ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  lmodlema GIF version

Theorem lmodlema 14098
Description: Lemma for properties of a left module. (Contributed by NM, 8-Dec-2013.) (Revised by Mario Carneiro, 19-Jun-2014.)
Hypotheses
Ref Expression
islmod.v 𝑉 = (Base‘𝑊)
islmod.a + = (+g𝑊)
islmod.s · = ( ·𝑠𝑊)
islmod.f 𝐹 = (Scalar‘𝑊)
islmod.k 𝐾 = (Base‘𝐹)
islmod.p = (+g𝐹)
islmod.t × = (.r𝐹)
islmod.u 1 = (1r𝐹)
Assertion
Ref Expression
lmodlema ((𝑊 ∈ LMod ∧ (𝑄𝐾𝑅𝐾) ∧ (𝑋𝑉𝑌𝑉)) → (((𝑅 · 𝑌) ∈ 𝑉 ∧ (𝑅 · (𝑌 + 𝑋)) = ((𝑅 · 𝑌) + (𝑅 · 𝑋)) ∧ ((𝑄 𝑅) · 𝑌) = ((𝑄 · 𝑌) + (𝑅 · 𝑌))) ∧ (((𝑄 × 𝑅) · 𝑌) = (𝑄 · (𝑅 · 𝑌)) ∧ ( 1 · 𝑌) = 𝑌)))

Proof of Theorem lmodlema
Dummy variables 𝑞 𝑟 𝑤 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 islmod.v . . . . . 6 𝑉 = (Base‘𝑊)
2 islmod.a . . . . . 6 + = (+g𝑊)
3 islmod.s . . . . . 6 · = ( ·𝑠𝑊)
4 islmod.f . . . . . 6 𝐹 = (Scalar‘𝑊)
5 islmod.k . . . . . 6 𝐾 = (Base‘𝐹)
6 islmod.p . . . . . 6 = (+g𝐹)
7 islmod.t . . . . . 6 × = (.r𝐹)
8 islmod.u . . . . . 6 1 = (1r𝐹)
91, 2, 3, 4, 5, 6, 7, 8islmod 14097 . . . . 5 (𝑊 ∈ LMod ↔ (𝑊 ∈ Grp ∧ 𝐹 ∈ Ring ∧ ∀𝑞𝐾𝑟𝐾𝑥𝑉𝑤𝑉 (((𝑟 · 𝑤) ∈ 𝑉 ∧ (𝑟 · (𝑤 + 𝑥)) = ((𝑟 · 𝑤) + (𝑟 · 𝑥)) ∧ ((𝑞 𝑟) · 𝑤) = ((𝑞 · 𝑤) + (𝑟 · 𝑤))) ∧ (((𝑞 × 𝑟) · 𝑤) = (𝑞 · (𝑟 · 𝑤)) ∧ ( 1 · 𝑤) = 𝑤))))
109simp3bi 1017 . . . 4 (𝑊 ∈ LMod → ∀𝑞𝐾𝑟𝐾𝑥𝑉𝑤𝑉 (((𝑟 · 𝑤) ∈ 𝑉 ∧ (𝑟 · (𝑤 + 𝑥)) = ((𝑟 · 𝑤) + (𝑟 · 𝑥)) ∧ ((𝑞 𝑟) · 𝑤) = ((𝑞 · 𝑤) + (𝑟 · 𝑤))) ∧ (((𝑞 × 𝑟) · 𝑤) = (𝑞 · (𝑟 · 𝑤)) ∧ ( 1 · 𝑤) = 𝑤)))
11 oveq1 5958 . . . . . . . . . 10 (𝑞 = 𝑄 → (𝑞 𝑟) = (𝑄 𝑟))
