![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > qexpclz | GIF version |
Description: Closure of exponentiation of rational numbers. (Contributed by Mario Carneiro, 9-Sep-2014.) |
Ref | Expression |
---|---|
qexpclz | ⊢ ((𝐴 ∈ ℚ ∧ 𝐴 ≠ 0 ∧ 𝑁 ∈ ℤ) → (𝐴↑𝑁) ∈ ℚ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0z 8822 | . . . . . . 7 ⊢ 0 ∈ ℤ | |
2 | zq 9172 | . . . . . . 7 ⊢ (0 ∈ ℤ → 0 ∈ ℚ) | |
3 | 1, 2 | ax-mp 7 | . . . . . 6 ⊢ 0 ∈ ℚ |
4 | qapne 9185 | . . . . . 6 ⊢ ((𝐴 ∈ ℚ ∧ 0 ∈ ℚ) → (𝐴 # 0 ↔ 𝐴 ≠ 0)) | |
5 | 3, 4 | mpan2 417 | . . . . 5 ⊢ (𝐴 ∈ ℚ → (𝐴 # 0 ↔ 𝐴 ≠ 0)) |
6 | 5 | 3anbi2d 1254 | . . . 4 ⊢ (𝐴 ∈ ℚ → ((𝐴 ∈ ℚ ∧ 𝐴 # 0 ∧ 𝑁 ∈ ℤ) ↔ (𝐴 ∈ ℚ ∧ 𝐴 ≠ 0 ∧ 𝑁 ∈ ℤ))) |
7 | 6 | 3ad2ant1 965 | . . 3 ⊢ ((𝐴 ∈ ℚ ∧ 𝐴 ≠ 0 ∧ 𝑁 ∈ ℤ) → ((𝐴 ∈ ℚ ∧ 𝐴 # 0 ∧ 𝑁 ∈ ℤ) ↔ (𝐴 ∈ ℚ ∧ 𝐴 ≠ 0 ∧ 𝑁 ∈ ℤ))) |
8 | 7 | ibir 176 | . 2 ⊢ ((𝐴 ∈ ℚ ∧ 𝐴 ≠ 0 ∧ 𝑁 ∈ ℤ) → (𝐴 ∈ ℚ ∧ 𝐴 # 0 ∧ 𝑁 ∈ ℤ)) |
9 | qsscn 9177 | . . 3 ⊢ ℚ ⊆ ℂ | |
10 | qmulcl 9183 | . . 3 ⊢ ((𝑥 ∈ ℚ ∧ 𝑦 ∈ ℚ) → (𝑥 · 𝑦) ∈ ℚ) | |
11 | 1z 8837 | . . . 4 ⊢ 1 ∈ ℤ | |
12 | zq 9172 | . . . 4 ⊢ (1 ∈ ℤ → 1 ∈ ℚ) | |
13 | 11, 12 | ax-mp 7 | . . 3 ⊢ 1 ∈ ℚ |
14 | qapne 9185 | . . . . . 6 ⊢ ((𝑥 ∈ ℚ ∧ 0 ∈ ℚ) → (𝑥 # 0 ↔ 𝑥 ≠ 0)) | |
15 | 3, 14 | mpan2 417 | . . . . 5 ⊢ (𝑥 ∈ ℚ → (𝑥 # 0 ↔ 𝑥 ≠ 0)) |
16 | 15 | pm5.32i 443 | . . . 4 ⊢ ((𝑥 ∈ ℚ ∧ 𝑥 # 0) ↔ (𝑥 ∈ ℚ ∧ 𝑥 ≠ 0)) |
17 | qreccl 9188 | . . . 4 ⊢ ((𝑥 ∈ ℚ ∧ 𝑥 ≠ 0) → (1 / 𝑥) ∈ ℚ) | |
18 | 16, 17 | sylbi 120 | . . 3 ⊢ ((𝑥 ∈ ℚ ∧ 𝑥 # 0) → (1 / 𝑥) ∈ ℚ) |
19 | 9, 10, 13, 18 | expcl2lemap 10028 | . 2 ⊢ ((𝐴 ∈ ℚ ∧ 𝐴 # 0 ∧ 𝑁 ∈ ℤ) → (𝐴↑𝑁) ∈ ℚ) |
20 | 8, 19 | syl 14 | 1 ⊢ ((𝐴 ∈ ℚ ∧ 𝐴 ≠ 0 ∧ 𝑁 ∈ ℤ) → (𝐴↑𝑁) ∈ ℚ) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 ↔ wb 104 ∧ w3a 925 ∈ wcel 1439 ≠ wne 2256 class class class wbr 3851 (class class class)co 5666 0cc0 7411 1c1 7412 # cap 8119 / cdiv 8200 ℤcz 8811 ℚcq 9165 ↑cexp 10015 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 580 ax-in2 581 ax-io 666 