ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  genpelxp GIF version

Theorem genpelxp 7512
Description: Set containing the result of adding or multiplying positive reals. (Contributed by Jim Kingdon, 5-Dec-2019.)
Hypothesis
Ref Expression
genpelvl.1 𝐹 = (𝑤P, 𝑣P ↦ ⟨{𝑥Q ∣ ∃𝑦Q𝑧Q (𝑦 ∈ (1st𝑤) ∧ 𝑧 ∈ (1st𝑣) ∧ 𝑥 = (𝑦𝐺𝑧))}, {𝑥Q ∣ ∃𝑦Q𝑧Q (𝑦 ∈ (2nd𝑤) ∧ 𝑧 ∈ (2nd𝑣) ∧ 𝑥 = (𝑦𝐺𝑧))}⟩)
Assertion
Ref Expression
genpelxp ((𝐴P𝐵P) → (𝐴𝐹𝐵) ∈ (𝒫 Q × 𝒫 Q))
Distinct variable groups:   𝑥,𝑦,𝑧,𝑤,𝑣,𝐴   𝑥,𝐵,𝑦,𝑧,𝑤,𝑣   𝑥,𝐺,𝑦,𝑧,𝑤,𝑣
Allowed substitution hints:   𝐹(𝑥,𝑦,𝑧,𝑤,𝑣)

Proof of Theorem genpelxp
StepHypRef Expression
1 ssrab2 3242 . . . . 5 {𝑥Q ∣ ∃𝑦Q𝑧Q (𝑦 ∈ (1st𝐴) ∧ 𝑧 ∈ (1st𝐵) ∧ 𝑥 = (𝑦𝐺𝑧))} ⊆ Q
2 nqex 7364 . . . . . 6 Q ∈ V
32elpw2 4159 . . . . 5 ({𝑥Q ∣ ∃𝑦Q𝑧Q (𝑦 ∈ (1st𝐴) ∧ 𝑧 ∈ (1st𝐵) ∧ 𝑥 = (𝑦𝐺𝑧))} ∈ 𝒫 Q ↔ {𝑥Q ∣ ∃𝑦Q𝑧Q (𝑦 ∈ (1st𝐴) ∧ 𝑧 ∈ (1st𝐵) ∧ 𝑥 = (𝑦𝐺𝑧))} ⊆ Q)
41, 3mpbir 146 . . . 4 {𝑥Q ∣ ∃𝑦Q𝑧Q (𝑦 ∈ (1st𝐴) ∧ 𝑧 ∈ (1st𝐵) ∧ 𝑥 = (𝑦𝐺𝑧))} ∈ 𝒫 Q
5 ssrab2 3242 . . . . 5 {𝑥Q ∣ ∃𝑦Q𝑧Q (𝑦 ∈ (2nd𝐴) ∧ 𝑧 ∈ (2nd𝐵) ∧ 𝑥 = (𝑦𝐺𝑧))} ⊆ Q
62elpw2 4159 . . . . 5 ({𝑥Q ∣ ∃𝑦Q𝑧Q (𝑦 ∈ (2nd𝐴) ∧ 𝑧 ∈ (2nd𝐵) ∧ 𝑥 = (𝑦𝐺𝑧))} ∈ 𝒫 Q ↔ {𝑥Q ∣ ∃𝑦Q𝑧Q (𝑦 ∈ (2nd𝐴) ∧ 𝑧 ∈ (2nd𝐵) ∧ 𝑥 = (𝑦𝐺𝑧))} ⊆ Q)
75, 6mpbir 146 . . . 4 {𝑥Q ∣ ∃𝑦Q𝑧Q (𝑦 ∈ (2nd𝐴) ∧ 𝑧 ∈ (2nd𝐵) ∧ 𝑥 = (𝑦𝐺𝑧))} ∈ 𝒫 Q
8 opelxpi 4660 . . . 4 (({𝑥Q ∣ ∃𝑦Q𝑧Q (𝑦 ∈ (1st𝐴) ∧ 𝑧 ∈ (1st𝐵) ∧ 𝑥 = (𝑦𝐺𝑧))} ∈ 𝒫 Q ∧ {𝑥Q ∣ ∃𝑦Q𝑧Q (𝑦 ∈ (2nd𝐴) ∧ 𝑧 ∈ (2nd𝐵) ∧ 𝑥 = (𝑦𝐺𝑧))} ∈ 𝒫 Q) → ⟨{𝑥Q ∣ ∃𝑦Q𝑧Q (𝑦 ∈ (1st𝐴) ∧ 𝑧 ∈ (1st𝐵) ∧ 𝑥 = (𝑦𝐺𝑧))}, {𝑥Q ∣ ∃𝑦Q𝑧Q (𝑦 ∈ (2nd𝐴) ∧ 𝑧 ∈ (2nd𝐵) ∧ 𝑥 = (𝑦𝐺𝑧))}⟩ ∈ (𝒫 Q × 𝒫 Q))