1211oveq1d 5966 . . . . . . . . 9 (𝑞 = 𝑄 → ((𝑞 𝑟) · 𝑤) = ((𝑄 𝑟) · 𝑤))
13 oveq1 5958 . . . . . . . . . 10 (𝑞 = 𝑄 → (𝑞 · 𝑤) = (𝑄 · 𝑤))
1413oveq1d 5966 . . . . . . . . 9 (𝑞 = 𝑄 → ((𝑞 · 𝑤) + (𝑟 · 𝑤)) = ((𝑄 · 𝑤) + (𝑟 · 𝑤)))
1512, 14eqeq12d 2221 . . . . . . . 8 (𝑞 = 𝑄 → (((𝑞 𝑟) · 𝑤) = ((𝑞 · 𝑤) + (𝑟 · 𝑤)) ↔ ((𝑄 𝑟) · 𝑤) = ((𝑄 · 𝑤) + (𝑟 · 𝑤))))
16153anbi3d 1331 . . . . . . 7 (𝑞 = 𝑄 → (((𝑟 · 𝑤) ∈ 𝑉 ∧ (𝑟 · (𝑤 + 𝑥)) = ((𝑟 · 𝑤) + (𝑟 · 𝑥)) ∧ ((𝑞 𝑟) · 𝑤) = ((𝑞 · 𝑤) + (𝑟 · 𝑤))) ↔ ((𝑟 · 𝑤) ∈ 𝑉 ∧ (𝑟 · (𝑤 + 𝑥)) = ((𝑟 · 𝑤) + (𝑟 · 𝑥)) ∧ ((𝑄 𝑟) · 𝑤) = ((𝑄 · 𝑤) + (𝑟 · 𝑤)))))
17 oveq1 5958 . . . . . . . . . 10 (𝑞 = 𝑄 → (𝑞 × 𝑟) = (𝑄 × 𝑟))
1817oveq1d 5966 . . . . . . . . 9 (𝑞 = 𝑄 → ((𝑞 × 𝑟) · 𝑤) = ((𝑄 × 𝑟) · 𝑤))
19 oveq1 5958 . . . . . . . . 9 (𝑞 = 𝑄 → (𝑞 · (𝑟 · 𝑤)) = (𝑄 · (𝑟 · 𝑤)))
2018, 19eqeq12d 2221 . . . . . . . 8 (𝑞 = 𝑄 → (((𝑞 × 𝑟) · 𝑤) = (𝑞 · (𝑟 · 𝑤)) ↔ ((𝑄 × 𝑟) · 𝑤) = (𝑄 · (𝑟 · 𝑤))))
2120anbi1d 465 . . . . . . 7 (𝑞 = 𝑄 → ((((𝑞 × 𝑟) · 𝑤) = (𝑞 · (𝑟 · 𝑤)) ∧ ( 1 · 𝑤) = 𝑤) ↔ (((𝑄 × 𝑟) · 𝑤) = (𝑄 · (𝑟 · 𝑤)) ∧ ( 1 · 𝑤) = 𝑤)))
2216, 21anbi12d 473 . . . . . 6 (𝑞 = 𝑄 → ((((𝑟 · 𝑤) ∈ 𝑉 ∧ (𝑟 · (𝑤 + 𝑥)) = ((𝑟 · 𝑤) + (𝑟 · 𝑥)) ∧ ((𝑞 𝑟) · 𝑤) = ((𝑞 · 𝑤) + (𝑟 · 𝑤))) ∧ (((𝑞 × 𝑟) · 𝑤) = (𝑞 · (𝑟 · 𝑤)) ∧ ( 1 · 𝑤) = 𝑤)) ↔ (((𝑟 · 𝑤) ∈ 𝑉 ∧ (𝑟 · (𝑤 + 𝑥)) = ((𝑟 · 𝑤) + (𝑟 · 𝑥)) ∧ ((𝑄 𝑟) · 𝑤) = ((𝑄 · 𝑤) + (𝑟 · 𝑤))) ∧ (((𝑄 × 𝑟) · 𝑤) = (𝑄 · (𝑟 · 𝑤)) ∧ ( 1 · 𝑤) = 𝑤))))
23222ralbidv 2531 . . . . 5 (𝑞 = 𝑄 → (∀𝑥𝑉𝑤𝑉 (((𝑟 · 𝑤) ∈ 𝑉 ∧ (𝑟 · (𝑤 + 𝑥)) = ((𝑟 · 𝑤) + (𝑟 · 𝑥)) ∧ ((𝑞 𝑟) · 𝑤) = ((𝑞 · 𝑤) + (𝑟 · 𝑤))) ∧ (((𝑞 × 𝑟) · 𝑤) = (𝑞 · (𝑟 · 𝑤)) ∧ ( 1 · 𝑤) = 𝑤)) ↔ ∀𝑥𝑉𝑤𝑉 (((𝑟 · 𝑤) ∈ 𝑉 ∧ (𝑟 · (𝑤 + 𝑥)) = ((𝑟 · 𝑤) + (𝑟 · 𝑥)) ∧ ((𝑄 𝑟) · 𝑤) = ((𝑄 · 𝑤) + (𝑟 · 𝑤))) ∧ (((𝑄 × 𝑟) · 𝑤) = (𝑄 · (𝑟 · 𝑤)) ∧ ( 1 · 𝑤) = 𝑤))))