ax-5 1382 ax-7 1383 ax-gen 1384 ax-ie1 1428 ax-ie2 1429 ax-8 1441 ax-10 1442 ax-11 1443 ax-i12 1444 ax-bndl 1445 ax-4 1446 ax-13 1450 ax-14 1451 ax-17 1465 ax-i9 1469 ax-ial 1473 ax-i5r 1474 ax-ext 2071 ax-coll 3960 ax-sep 3963 ax-nul 3971 ax-pow 4015 ax-pr 4045 ax-un 4269 ax-setind 4366 ax-iinf 4416 ax-cnex 7497 ax-resscn 7498 ax-1cn 7499 ax-1re 7500 ax-icn 7501 ax-addcl 7502 ax-addrcl 7503 ax-mulcl 7504 ax-mulrcl 7505 ax-addcom 7506 ax-mulcom 7507 ax-addass 7508 ax-mulass 7509 ax-distr 7510 ax-i2m1 7511 ax-0lt1 7512 ax-1rid 7513 ax-0id 7514 ax-rnegex 7515 ax-precex 7516 ax-cnre 7517 ax-pre-ltirr 7518 ax-pre-ltwlin 7519 ax-pre-lttrn 7520 ax-pre-apti 7521 ax-pre-ltadd 7522 ax-pre-mulgt0 7523 ax-pre-mulext 7524 |
This theorem depends on definitions: df-bi 116 df-dc 782 df-3or 926 df-3an 927 df-tru 1293 df-fal 1296 df-nf 1396 df-sb 1694 df-eu 1952 df-mo 1953 df-clab 2076 df-cleq 2082 df-clel 2085 df-nfc 2218 df-ne 2257 df-nel 2352 df-ral 2365 df-rex 2366 df-reu 2367 df-rmo 2368 df-rab 2369 df-v 2622 df-sbc 2842 df-csb 2935 df-dif 3002 df-un 3004 df-in 3006 df-ss 3013 df-nul 3288 df-if 3398 df-pw 3435 df-sn 3456 df-pr 3457 df-op 3459 df-uni 3660 df-int 3695 df-iun 3738 df-br 3852 df-opab 3906 df-mpt 3907 df-tr 3943 df-id 4129 df-po 4132 df-iso 4133 df-iord 4202 df-on 4204 df-ilim 4205 df-suc 4207 df-iom 4419 df-xp 4458 df-rel 4459 df-cnv 4460 df-co 4461 df-dm 4462 df-rn 4463 df-res 4464 df-ima 4465 df-iota 4993 df-fun 5030 df-fn 5031 df-f 5032 df-f1 5033 df-fo 5034 df-f1o 5035 df-fv 5036 df-riota 5622 df-ov 5669 df-oprab 5670 df-mpt2 5671 df-1st 5925 df-2nd 5926 df-recs 6084 df-frec 6170 df-pnf 7585 df-mnf 7586 df-xr 7587 df-ltxr 7588 df-le 7589 df-sub 7716 df-neg 7717 df-reap 8113 df-ap 8120 df-div 8201 df-inn 8484 df-n0 8735 df-z 8812 df-uz 9081 df-q 9166 df-iseq 9914 df-seq3 9915 df-exp 10016 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |