| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 3exbidv | GIF version | ||
| Description: Formula-building rule for 3 existential quantifiers (deduction form). (Contributed by NM, 1-May-1995.) |
| Ref | Expression |
|---|---|
| 3exbidv.1 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
| Ref | Expression |
|---|---|
| 3exbidv | ⊢ (𝜑 → (∃𝑥∃𝑦∃𝑧𝜓 ↔ ∃𝑥∃𝑦∃𝑧𝜒)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3exbidv.1 | . . 3 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
| 2 | 1 | exbidv 1871 | . 2 ⊢ (𝜑 → (∃𝑧𝜓 ↔ ∃𝑧𝜒)) |
| 3 | 2 | 2exbidv 1914 | 1 ⊢ (𝜑 → (∃𝑥∃𝑦∃𝑧𝜓 ↔ ∃𝑥∃𝑦∃𝑧𝜒)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ↔ wb 105 ∃wex 1538 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1493 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-4 1556 ax-17 1572 ax-ial 1580 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: ceqsex6v 2845 euotd 4341 oprabid 6033 eloprabga 6091 eloprabi 6342 |
| Copyright terms: Public domain | W3C validator |