24 oveq1 5958 . . . . . . . . 9 (𝑟 = 𝑅 → (𝑟 · 𝑤) = (𝑅 · 𝑤))
2524eleq1d 2275 . . . . . . . 8 (𝑟 = 𝑅 → ((𝑟 · 𝑤) ∈ 𝑉 ↔ (𝑅 · 𝑤) ∈ 𝑉))
26 oveq1 5958 . . . . . . . . 9 (𝑟 = 𝑅 → (𝑟 · (𝑤 + 𝑥)) = (𝑅 · (𝑤 + 𝑥)))
27 oveq1 5958 . . . . . . . . . 10 (𝑟 = 𝑅 → (𝑟 · 𝑥) = (𝑅 · 𝑥))
2824, 27oveq12d 5969 . . . . . . . . 9 (𝑟 = 𝑅 → ((𝑟 · 𝑤) + (𝑟 · 𝑥)) = ((𝑅 · 𝑤) + (𝑅 · 𝑥)))
2926, 28eqeq12d 2221 . . . . . . . 8 (𝑟 = 𝑅 → ((𝑟 · (𝑤 + 𝑥)) = ((𝑟 · 𝑤) + (𝑟 · 𝑥)) ↔ (𝑅 · (𝑤 + 𝑥)) = ((𝑅 · 𝑤) + (𝑅 · 𝑥))))
30 oveq2 5959 . . . . . . . . . 10 (𝑟 = 𝑅 → (𝑄 𝑟) = (𝑄 𝑅))
3130oveq1d 5966 . . . . . . . . 9 (𝑟 = 𝑅 → ((𝑄 𝑟) · 𝑤) = ((𝑄 𝑅) · 𝑤))
3224oveq2d 5967 . . . . . . . . 9 (𝑟 = 𝑅 → ((𝑄 · 𝑤) + (𝑟 · 𝑤)) = ((𝑄 · 𝑤) + (𝑅 · 𝑤)))
3331, 32eqeq12d 2221 . . . . . . . 8 (𝑟 = 𝑅 → (((𝑄 𝑟) · 𝑤) = ((𝑄 · 𝑤) + (𝑟 · 𝑤)) ↔ ((𝑄 𝑅) · 𝑤) = ((𝑄 · 𝑤) + (𝑅 · 𝑤))))
3425, 29, 333anbi123d 1325 . . . . . . 7 (𝑟 = 𝑅 → (((𝑟 · 𝑤) ∈ 𝑉 ∧ (𝑟 · (𝑤 + 𝑥)) = ((𝑟 · 𝑤) + (𝑟 · 𝑥)) ∧ ((𝑄 𝑟) · 𝑤) = ((𝑄 · 𝑤) + (𝑟 · 𝑤))) ↔ ((𝑅 · 𝑤) ∈ 𝑉 ∧ (𝑅 · (𝑤 + 𝑥)) = ((𝑅 · 𝑤) + (𝑅 · 𝑥)) ∧ ((𝑄 𝑅) · 𝑤) = ((𝑄 · 𝑤) + (𝑅 · 𝑤)))))
35 oveq2 5959 . . . . . . . . . 10 (𝑟 = 𝑅 → (𝑄 × 𝑟) = (𝑄 × 𝑅))
3635oveq1d 5966 . . . . . . . . 9 (𝑟 = 𝑅 → ((𝑄 × 𝑟) · 𝑤) = ((𝑄 × 𝑅) · 𝑤))
3724oveq2d 5967 . . . . . . . . 9 (𝑟 = 𝑅 → (𝑄 · (𝑟 · 𝑤)) = (𝑄 · (𝑅 · 𝑤)))
3836, 37eqeq12d 2221 . . . . . . . 8 (𝑟 = 𝑅 → (((𝑄 × 𝑟) · 𝑤) = (𝑄 · (𝑟 · 𝑤)) ↔ ((𝑄 × 𝑅) · 𝑤) = (𝑄 · (𝑅 · 𝑤))))
3938anbi1d 465 . . . . . . 7 (𝑟 = 𝑅 → ((((𝑄 × 𝑟) · 𝑤) = (𝑄 · (𝑟 · 𝑤)) ∧ ( 1 · 𝑤) = 𝑤) ↔ (((𝑄 × 𝑅) · 𝑤) = (𝑄 · (𝑅 · 𝑤)) ∧ ( 1 · 𝑤) = 𝑤)))
4034, 39anbi12d 473 . . . . . 6 (𝑟 = 𝑅 → ((((𝑟 · 𝑤) ∈ 𝑉 ∧ (𝑟 · (𝑤 + 𝑥)) = ((𝑟 · 𝑤) + (𝑟 · 𝑥)) ∧ ((𝑄 𝑟) · 𝑤) = ((𝑄 · 𝑤) + (𝑟 · 𝑤))) ∧ (((𝑄 × 𝑟) · 𝑤) = (𝑄 · (𝑟 · 𝑤)) ∧ ( 1 · 𝑤) = 𝑤)) ↔ (((𝑅 · 𝑤) ∈ 𝑉 ∧ (𝑅 · (𝑤 + 𝑥)) = ((𝑅 · 𝑤) + (𝑅 · 𝑥)) ∧ ((𝑄 𝑅) · 𝑤) = ((𝑄 · 𝑤) + (𝑅 · 𝑤))) ∧ (((𝑄 × 𝑅) · 𝑤) = (𝑄 · (𝑅 · 𝑤)) ∧ ( 1 · 𝑤) = 𝑤))))
41402ralbidv 2531 . . . . 5 (𝑟 = 𝑅 → (∀𝑥𝑉𝑤𝑉 (((𝑟 · 𝑤) ∈ 𝑉 ∧ (𝑟 · (𝑤 + 𝑥)) = ((𝑟 · 𝑤) + (𝑟 · 𝑥)) ∧ ((𝑄 𝑟) · 𝑤) = ((𝑄 · 𝑤) + (𝑟 · 𝑤))) ∧ (((𝑄 × 𝑟) · 𝑤) = (𝑄 · (𝑟 · 𝑤)) ∧ ( 1 · 𝑤) = 𝑤)) ↔ ∀𝑥𝑉𝑤𝑉 (((𝑅 · 𝑤) ∈ 𝑉 ∧ (𝑅 · (𝑤 + 𝑥)) = ((𝑅 · 𝑤) + (𝑅 · 𝑥)) ∧ ((𝑄 𝑅) · 𝑤) = ((𝑄 · 𝑤) + (𝑅 · 𝑤))) ∧ (((𝑄 × 𝑅) · 𝑤) = (𝑄 · (𝑅 · 𝑤)) ∧ ( 1 · 𝑤) = 𝑤))))
4223, 41rspc2v 2891 . . . 4 ((𝑄𝐾𝑅𝐾) → (∀𝑞𝐾𝑟𝐾𝑥𝑉𝑤𝑉 (((𝑟 · 𝑤) ∈ 𝑉 ∧ (𝑟 · (𝑤 + 𝑥)) = ((𝑟 · 𝑤) + (𝑟 · 𝑥)) ∧ ((𝑞 𝑟) · 𝑤) = ((𝑞 · 𝑤) + (𝑟 · 𝑤))) ∧ (((𝑞 × 𝑟) · 𝑤) = (𝑞 · (𝑟 · 𝑤)) ∧ ( 1 · 𝑤) = 𝑤)) → ∀𝑥𝑉𝑤𝑉 (((𝑅 · 𝑤) ∈ 𝑉 ∧ (𝑅 · (𝑤 + 𝑥)) = ((𝑅 · 𝑤) + (𝑅 · 𝑥)) ∧ ((𝑄 𝑅) · 𝑤) = ((𝑄 · 𝑤) + (𝑅 · 𝑤))) ∧ (((𝑄 × 𝑅) · 𝑤) = (𝑄 · (𝑅 · 𝑤)) ∧ ( 1 · 𝑤) = 𝑤))))
4310, 42mpan9 281 . . 3 ((𝑊 ∈ LMod ∧ (𝑄𝐾𝑅𝐾)) → ∀𝑥𝑉𝑤𝑉 (((𝑅 · 𝑤) ∈ 𝑉 ∧ (𝑅 · (𝑤 + 𝑥)) = ((𝑅 · 𝑤) + (𝑅 · 𝑥)) ∧ ((𝑄 𝑅) · 𝑤) = ((𝑄 · 𝑤) + (𝑅 · 𝑤))) ∧ (((𝑄 × 𝑅) · 𝑤) = (𝑄 · (𝑅 · 𝑤)) ∧ ( 1 · 𝑤) = 𝑤)))
44 oveq2 5959 . . . . . . . 8 (𝑥 = 𝑋 → (𝑤 + 𝑥) = (𝑤 + 𝑋))
4544oveq2d 5967 . . . . . . 7 (𝑥 = 𝑋 → (𝑅 · (𝑤 + 𝑥)) = (𝑅 · (𝑤 + 𝑋)))
46 oveq2 5959 . . . . . . . 8 (𝑥 = 𝑋 → (𝑅 · 𝑥) = (𝑅 · 𝑋))
