Proof of Theorem mhmlem
| Step | Hyp | Ref
| Expression |
| 1 | | id 19 |
. 2
⊢ (𝜑 → 𝜑) |
| 2 | | mhmlem.a |
. 2
⊢ (𝜑 → 𝐴 ∈ 𝑋) |
| 3 | | mhmlem.b |
. 2
⊢ (𝜑 → 𝐵 ∈ 𝑋) |
| 4 | | eleq1 2259 |
. . . . . 6
⊢ (𝑥 = 𝐴 → (𝑥 ∈ 𝑋 ↔ 𝐴 ∈ 𝑋)) |
| 5 | 4 | 3anbi2d 1328 |
. . . . 5
⊢ (𝑥 = 𝐴 → ((𝜑 ∧ 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋) ↔ (𝜑 ∧ 𝐴 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋))) |
| 6 | | fvoveq1 5945 |
. . . . . 6
⊢ (𝑥 = 𝐴 → (𝐹‘(𝑥 + 𝑦)) = (𝐹‘(𝐴 + 𝑦))) |
| 7 | | fveq2 5558 |
. . . . . . 7
⊢ (𝑥 = 𝐴 → (𝐹‘𝑥) = (𝐹‘𝐴)) |
| 8 | 7 | oveq1d 5937 |
. . . . . 6
⊢ (𝑥 = 𝐴 → ((𝐹‘𝑥) ⨣ (𝐹‘𝑦)) = ((𝐹‘𝐴) ⨣ (𝐹‘𝑦))) |
| 9 | 6, 8 | eqeq12d 2211 |
. . . . 5
⊢ (𝑥 = 𝐴 → ((𝐹‘(𝑥 + 𝑦)) = ((𝐹‘𝑥) ⨣ (𝐹‘𝑦)) ↔ (𝐹‘(𝐴 + 𝑦)) = ((𝐹‘𝐴) ⨣ (𝐹‘𝑦)))) |
| 10 | 5, 9 | imbi12d 234 |
. . . 4
⊢ (𝑥 = 𝐴 → (((𝜑 ∧ 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋) → (𝐹‘(𝑥 + 𝑦)) = ((𝐹‘𝑥) ⨣ (𝐹‘𝑦))) ↔ ((𝜑 ∧ 𝐴 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋) → (𝐹‘(𝐴 + 𝑦)) = ((𝐹‘𝐴) ⨣ (𝐹‘𝑦))))) |
| 11 | | eleq1 2259 |
. . . . . 6
⊢ (𝑦 = 𝐵 → (𝑦 ∈ 𝑋 ↔ 𝐵 ∈ 𝑋)) |
| 12 | 11 | 3anbi3d 1329 |
. . . . 5
⊢ (𝑦 = 𝐵 → ((𝜑 ∧ 𝐴 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋) ↔ (𝜑 ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋))) |
| 13 | | oveq2 5930 |
. . . . . . 7
⊢ (𝑦 = 𝐵 → (𝐴 + 𝑦) = (𝐴 + 𝐵)) |
| 14 | 13 | fveq2d 5562 |
. . . . . 6
⊢ (𝑦 = 𝐵 → (𝐹‘(𝐴 + 𝑦)) = (𝐹‘(𝐴 + 𝐵))) |
| 15 | | fveq2 5558 |
. . . . . . 7
⊢ (𝑦 = 𝐵 → (𝐹‘𝑦) = (𝐹‘𝐵)) |
| 16 | 15 | oveq2d 5938 |
. . . . . 6
⊢ (𝑦 = 𝐵 → ((𝐹‘𝐴) ⨣ (𝐹‘𝑦)) = ((𝐹‘𝐴) ⨣ (𝐹‘𝐵))) |
| 17 | 14, 16 | eqeq12d 2211 |
. . . . 5
⊢ (𝑦 = 𝐵 → ((𝐹‘(𝐴 + 𝑦)) = ((𝐹‘𝐴) ⨣ (𝐹‘𝑦)) ↔ (𝐹‘(𝐴 + 𝐵)) = ((𝐹‘𝐴) ⨣ (𝐹‘𝐵)))) |
| 18 | 12, 17 | imbi12d 234 |
. . . 4
⊢ (𝑦 = 𝐵 → (((𝜑 ∧ 𝐴 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋) → (𝐹‘(𝐴 + 𝑦)) = ((𝐹‘𝐴) ⨣ (𝐹‘𝑦))) ↔ ((𝜑 ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝐹‘(𝐴 + 𝐵)) = ((𝐹‘𝐴) ⨣ (𝐹‘𝐵))))) |
| 19 | | ghmgrp.f |
. . . 4
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋) → (𝐹‘(𝑥 + 𝑦)) = ((𝐹‘𝑥) ⨣ (𝐹‘𝑦))) |
| 20 | 10, 18, 19 | vtocl2g 2828 |
. . 3
⊢ ((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → ((𝜑 ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝐹‘(𝐴 + 𝐵)) = ((𝐹‘𝐴) ⨣ (𝐹‘𝐵)))) |
| 21 | 2, 3, 20 | syl2anc 411 |
. 2
⊢ (𝜑 → ((𝜑 ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝐹‘(𝐴 + 𝐵)) = ((𝐹‘𝐴) ⨣ (𝐹‘𝐵)))) |
| 22 | 1, 2, 3, 21 | mp3and 1351 |
1
⊢ (𝜑 → (𝐹‘(𝐴 + 𝐵)) = ((𝐹‘𝐴) ⨣ (𝐹‘𝐵))) |