94, 7, 8mp2an 426 . . 3 ⟨{𝑥Q ∣ ∃𝑦Q𝑧Q (𝑦 ∈ (1st𝐴) ∧ 𝑧 ∈ (1st𝐵) ∧ 𝑥 = (𝑦𝐺𝑧))}, {𝑥Q ∣ ∃𝑦Q𝑧Q (𝑦 ∈ (2nd𝐴) ∧ 𝑧 ∈ (2nd𝐵) ∧ 𝑥 = (𝑦𝐺𝑧))}⟩ ∈ (𝒫 Q × 𝒫 Q)
10 fveq2 5517 . . . . . . . . 9 (𝑤 = 𝐴 → (1st𝑤) = (1st𝐴))
1110eleq2d 2247 . . . . . . . 8 (𝑤 = 𝐴 → (𝑦 ∈ (1st𝑤) ↔ 𝑦 ∈ (1st𝐴)))
12113anbi1d 1316 . . . . . . 7 (𝑤 = 𝐴 → ((𝑦 ∈ (1st𝑤) ∧ 𝑧 ∈ (1st𝑣) ∧ 𝑥 = (𝑦𝐺𝑧)) ↔ (𝑦 ∈ (1st𝐴) ∧ 𝑧 ∈ (1st𝑣) ∧ 𝑥 = (𝑦𝐺𝑧))))
13122rexbidv 2502 . . . . . 6 (𝑤 = 𝐴 → (∃𝑦Q𝑧Q (𝑦 ∈ (1st𝑤) ∧ 𝑧 ∈ (1st𝑣) ∧ 𝑥 = (𝑦𝐺𝑧)) ↔ ∃𝑦Q𝑧Q (𝑦 ∈ (1st𝐴) ∧ 𝑧 ∈ (1st𝑣) ∧ 𝑥 = (𝑦𝐺𝑧))))
1413rabbidv 2728 . . . . 5 (𝑤 = 𝐴 → {𝑥Q ∣ ∃𝑦Q𝑧Q (𝑦 ∈ (1st𝑤) ∧ 𝑧 ∈ (1st𝑣) ∧ 𝑥 = (𝑦𝐺𝑧))} = {𝑥Q ∣ ∃𝑦Q𝑧Q (𝑦 ∈ (1st𝐴) ∧ 𝑧 ∈ (1st𝑣) ∧ 𝑥 = (𝑦𝐺𝑧))})
15 fveq2 5517 . . . . . . . . 9 (𝑤 = 𝐴 → (2nd𝑤) = (2nd𝐴))
1615eleq2d 2247 . . . . . . . 8 (𝑤 = 𝐴 → (𝑦 ∈ (2nd𝑤) ↔ 𝑦 ∈ (2nd𝐴)))
17163anbi1d 1316 . . . . . . 7 (𝑤 = 𝐴 → ((𝑦 ∈ (2nd𝑤) ∧ 𝑧 ∈ (2nd𝑣) ∧ 𝑥 = (𝑦𝐺𝑧)) ↔ (𝑦 ∈ (2nd𝐴) ∧ 𝑧 ∈ (2nd𝑣) ∧ 𝑥 = (𝑦𝐺𝑧))))
18172rexbidv 2502 . . . . . 6 (𝑤 = 𝐴 → (∃𝑦Q𝑧Q (𝑦 ∈ (2nd𝑤) ∧ 𝑧 ∈ (2nd𝑣) ∧ 𝑥 = (𝑦𝐺𝑧)) ↔ ∃𝑦Q𝑧Q (𝑦 ∈ (2nd𝐴) ∧ 𝑧 ∈ (2nd𝑣) ∧ 𝑥 = (𝑦𝐺𝑧))))
1918rabbidv 2728 . . . . 5 (𝑤 = 𝐴 → {𝑥Q ∣ ∃𝑦Q𝑧Q (𝑦 ∈ (2nd𝑤) ∧ 𝑧 ∈ (2nd𝑣) ∧ 𝑥 = (𝑦𝐺𝑧))} = {𝑥Q ∣ ∃𝑦Q𝑧Q (𝑦 ∈ (2nd𝐴) ∧ 𝑧 ∈ (2nd𝑣) ∧ 𝑥 = (𝑦𝐺𝑧))})
2014, 19opeq12d 3788 . . . 4 (𝑤 = 𝐴 → ⟨{𝑥Q ∣ ∃𝑦Q𝑧Q (𝑦 ∈ (1st𝑤) ∧ 𝑧 ∈ (1st𝑣) ∧ 𝑥 = (𝑦𝐺𝑧))}, {𝑥Q ∣ ∃𝑦Q𝑧Q (𝑦 ∈ (2nd𝑤) ∧ 𝑧 ∈ (2nd𝑣) ∧ 𝑥 = (𝑦𝐺𝑧))}⟩ = ⟨{𝑥Q ∣ ∃𝑦Q𝑧Q (𝑦 ∈ (1st𝐴) ∧ 𝑧 ∈ (1st𝑣) ∧ 𝑥 = (𝑦𝐺𝑧))}, {𝑥Q ∣ ∃𝑦Q𝑧Q (𝑦 ∈ (2nd𝐴) ∧ 𝑧 ∈ (2nd𝑣) ∧ 𝑥 = (𝑦𝐺𝑧))}⟩)
21 fveq2 5517 . . . . . . . . 9 (𝑣 = 𝐵 → (1st𝑣) = (1st𝐵))
