ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  3exbidv Unicode version

Theorem 3exbidv 1869
Description: Formula-building rule for 3 existential quantifiers (deduction form). (Contributed by NM, 1-May-1995.)
Hypothesis
Ref Expression
3exbidv.1  |-  ( ph  ->  ( ps  <->  ch )
)
Assertion
Ref Expression
3exbidv  |-  ( ph  ->  ( E. x E. y E. z ps  <->  E. x E. y E. z ch ) )
Distinct variable groups:    ph, x    ph, y    ph, z
Allowed substitution hints:    ps( x, y, z)    ch( x, y, z)

Proof of Theorem 3exbidv
StepHypRef Expression
1 3exbidv.1 . . 3  |-  ( ph  ->  ( ps  <->  ch )
)
21exbidv 1825 . 2  |-  ( ph  ->  ( E. z ps  <->  E. z ch ) )
322exbidv 1868 1  |-  ( ph  ->  ( E. x E. y E. z ps  <->  E. x E. y E. z ch ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 105   E.wex 1492
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1447  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-4 1510  ax-17 1526  ax-ial 1534
This theorem depends on definitions:  df-bi 117
This theorem is referenced by:  ceqsex6v  2783  euotd  4256  oprabid  5910  eloprabga  5965  eloprabi  6200
  Copyright terms: Public domain W3C validator