ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  qexpclz GIF version

Theorem qexpclz 10652
Description: Closure of exponentiation of rational numbers. (Contributed by Mario Carneiro, 9-Sep-2014.)
Assertion
Ref Expression
qexpclz ((𝐴 ∈ ℚ ∧ 𝐴 ≠ 0 ∧ 𝑁 ∈ ℤ) → (𝐴𝑁) ∈ ℚ)

Proof of Theorem qexpclz
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 0z 9337 . . . . . . 7 0 ∈ ℤ
2 zq 9700 . . . . . . 7 (0 ∈ ℤ → 0 ∈ ℚ)
31, 2ax-mp 5 . . . . . 6 0 ∈ ℚ
4 qapne 9713 . . . . . 6 ((𝐴 ∈ ℚ ∧ 0 ∈ ℚ) → (𝐴 # 0 ↔ 𝐴 ≠ 0))
53, 4mpan2 425 . . . . 5 (𝐴 ∈ ℚ → (𝐴 # 0 ↔ 𝐴 ≠ 0))
653anbi2d 1328 . . . 4 (𝐴 ∈ ℚ → ((𝐴 ∈ ℚ ∧ 𝐴 # 0 ∧ 𝑁 ∈ ℤ) ↔ (𝐴 ∈ ℚ ∧ 𝐴 ≠ 0 ∧ 𝑁 ∈ ℤ)))
763ad2ant1 1020 . . 3 ((𝐴 ∈ ℚ ∧ 𝐴 ≠ 0 ∧ 𝑁 ∈ ℤ) → ((𝐴 ∈ ℚ ∧ 𝐴 # 0 ∧ 𝑁 ∈ ℤ) ↔ (𝐴 ∈ ℚ ∧ 𝐴 ≠ 0 ∧ 𝑁 ∈ ℤ)))
87ibir 177 . 2 ((𝐴 ∈ ℚ ∧ 𝐴 ≠ 0 ∧ 𝑁 ∈ ℤ) → (𝐴 ∈ ℚ ∧ 𝐴 # 0 ∧ 𝑁 ∈ ℤ))
9 qsscn 9705 . . 3 ℚ ⊆ ℂ
10 qmulcl 9711 . . 3 ((𝑥 ∈ ℚ ∧ 𝑦 ∈ ℚ) → (𝑥 · 𝑦) ∈ ℚ)
11 1z 9352 . . . 4 1 ∈ ℤ
12 zq 9700 . . . 4 (1 ∈ ℤ → 1 ∈ ℚ)
1311, 12ax-mp 5 . . 3 1 ∈ ℚ
14 qapne 9713 . . . . . 6 ((𝑥 ∈ ℚ ∧ 0 ∈ ℚ) → (𝑥 # 0 ↔ 𝑥 ≠ 0))
153, 14mpan2 425 . . . . 5 (𝑥 ∈ ℚ → (𝑥 # 0 ↔ 𝑥 ≠ 0))
1615pm5.32i 454 . . . 4 ((𝑥 ∈ ℚ ∧ 𝑥 # 0) ↔ (𝑥 ∈ ℚ ∧ 𝑥 ≠ 0))
17 qreccl 9716 . . . 4 ((𝑥 ∈ ℚ ∧ 𝑥 ≠ 0) → (1 / 𝑥) ∈ ℚ)
1816, 17sylbi 121 . . 3 ((𝑥 ∈ ℚ ∧ 𝑥 # 0) → (1 / 𝑥) ∈ ℚ)
199, 10, 13, 18expcl2lemap 10643 . 2 ((𝐴 ∈ ℚ ∧ 𝐴 # 0 ∧ 𝑁 ∈ ℤ) → (𝐴𝑁) ∈ ℚ)
208, 19syl 14 1 ((𝐴 ∈ ℚ ∧ 𝐴 ≠ 0 ∧ 𝑁 ∈ ℤ) → (𝐴𝑁) ∈ ℚ)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  w3a 980  wcel 2167  wne 2367   class class class wbr 4033  (class class class)co 5922  0cc0 7879  1c1 7880   # cap 8608   / cdiv 8699  cz 9326  cq 9693  cexp 10630
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4148  ax-sep 4151  ax-nul 4159  ax-pow 4207  ax-pr 4242  ax-un 4468  ax-setind 4573  ax-iinf 4624  ax-cnex 7970  ax-resscn 7971  ax-1cn 7972  ax-1re 7973  ax-icn 7974  ax-addcl 7975  ax-addrcl 7976  ax-mulcl 7977  ax-mulrcl 7978  ax-addcom 7979  ax-mulcom 7980  ax-addass 7981  ax-mulass 7982  ax-distr 7983  ax-i2m1 7984  ax-0lt1 7985  ax-1rid 7986  ax-0id 7987  ax-rnegex 7988  ax-precex 7989  ax-cnre 7990  ax-pre-ltirr 7991  ax-pre-ltwlin 7992  ax-pre-lttrn 7993  ax-pre-apti 7994  ax-pre-ltadd 7995  ax-pre-mulgt0 7996  ax-pre-mulext 7997
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rmo 2483  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3451  df-if 3562  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-int 3875  df-iun 3918  df-br 4034  df-opab 4095  df-mpt 4096  df-tr 4132  df-id 4328  df-po 4331  df-iso 4332  df-iord 4401  df-on 4403  df-ilim 4404  df-suc 4406  df-iom 4627  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-rn 4674  df-res 4675  df-ima 4676  df-iota 5219  df-fun 5260  df-fn 5261  df-f 5262  df-f1 5263  df-fo 5264  df-f1o 5265  df-fv 5266  df-riota 5877  df-ov 5925  df-oprab 5926  df-mpo 5927  df-1st 6198  df-2nd 6199  df-recs 6363  df-frec 6449  df-pnf 8063  df-mnf 8064  df-xr 8065  df-ltxr 8066  df-le 8067  df-sub 8199  df-neg 8200  df-reap 8602  df-ap 8609  df-div 8700  df-inn 8991  df-n0 9250  df-z 9327  df-uz 9602  df-q 9694  df-seqfrec 10540  df-exp 10631
This theorem is referenced by:  pcexp  12478  pcaddlem  12508  lgseisen  15315
  Copyright terms: Public domain W3C validator