ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  3exbidv GIF version

Theorem 3exbidv 1857
Description: Formula-building rule for 3 existential quantifiers (deduction form). (Contributed by NM, 1-May-1995.)
Hypothesis
Ref Expression
3exbidv.1 (𝜑 → (𝜓𝜒))
Assertion
Ref Expression
3exbidv (𝜑 → (∃𝑥𝑦𝑧𝜓 ↔ ∃𝑥𝑦𝑧𝜒))
Distinct variable groups:   𝜑,𝑥   𝜑,𝑦   𝜑,𝑧
Allowed substitution hints:   𝜓(𝑥,𝑦,𝑧)   𝜒(𝑥,𝑦,𝑧)

Proof of Theorem 3exbidv
StepHypRef Expression
1 3exbidv.1 . . 3 (𝜑 → (𝜓𝜒))
21exbidv 1813 . 2 (𝜑 → (∃𝑧𝜓 ↔ ∃𝑧𝜒))
322exbidv 1856 1 (𝜑 → (∃𝑥𝑦𝑧𝜓 ↔ ∃𝑥𝑦𝑧𝜒))
Colors of variables: wff set class
Syntax hints:  wi 4  wb 104  wex 1480
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-5 1435  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-4 1498  ax-17 1514  ax-ial 1522
This theorem depends on definitions:  df-bi 116
This theorem is referenced by:  ceqsex6v  2770  euotd  4232  oprabid  5874  eloprabga  5929  eloprabi  6164
  Copyright terms: Public domain W3C validator