4746oveq2d 5967 . . . . . . 7 (𝑥 = 𝑋 → ((𝑅 · 𝑤) + (𝑅 · 𝑥)) = ((𝑅 · 𝑤) + (𝑅 · 𝑋)))
4845, 47eqeq12d 2221 . . . . . 6 (𝑥 = 𝑋 → ((𝑅 · (𝑤 + 𝑥)) = ((𝑅 · 𝑤) + (𝑅 · 𝑥)) ↔ (𝑅 · (𝑤 + 𝑋)) = ((𝑅 · 𝑤) + (𝑅 · 𝑋))))
49483anbi2d 1330 . . . . 5 (𝑥 = 𝑋 → (((𝑅 · 𝑤) ∈ 𝑉 ∧ (𝑅 · (𝑤 + 𝑥)) = ((𝑅 · 𝑤) + (𝑅 · 𝑥)) ∧ ((𝑄 𝑅) · 𝑤) = ((𝑄 · 𝑤) + (𝑅 · 𝑤))) ↔ ((𝑅 · 𝑤) ∈ 𝑉 ∧ (𝑅 · (𝑤 + 𝑋)) = ((𝑅 · 𝑤) + (𝑅 · 𝑋)) ∧ ((𝑄 𝑅) · 𝑤) = ((𝑄 · 𝑤) + (𝑅 · 𝑤)))))
5049anbi1d 465 . . . 4 (𝑥 = 𝑋 → ((((𝑅 · 𝑤) ∈ 𝑉 ∧ (𝑅 · (𝑤 + 𝑥)) = ((𝑅 · 𝑤) + (𝑅 · 𝑥)) ∧ ((𝑄 𝑅) · 𝑤) = ((𝑄 · 𝑤) + (𝑅 · 𝑤))) ∧ (((𝑄 × 𝑅) · 𝑤) = (𝑄 · (𝑅 · 𝑤)) ∧ ( 1 · 𝑤) = 𝑤)) ↔ (((𝑅 · 𝑤) ∈ 𝑉 ∧ (𝑅 · (𝑤 + 𝑋)) = ((𝑅 · 𝑤) + (𝑅 · 𝑋)) ∧ ((𝑄 𝑅) · 𝑤) = ((𝑄 · 𝑤) + (𝑅 · 𝑤))) ∧ (((𝑄 × 𝑅) · 𝑤) = (𝑄 · (𝑅 · 𝑤)) ∧ ( 1 · 𝑤) = 𝑤))))
51 oveq2 5959 . . . . . . 7 (𝑤 = 𝑌 → (𝑅 · 𝑤) = (𝑅 · 𝑌))
5251eleq1d 2275 . . . . . 6 (𝑤 = 𝑌 → ((𝑅 · 𝑤) ∈ 𝑉 ↔ (𝑅 · 𝑌) ∈ 𝑉))
53 oveq1 5958 . . . . . . . 8 (𝑤 = 𝑌 → (𝑤 + 𝑋) = (𝑌 + 𝑋))
5453oveq2d 5967 . . . . . . 7 (𝑤 = 𝑌 → (𝑅 · (𝑤 + 𝑋)) = (𝑅 · (𝑌 + 𝑋)))
5551oveq1d 5966 . . . . . . 7 (𝑤 = 𝑌 → ((𝑅 · 𝑤) + (𝑅 · 𝑋)) = ((𝑅 · 𝑌) + (𝑅 · 𝑋)))
5654, 55eqeq12d 2221 . . . . . 6 (𝑤 = 𝑌 → ((𝑅 · (𝑤 + 𝑋)) = ((𝑅 · 𝑤) + (𝑅 · 𝑋)) ↔ (𝑅 · (𝑌 + 𝑋)) = ((𝑅 · 𝑌) + (𝑅 · 𝑋))))
57 oveq2 5959 . . . . . . 7 (𝑤 = 𝑌 → ((𝑄 𝑅) · 𝑤) = ((𝑄 𝑅) · 𝑌))
58 oveq2 5959 . . . . . . . 8 (𝑤 = 𝑌 → (𝑄 · 𝑤) = (𝑄 · 𝑌))
5958, 51oveq12d 5969 . . . . . . 7 (𝑤 = 𝑌 → ((𝑄 · 𝑤) + (𝑅 · 𝑤)) = ((𝑄 · 𝑌) + (𝑅 · 𝑌)))
6057, 59eqeq12d 2221 . . . . . 6 (𝑤 = 𝑌 → (((𝑄 𝑅) · 𝑤) = ((𝑄 · 𝑤) + (𝑅 · 𝑤)) ↔ ((𝑄 𝑅) · 𝑌) = ((𝑄 · 𝑌) + (𝑅 · 𝑌))))