2221eleq2d 2247 . . . . . . . 8 (𝑣 = 𝐵 → (𝑧 ∈ (1st𝑣) ↔ 𝑧 ∈ (1st𝐵)))
23223anbi2d 1317 . . . . . . 7 (𝑣 = 𝐵 → ((𝑦 ∈ (1st𝐴) ∧ 𝑧 ∈ (1st𝑣) ∧ 𝑥 = (𝑦𝐺𝑧)) ↔ (𝑦 ∈ (1st𝐴) ∧ 𝑧 ∈ (1st𝐵) ∧ 𝑥 = (𝑦𝐺𝑧))))
24232rexbidv 2502 . . . . . 6 (𝑣 = 𝐵 → (∃𝑦Q𝑧Q (𝑦 ∈ (1st𝐴) ∧ 𝑧 ∈ (1st𝑣) ∧ 𝑥 = (𝑦𝐺𝑧)) ↔ ∃𝑦Q𝑧Q (𝑦 ∈ (1st𝐴) ∧ 𝑧 ∈ (1st𝐵) ∧ 𝑥 = (𝑦𝐺𝑧))))
2524rabbidv 2728 . . . . 5 (𝑣 = 𝐵 → {𝑥Q ∣ ∃𝑦Q𝑧Q (𝑦 ∈ (1st𝐴) ∧ 𝑧 ∈ (1st𝑣) ∧ 𝑥 = (𝑦𝐺𝑧))} = {𝑥Q ∣ ∃𝑦Q𝑧Q (𝑦 ∈ (1st𝐴) ∧ 𝑧 ∈ (1st𝐵) ∧ 𝑥 = (𝑦𝐺𝑧))})
26 fveq2 5517 . . . . . . . . 9 (𝑣 = 𝐵 → (2nd𝑣) = (2nd𝐵))
2726eleq2d 2247 . . . . . . . 8 (𝑣 = 𝐵 → (𝑧 ∈ (2nd𝑣) ↔ 𝑧 ∈ (2nd𝐵)))
28273anbi2d 1317 . . . . . . 7 (𝑣 = 𝐵 → ((𝑦 ∈ (2nd𝐴) ∧ 𝑧 ∈ (2nd𝑣) ∧ 𝑥 = (𝑦𝐺𝑧)) ↔ (𝑦 ∈ (2nd𝐴) ∧ 𝑧 ∈ (2nd𝐵) ∧ 𝑥 = (𝑦𝐺𝑧))))
29282rexbidv 2502 . . . . . 6 (𝑣 = 𝐵 → (∃𝑦Q𝑧Q (𝑦 ∈ (2nd𝐴) ∧ 𝑧 ∈ (2nd𝑣) ∧ 𝑥 = (𝑦𝐺𝑧)) ↔ ∃𝑦Q𝑧Q (𝑦 ∈ (2nd𝐴) ∧ 𝑧 ∈ (2nd𝐵) ∧ 𝑥 = (𝑦𝐺𝑧))))
3029rabbidv 2728 . . . . 5 (𝑣 = 𝐵 → {𝑥Q ∣ ∃𝑦Q𝑧Q (𝑦 ∈ (2nd𝐴) ∧ 𝑧 ∈ (2nd𝑣) ∧ 𝑥 = (𝑦𝐺𝑧))} = {𝑥Q ∣ ∃𝑦Q𝑧Q (𝑦 ∈ (2nd𝐴) ∧ 𝑧 ∈ (2nd𝐵) ∧ 𝑥 = (𝑦𝐺𝑧))})
3125, 30opeq12d 3788 . . . 4 (𝑣 = 𝐵 → ⟨{𝑥Q ∣ ∃𝑦Q𝑧Q (𝑦 ∈ (1st𝐴) ∧ 𝑧 ∈ (1st𝑣) ∧ 𝑥 = (𝑦𝐺𝑧))}, {𝑥Q ∣ ∃𝑦Q𝑧Q (𝑦 ∈ (2nd𝐴) ∧ 𝑧 ∈ (2nd𝑣) ∧ 𝑥 = (𝑦𝐺𝑧))}⟩ = ⟨{𝑥Q ∣ ∃𝑦Q𝑧Q (𝑦 ∈ (1st𝐴) ∧ 𝑧 ∈ (1st𝐵) ∧ 𝑥 = (𝑦𝐺𝑧))}, {𝑥Q ∣ ∃𝑦Q𝑧Q (𝑦 ∈ (2nd𝐴) ∧ 𝑧 ∈ (2nd𝐵) ∧ 𝑥 = (𝑦𝐺𝑧))}⟩)
32 genpelvl.1 . . . 4 𝐹 = (𝑤P, 𝑣P ↦ ⟨{𝑥Q ∣ ∃𝑦Q𝑧Q (𝑦 ∈ (1st𝑤) ∧ 𝑧 ∈ (1st𝑣) ∧ 𝑥 = (𝑦𝐺𝑧))}, {𝑥Q ∣ ∃𝑦Q𝑧Q (𝑦 ∈ (2nd𝑤) ∧ 𝑧 ∈ (2nd𝑣) ∧ 𝑥 = (𝑦𝐺𝑧))}⟩)
