ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mhmlem GIF version

Theorem mhmlem 13079
Description: Lemma for mhmmnd 13081 and ghmgrp 13083. (Contributed by Paul Chapman, 25-Apr-2008.) (Revised by Mario Carneiro, 12-May-2014.) (Revised by Thierry Arnoux, 25-Jan-2020.)
Hypotheses
Ref Expression
ghmgrp.f ((𝜑𝑥𝑋𝑦𝑋) → (𝐹‘(𝑥 + 𝑦)) = ((𝐹𝑥) (𝐹𝑦)))
mhmlem.a (𝜑𝐴𝑋)
mhmlem.b (𝜑𝐵𝑋)
Assertion
Ref Expression
mhmlem (𝜑 → (𝐹‘(𝐴 + 𝐵)) = ((𝐹𝐴) (𝐹𝐵)))
Distinct variable groups:   𝑥,𝐹,𝑦   𝑥, + ,𝑦   𝑥,𝑋,𝑦   𝑥, ,𝑦   𝜑,𝑥,𝑦   𝑥,𝐴,𝑦   𝑦,𝐵
Allowed substitution hint:   𝐵(𝑥)

Proof of Theorem mhmlem
StepHypRef Expression
1 id 19 . 2 (𝜑𝜑)
2 mhmlem.a . 2 (𝜑𝐴𝑋)
3 mhmlem.b . 2 (𝜑𝐵𝑋)
4 eleq1 2252 . . . . . 6 (𝑥 = 𝐴 → (𝑥𝑋𝐴𝑋))
543anbi2d 1328 . . . . 5 (𝑥 = 𝐴 → ((𝜑𝑥𝑋𝑦𝑋) ↔ (𝜑𝐴𝑋𝑦𝑋)))
6 fvoveq1 5923 . . . . . 6 (𝑥 = 𝐴 → (𝐹‘(𝑥 + 𝑦)) = (𝐹‘(𝐴 + 𝑦)))
7 fveq2 5537 . . . . . . 7 (𝑥 = 𝐴 → (𝐹𝑥) = (𝐹𝐴))
87oveq1d 5915 . . . . . 6 (𝑥 = 𝐴 → ((𝐹𝑥) (𝐹𝑦)) = ((𝐹𝐴) (𝐹𝑦)))
96, 8eqeq12d 2204 . . . . 5 (𝑥 = 𝐴 → ((𝐹‘(𝑥 + 𝑦)) = ((𝐹𝑥) (𝐹𝑦)) ↔ (𝐹‘(𝐴 + 𝑦)) = ((𝐹𝐴) (𝐹𝑦))))
105, 9imbi12d 234 . . . 4 (𝑥 = 𝐴 → (((𝜑𝑥𝑋𝑦𝑋) → (𝐹‘(𝑥 + 𝑦)) = ((𝐹𝑥) (𝐹𝑦))) ↔ ((𝜑𝐴𝑋𝑦𝑋) → (𝐹‘(𝐴 + 𝑦)) = ((𝐹𝐴) (𝐹𝑦)))))
11 eleq1 2252 . . . . . 6 (𝑦 = 𝐵 → (𝑦𝑋𝐵𝑋))
12113anbi3d 1329 . . . . 5 (𝑦 = 𝐵 → ((𝜑𝐴𝑋𝑦𝑋) ↔ (𝜑𝐴𝑋𝐵𝑋)))
13 oveq2 5908 . . . . . . 7 (𝑦 = 𝐵 → (𝐴 + 𝑦) = (𝐴 + 𝐵))
1413fveq2d 5541 . . . . . 6 (𝑦 = 𝐵 → (𝐹‘(𝐴 + 𝑦)) = (𝐹‘(𝐴 + 𝐵)))
15 fveq2 5537 . . . . . . 7 (𝑦 = 𝐵 → (𝐹𝑦) = (𝐹𝐵))
1615oveq2d 5916 . . . . . 6 (𝑦 = 𝐵 → ((𝐹𝐴) (𝐹𝑦)) = ((𝐹𝐴) (𝐹𝐵)))
1714, 16eqeq12d 2204 . . . . 5 (𝑦 = 𝐵 → ((𝐹‘(𝐴 + 𝑦)) = ((𝐹𝐴) (𝐹𝑦)) ↔ (𝐹‘(𝐴 + 𝐵)) = ((𝐹𝐴) (𝐹𝐵))))
1812, 17imbi12d 234 . . . 4 (𝑦 = 𝐵 → (((𝜑𝐴𝑋𝑦𝑋) → (𝐹‘(𝐴 + 𝑦)) = ((𝐹𝐴) (𝐹𝑦))) ↔ ((𝜑𝐴𝑋𝐵𝑋) → (𝐹‘(𝐴 + 𝐵)) = ((𝐹𝐴) (𝐹𝐵)))))
19 ghmgrp.f . . . 4 ((𝜑𝑥𝑋𝑦𝑋) → (𝐹‘(𝑥 + 𝑦)) = ((𝐹𝑥) (𝐹𝑦)))
2010, 18, 19vtocl2g 2816 . . 3 ((𝐴𝑋𝐵𝑋) → ((𝜑𝐴𝑋𝐵𝑋) → (𝐹‘(𝐴 + 𝐵)) = ((𝐹𝐴) (𝐹𝐵))))
212, 3, 20syl2anc 411 . 2 (𝜑 → ((𝜑𝐴𝑋𝐵𝑋) → (𝐹‘(𝐴 + 𝐵)) = ((𝐹𝐴) (𝐹𝐵))))
221, 2, 3, 21mp3and 1351 1 (𝜑 → (𝐹‘(𝐴 + 𝐵)) = ((𝐹𝐴) (𝐹𝐵)))
Colors of variables: wff set class
Syntax hints:  wi 4  w3a 980   = wceq 1364  wcel 2160  cfv 5238  (class class class)co 5900
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-ext 2171
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-clab 2176  df-cleq 2182  df-clel 2185  df-nfc 2321  df-rex 2474  df-v 2754  df-un 3148  df-sn 3616  df-pr 3617  df-op 3619  df-uni 3828  df-br 4022  df-iota 5199  df-fv 5246  df-ov 5903
This theorem is referenced by:  mhmid  13080  mhmmnd  13081  ghmgrp  13083  ghmcmn  13290
  Copyright terms: Public domain W3C validator