Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > 3exbidv | GIF version |
Description: Formula-building rule for 3 existential quantifiers (deduction form). (Contributed by NM, 1-May-1995.) |
Ref | Expression |
---|---|
3exbidv.1 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
Ref | Expression |
---|---|
3exbidv | ⊢ (𝜑 → (∃𝑥∃𝑦∃𝑧𝜓 ↔ ∃𝑥∃𝑦∃𝑧𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3exbidv.1 | . . 3 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
2 | 1 | exbidv 1823 | . 2 ⊢ (𝜑 → (∃𝑧𝜓 ↔ ∃𝑧𝜒)) |
3 | 2 | 2exbidv 1866 | 1 ⊢ (𝜑 → (∃𝑥∃𝑦∃𝑧𝜓 ↔ ∃𝑥∃𝑦∃𝑧𝜒)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 105 ∃wex 1490 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1445 ax-gen 1447 ax-ie1 1491 ax-ie2 1492 ax-4 1508 ax-17 1524 ax-ial 1532 |
This theorem depends on definitions: df-bi 117 |
This theorem is referenced by: ceqsex6v 2779 euotd 4248 oprabid 5897 eloprabga 5952 eloprabi 6187 |
Copyright terms: Public domain | W3C validator |