| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > qexpclz | GIF version | ||
| Description: Closure of exponentiation of rational numbers. (Contributed by Mario Carneiro, 9-Sep-2014.) |
| Ref | Expression |
|---|---|
| qexpclz | ⊢ ((𝐴 ∈ ℚ ∧ 𝐴 ≠ 0 ∧ 𝑁 ∈ ℤ) → (𝐴↑𝑁) ∈ ℚ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0z 9418 | . . . . . . 7 ⊢ 0 ∈ ℤ | |
| 2 | zq 9782 | . . . . . . 7 ⊢ (0 ∈ ℤ → 0 ∈ ℚ) | |
| 3 | 1, 2 | ax-mp 5 | . . . . . 6 ⊢ 0 ∈ ℚ |
| 4 | qapne 9795 | . . . . . 6 ⊢ ((𝐴 ∈ ℚ ∧ 0 ∈ ℚ) → (𝐴 # 0 ↔ 𝐴 ≠ 0)) | |
| 5 | 3, 4 | mpan2 425 | . . . . 5 ⊢ (𝐴 ∈ ℚ → (𝐴 # 0 ↔ 𝐴 ≠ 0)) |
| 6 | 5 | 3anbi2d 1330 | . . . 4 ⊢ (𝐴 ∈ ℚ → ((𝐴 ∈ ℚ ∧ 𝐴 # 0 ∧ 𝑁 ∈ ℤ) ↔ (𝐴 ∈ ℚ ∧ 𝐴 ≠ 0 ∧ 𝑁 ∈ ℤ))) |
| 7 | 6 | 3ad2ant1 1021 | . . 3 ⊢ ((𝐴 ∈ ℚ ∧ 𝐴 ≠ 0 ∧ 𝑁 ∈ ℤ) → ((𝐴 ∈ ℚ ∧ 𝐴 # 0 ∧ 𝑁 ∈ ℤ) ↔ (𝐴 ∈ ℚ ∧ 𝐴 ≠ 0 ∧ 𝑁 ∈ ℤ))) |
| 8 | 7 | ibir 177 | . 2 ⊢ ((𝐴 ∈ ℚ ∧ 𝐴 ≠ 0 ∧ 𝑁 ∈ ℤ) → (𝐴 ∈ ℚ ∧ 𝐴 # 0 ∧ 𝑁 ∈ ℤ)) |
| 9 | qsscn 9787 | . . 3 ⊢ ℚ ⊆ ℂ | |
| 10 | qmulcl 9793 | . . 3 ⊢ ((𝑥 ∈ ℚ ∧ 𝑦 ∈ ℚ) → (𝑥 · 𝑦) ∈ ℚ) | |
| 11 | 1z 9433 | . . . 4 ⊢ 1 ∈ ℤ | |
| 12 | zq 9782 | . . . 4 ⊢ (1 ∈ ℤ → 1 ∈ ℚ) | |
| 13 | 11, 12 | ax-mp 5 | . . 3 ⊢ 1 ∈ ℚ |
| 14 | qapne 9795 | . . . . . 6 ⊢ ((𝑥 ∈ ℚ ∧ 0 ∈ ℚ) → (𝑥 # 0 ↔ 𝑥 ≠ 0)) | |
| 15 | 3, 14 | mpan2 425 | . . . . 5 ⊢ (𝑥 ∈ ℚ → (𝑥 # 0 ↔ 𝑥 ≠ 0)) |
| 16 | 15 | pm5.32i 454 | . . . 4 ⊢ ((𝑥 ∈ ℚ ∧ 𝑥 # 0) ↔ (𝑥 ∈ ℚ ∧ 𝑥 ≠ 0)) |
| 17 | qreccl 9798 | . . . 4 ⊢ ((𝑥 ∈ ℚ ∧ 𝑥 ≠ 0) → (1 / 𝑥) ∈ ℚ) | |
| 18 | 16, 17 | sylbi 121 | . . 3 ⊢ ((𝑥 ∈ ℚ ∧ 𝑥 # 0) → (1 / 𝑥) ∈ ℚ) |
| 19 | 9, 10, 13, 18 | expcl2lemap 10733 | . 2 ⊢ ((𝐴 ∈ ℚ ∧ 𝐴 # 0 ∧ 𝑁 ∈ ℤ) → (𝐴↑𝑁) ∈ ℚ) |
| 20 | 8, 19 | syl 14 | 1 ⊢ ((𝐴 ∈ ℚ ∧ 𝐴 ≠ 0 ∧ 𝑁 ∈ ℤ) → (𝐴↑𝑁) ∈ ℚ) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 ∧ w3a 981 ∈ wcel 2178 ≠ wne 2378 class class class wbr 4059 (class class class)co 5967 0cc0 7960 1c1 7961 # cap 8689 / cdiv 8780 ℤcz 9407 ℚcq 9775 ↑cexp 10720 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2180 ax-14 2181 ax-ext 2189 ax-coll 4175 ax-sep 4178 ax-nul 4186 ax-pow 4234 ax-pr 4269 ax-un 4498 ax-setind 4603 ax-iinf 4654 ax-cnex 8051 ax-resscn 8052 ax-1cn 8053 ax-1re 8054 ax-icn 8055 ax-addcl 8056 ax-addrcl 8057 ax-mulcl 8058 ax-mulrcl 8059 ax-addcom 8060 ax-mulcom 8061 ax-addass 8062 ax-mulass 8063 ax-distr 8064 ax-i2m1 8065 ax-0lt1 8066 ax-1rid 8067 ax-0id 8068 ax-rnegex 8069 ax-precex 8070 ax-cnre 8071 ax-pre-ltirr 8072 ax-pre-ltwlin 8073 ax-pre-lttrn 8074 ax-pre-apti 8075 ax-pre-ltadd 8076 ax-pre-mulgt0 8077 ax-pre-mulext 8078 |
| This theorem depends on definitions: df-bi 117 df-dc 837 df-3or 982 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-ne 2379 df-nel 2474 df-ral 2491 df-rex 2492 df-reu 2493 df-rmo 2494 df-rab 2495 df-v 2778 df-sbc 3006 df-csb 3102 df-dif 3176 df-un 3178 df-in 3180 df-ss 3187 df-nul 3469 df-if 3580 df-pw 3628 df-sn 3649 df-pr 3650 df-op 3652 df-uni 3865 df-int 3900 df-iun 3943 df-br 4060 df-opab 4122 df-mpt 4123 df-tr 4159 df-id 4358 df-po 4361 df-iso 4362 df-iord 4431 df-on 4433 df-ilim 4434 df-suc 4436 df-iom 4657 df-xp 4699 df-rel 4700 df-cnv 4701 df-co 4702 df-dm 4703 df-rn 4704 df-res 4705 df-ima 4706 df-iota 5251 df-fun 5292 df-fn 5293 df-f 5294 df-f1 5295 df-fo 5296 df-f1o 5297 df-fv 5298 df-riota 5922 df-ov 5970 df-oprab 5971 df-mpo 5972 df-1st 6249 df-2nd 6250 df-recs 6414 df-frec 6500 df-pnf 8144 df-mnf 8145 df-xr 8146 df-ltxr 8147 df-le 8148 df-sub 8280 df-neg 8281 df-reap 8683 df-ap 8690 df-div 8781 df-inn 9072 df-n0 9331 df-z 9408 df-uz 9684 df-q 9776 df-seqfrec 10630 df-exp 10721 |
| This theorem is referenced by: pcexp 12747 pcaddlem 12777 lgseisen 15666 |
| Copyright terms: Public domain | W3C validator |