ ∃𝑦Q𝑧Q (𝑦 ∈ (2nd𝐴) ∧ 𝑧 ∈ (2nd𝑣) ∧ 𝑥 = (𝑦𝐺𝑧))}⟩ = ⟨{𝑥Q ∣ ∃𝑦Q𝑧Q (𝑦 ∈ (1st𝐴) ∧ 𝑧 ∈ (1st𝐵) ∧ 𝑥 = (𝑦𝐺𝑧))}, {𝑥Q ∣ ∃𝑦Q𝑧Q (𝑦 ∈ (2nd𝐴) ∧ 𝑧 ∈ (2nd𝐵) ∧ 𝑥 = (𝑦𝐺𝑧))}⟩)
32 genpelvl.1 . . . 4 𝐹 = (𝑤P, 𝑣P ↦ ⟨{𝑥Q ∣ ∃𝑦Q𝑧Q (𝑦 ∈ (1st𝑤) ∧ 𝑧 ∈ (1st𝑣) ∧ 𝑥 = (𝑦𝐺𝑧))}, {𝑥Q ∣ ∃𝑦Q𝑧Q (𝑦 ∈ (2nd𝑤) ∧ 𝑧 ∈ (2nd𝑣) ∧ 𝑥 = (𝑦𝐺𝑧))}⟩)
3320, 31, 32ovmpog 6003 . . 3 ((𝐴P𝐵P ∧ ⟨{𝑥Q ∣ ∃𝑦Q𝑧Q (𝑦 ∈ (1st𝐴) ∧ 𝑧 ∈ (1st𝐵) ∧ 𝑥 = (𝑦𝐺𝑧))}, {𝑥Q ∣ ∃𝑦Q𝑧Q (𝑦 ∈ (2nd𝐴) ∧ 𝑧 ∈ (2nd𝐵) ∧ 𝑥 = (𝑦𝐺𝑧))}⟩ ∈ (𝒫 Q × 𝒫 Q)) → (𝐴𝐹𝐵) = ⟨{𝑥Q ∣ ∃𝑦Q𝑧Q (𝑦 ∈ (1st𝐴) ∧ 𝑧 ∈ (1st𝐵) ∧ 𝑥 = (𝑦𝐺𝑧))}, {𝑥Q ∣ ∃𝑦Q𝑧Q (𝑦 ∈ (2nd𝐴) ∧ 𝑧 ∈ (2nd𝐵) ∧ 𝑥 = (𝑦𝐺𝑧))}⟩)
349, 33mp3an3 1326 . 2 ((𝐴P𝐵P) → (𝐴𝐹𝐵) = ⟨{𝑥Q ∣ ∃𝑦Q𝑧Q (𝑦 ∈ (1st𝐴) ∧ 𝑧 ∈ (1st𝐵) ∧ 𝑥 = (𝑦𝐺𝑧))}, {𝑥Q ∣ ∃𝑦Q𝑧Q (𝑦 ∈ (2nd𝐴) ∧ 𝑧 ∈ (2nd𝐵) ∧ 𝑥 = (𝑦𝐺𝑧))}⟩)
3534, 9eqeltrdi 2268 1 ((𝐴P𝐵P) → (𝐴𝐹𝐵) ∈ (𝒫 Q × 𝒫 Q))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  w3a 978   = wceq 1353  wcel 2148  wrex 2456  {crab 2459  wss 3129  𝒫 cpw 3574  cop 3594   × cxp 4621  cfv 5212  (class class class)co 5869  cmpo 5871  1st c1st 6133  2nd c2nd 6134  Qcnq 7270  Pcnp 7281
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-coll 4115  ax-sep 4118  ax-pow 4171  ax-pr 4206  ax-un 4430  ax-setind 4533  ax-iinf 4584
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-ral 2460  df-rex 2461  df-reu 2462  df-rab 2464  df-v 2739  df-sbc 2963  df-csb 3058  df-dif 3131  df-un 3133  df-in 3135  df-ss 3142  df-pw 3576  df-sn 3597  df-pr 3598  df-op 3600  df-uni 3808  df-int 3843  df-iun 3886  df-br 4001  df-opab 4062  df-mpt 4063  df-id 4290  df-iom 4587  df-xp 4629  df-rel 4630  df-cnv 4631  df-co 4632  df-dm 4633  df-rn 4634  df-res 4635  df-ima 4636  df-iota 5174  df-fun 5214  df-fn 5215  df-f 5216  df-f1 5217  df-fo 5218  df-f1o 5219  df-fv 5220  df-ov 5872  df-oprab 5873  df-mpo 5874  df-qs 6535  df-ni 7294  df-nqqs 7338
This theorem is referenced by:  addclpr  7527  mulclpr  7562
  Copyright terms: Public domain W3C validator