6152, 56, 603anbi123d 1325 . . . . 5 (𝑤 = 𝑌 → (((𝑅 · 𝑤) ∈ 𝑉 ∧ (𝑅 · (𝑤 + 𝑋)) = ((𝑅 · 𝑤) + (𝑅 · 𝑋)) ∧ ((𝑄 𝑅) · 𝑤) = ((𝑄 · 𝑤) + (𝑅 · 𝑤))) ↔ ((𝑅 · 𝑌) ∈ 𝑉 ∧ (𝑅 · (𝑌 + 𝑋)) = ((𝑅 · 𝑌) + (𝑅 · 𝑋)) ∧ ((𝑄 𝑅) · 𝑌) = ((𝑄 · 𝑌) + (𝑅 · 𝑌)))))
62 oveq2 5959 . . . . . . 7 (𝑤 = 𝑌 → ((𝑄 × 𝑅) · 𝑤) = ((𝑄 × 𝑅) · 𝑌))
6351oveq2d 5967 . . . . . . 7 (𝑤 = 𝑌 → (𝑄 · (𝑅 · 𝑤)) = (𝑄 · (𝑅 · 𝑌)))
6462, 63eqeq12d 2221 . . . . . 6 (𝑤 = 𝑌 → (((𝑄 × 𝑅) · 𝑤) = (𝑄 · (𝑅 · 𝑤)) ↔ ((𝑄 × 𝑅) · 𝑌) = (𝑄 · (𝑅 · 𝑌))))
65 oveq2 5959 . . . . . . 7 (𝑤 = 𝑌 → ( 1 · 𝑤) = ( 1 · 𝑌))
66 id 19 . . . . . . 7 (𝑤 = 𝑌𝑤 = 𝑌)
6765, 66eqeq12d 2221 . . . . . 6 (𝑤 = 𝑌 → (( 1 · 𝑤) = 𝑤 ↔ ( 1 · 𝑌) = 𝑌))
6864, 67anbi12d 473 . . . . 5 (𝑤 = 𝑌 → ((((𝑄 × 𝑅) · 𝑤) = (𝑄 · (𝑅 · 𝑤)) ∧ ( 1 · 𝑤) = 𝑤) ↔ (((𝑄 × 𝑅) · 𝑌) = (𝑄 · (𝑅 · 𝑌)) ∧ ( 1 · 𝑌) = 𝑌)))
6961, 68anbi12d 473 . . . 4 (𝑤 = 𝑌 → ((((𝑅 · 𝑤) ∈ 𝑉 ∧ (𝑅 · (𝑤 + 𝑋)) = ((𝑅 · 𝑤) + (𝑅 · 𝑋)) ∧ ((𝑄 𝑅) · 𝑤) = ((𝑄 · 𝑤) + (𝑅 · 𝑤))) ∧ (((𝑄 × 𝑅) · 𝑤) = (𝑄 · (𝑅 · 𝑤)) ∧ ( 1 · 𝑤) = 𝑤)) ↔ (((𝑅 · 𝑌) ∈ 𝑉 ∧ (𝑅 · (𝑌 + 𝑋)) = ((𝑅 · 𝑌) + (𝑅 · 𝑋)) ∧ ((𝑄 𝑅) · 𝑌) = ((𝑄 · 𝑌) + (𝑅 · 𝑌))) ∧ (((𝑄 × 𝑅) · 𝑌) = (𝑄 · (𝑅 · 𝑌)) ∧ ( 1 · 𝑌) = 𝑌))))
7050, 69rspc2v 2891 . . 3 ((𝑋𝑉𝑌𝑉) → (∀𝑥𝑉𝑤𝑉 (((𝑅 · 𝑤) ∈ 𝑉 ∧ (𝑅 · (𝑤 + 𝑥)) = ((𝑅 · 𝑤) + (𝑅 · 𝑥)) ∧ ((𝑄 𝑅) · 𝑤) = ((𝑄 · 𝑤) + (𝑅 · 𝑤))) ∧ (((𝑄 × 𝑅) · 𝑤) = (𝑄 · (𝑅 · 𝑤)) ∧ ( 1 · 𝑤) = 𝑤)) → (((𝑅 · 𝑌) ∈ 𝑉 ∧ (𝑅 · (𝑌 + 𝑋)) = ((𝑅 · 𝑌) + (𝑅 · 𝑋)) ∧ ((𝑄 𝑅) · 𝑌) = ((𝑄 · 𝑌) + (𝑅 · 𝑌))) ∧ (((𝑄 × 𝑅) · 𝑌) = (𝑄 · (𝑅 · 𝑌)) ∧ ( 1 · 𝑌) = 𝑌))))