3320, 31, 32ovmpog 6011 . . 3 ((𝐴P𝐵P ∧ ⟨{𝑥Q ∣ ∃𝑦Q𝑧Q (𝑦 ∈ (1st𝐴) ∧ 𝑧 ∈ (1st𝐵) ∧ 𝑥 = (𝑦𝐺𝑧))}, {𝑥Q ∣ ∃𝑦Q𝑧Q (𝑦 ∈ (2nd𝐴) ∧ 𝑧 ∈ (2nd𝐵) ∧ 𝑥 = (𝑦𝐺𝑧))}⟩ ∈ (𝒫 Q × 𝒫 Q)) → (𝐴𝐹𝐵) = ⟨{𝑥Q ∣ ∃𝑦Q𝑧Q (𝑦 ∈ (1st𝐴) ∧ 𝑧 ∈ (1st𝐵) ∧ 𝑥 = (𝑦𝐺𝑧))}, {𝑥Q ∣ ∃𝑦Q𝑧Q (𝑦 ∈ (2nd𝐴) ∧ 𝑧 ∈ (2nd𝐵) ∧ 𝑥 = (𝑦𝐺𝑧))}⟩)
349, 33mp3an3 1326 . 2 ((𝐴P𝐵P) → (𝐴𝐹𝐵) = ⟨{𝑥Q ∣ ∃𝑦Q𝑧Q (𝑦 ∈ (1st𝐴) ∧ 𝑧 ∈ (1st𝐵) ∧ 𝑥 = (𝑦𝐺𝑧))}, {𝑥Q ∣ ∃𝑦Q𝑧Q (𝑦 ∈ (2nd𝐴) ∧ 𝑧 ∈ (2nd𝐵) ∧ 𝑥 = (𝑦𝐺𝑧))}⟩)
3534, 9eqeltrdi 2268 1 ((𝐴P𝐵P) → (𝐴𝐹𝐵) ∈ (𝒫 Q × 𝒫 Q))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  w3a 978   = wceq 1353  wcel 2148  wrex 2456  {crab 2459  wss 3131  𝒫 cpw 3577  cop 3597   × cxp 4626  cfv 5218  (class class class)co 5877  cmpo 5879  1st c1st 6141  2nd c2nd 6142  Qcnq 7281  Pcnp 7292
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-coll 4120  ax-sep 4123  ax-pow 4176  ax-pr 4211  ax-un 4435  ax-setind 4538  ax-iinf 4589
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-ral 2460  df-rex 2461  df-reu 2462  df-rab 2464  df-v 2741  df-sbc 2965  df-csb 3060  df-dif 3133  df-un 3135  df-in 3137  df-ss 3144  df-pw 3579  df-sn 3600  df-pr 3601  df-op 3603  df-uni 3812  df-int 3847  df-iun 3890  df-br 4006  df-opab 4067  df-mpt 4068  df-id 4295  df-iom 4592  df-xp 4634  df-rel 4635  df-cnv 4636  df-co 4637  df-dm 4638  df-rn 4639  df-res 4640  df-ima 4641  df-iota 5180  df-fun 5220  df-fn 5221  df-f 5222  df-f1 5223  df-fo 5224  df-f1o 5225  df-fv 5226  df-ov 5880  df-oprab 5881  df-mpo 5882  df-qs 6543  df-ni 7305  df-nqqs 7349
This theorem is referenced by:  addclpr  7538  mulclpr  7573
  Copyright terms: Public domain W3C validator