7143, 70syl5com 29 . 2 ((𝑊 ∈ LMod ∧ (𝑄𝐾𝑅𝐾)) → ((𝑋𝑉𝑌𝑉) → (((𝑅 · 𝑌) ∈ 𝑉 ∧ (𝑅 · (𝑌 + 𝑋)) = ((𝑅 · 𝑌) + (𝑅 · 𝑋)) ∧ ((𝑄 𝑅) · 𝑌) = ((𝑄 · 𝑌) + (𝑅 · 𝑌))) ∧ (((𝑄 × 𝑅) · 𝑌) = (𝑄 · (𝑅 · 𝑌)) ∧ ( 1 · 𝑌) = 𝑌))))
72713impia 1203 1 ((𝑊 ∈ LMod ∧ (𝑄𝐾𝑅𝐾) ∧ (𝑋𝑉𝑌𝑉)) → (((𝑅 · 𝑌) ∈ 𝑉 ∧ (𝑅 · (𝑌 + 𝑋)) = ((𝑅 · 𝑌) + (𝑅 · 𝑋)) ∧ ((𝑄 𝑅) · 𝑌) = ((𝑄 · 𝑌) + (𝑅 · 𝑌))) ∧ (((𝑄 × 𝑅) · 𝑌) = (𝑄 · (𝑅 · 𝑌)) ∧ ( 1 · 𝑌) = 𝑌)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  w3a 981   = wceq 1373  wcel 2177  wral 2485  cfv 5276  (class class class)co 5951  Basecbs 12876  +gcplusg 12953  .rcmulr 12954  Scalarcsca 12956   ·𝑠 cvsca 12957  Grpcgrp 13376  1rcur 13765  Ringcrg 13802  LModclmod 14093
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-sep 4166  ax-pow 4222  ax-pr 4257  ax-un 4484  ax-cnex 8023  ax-resscn 8024  ax-1re 8026  ax-addrcl 8029
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ral 2490  df-rex 2491  df-rab 2494  df-v 2775  df-sbc 3000  df-un 3171  df-in 3173  df-ss 3180  df-pw 3619  df-sn 3640  df-pr 3641  df-op 3643  df-uni 3853  df-int 3888  df-br 4048  df-opab 4110  df-mpt 4111  df-id 4344  df-xp 4685  df-rel 4686  df-cnv 4687  df-co 4688  df-dm 4689  df-rn 4690  df-res 4691  df-iota 5237  df-fun 5278  df-fn 5279  df-fv 5284  df-ov 5954  df-inn 9044  df-2 9102  df-3 9103  df-4 9104  df-5 9105  df-6 9106  df-ndx 12879  df-slot 12880  df-base 12882  df-plusg 12966  df-mulr 12967  df-sca 12969  df-vsca 12970  df-lmod 14095
This theorem is referenced by:  lmodvscl  14111  lmodvsdi  14117  lmodvsdir  14118  lmodvsass  14119  lmodvs1  14122
  Copyright terms: Public domain W3C validator