ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  eloprabi GIF version

Theorem eloprabi 6281
Description: A consequence of membership in an operation class abstraction, using ordered pair extractors. (Contributed by NM, 6-Nov-2006.) (Revised by David Abernethy, 19-Jun-2012.)
Hypotheses
Ref Expression
eloprabi.1 (𝑥 = (1st ‘(1st𝐴)) → (𝜑𝜓))
eloprabi.2 (𝑦 = (2nd ‘(1st𝐴)) → (𝜓𝜒))
eloprabi.3 (𝑧 = (2nd𝐴) → (𝜒𝜃))
Assertion
Ref Expression
eloprabi (𝐴 ∈ {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜑} → 𝜃)
Distinct variable groups:   𝑥,𝑦,𝑧,𝐴   𝜃,𝑥,𝑦,𝑧
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑧)   𝜓(𝑥,𝑦,𝑧)   𝜒(𝑥,𝑦,𝑧)

Proof of Theorem eloprabi
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 eqeq1 2211 . . . . . 6 (𝑤 = 𝐴 → (𝑤 = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ↔ 𝐴 = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩))
21anbi1d 465 . . . . 5 (𝑤 = 𝐴 → ((𝑤 = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∧ 𝜑) ↔ (𝐴 = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∧ 𝜑)))
323exbidv 1891 . . . 4 (𝑤 = 𝐴 → (∃𝑥𝑦𝑧(𝑤 = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∧ 𝜑) ↔ ∃𝑥𝑦𝑧(𝐴 = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∧ 𝜑)))
4 df-oprab 5947 . . . 4 {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜑} = {𝑤 ∣ ∃𝑥𝑦𝑧(𝑤 = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∧ 𝜑)}
53, 4elab2g 2919 . . 3 (𝐴 ∈ {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜑} → (𝐴 ∈ {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜑} ↔ ∃𝑥𝑦𝑧(𝐴 = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∧ 𝜑)))
65ibi 176 . 2 (𝐴 ∈ {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜑} → ∃𝑥𝑦𝑧(𝐴 = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∧ 𝜑))
7 vex 2774 . . . . . . . . . . . 12 𝑥 ∈ V
8 vex 2774 . . . . . . . . . . . 12 𝑦 ∈ V
97, 8opex 4272 . . . . . . . . . . 11 𝑥, 𝑦⟩ ∈ V
10 vex 2774 . . . . . . . . . . 11 𝑧 ∈ V
119, 10op1std 6233 . . . . . . . . . 10 (𝐴 = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ → (1st𝐴) = ⟨𝑥, 𝑦⟩)
1211fveq2d 5579 . . . . . . . . 9 (𝐴 = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ → (1st ‘(1st𝐴)) = (1st ‘⟨𝑥, 𝑦⟩))
137, 8op1st 6231 . . . . . . . . 9 (1st ‘⟨𝑥, 𝑦⟩) = 𝑥
1412, 13eqtr2di 2254 . . . . . . . 8 (𝐴 = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ → 𝑥 = (1st ‘(1st𝐴)))
15 eloprabi.1 . . . . . . . 8 (𝑥 = (1st ‘(1st𝐴)) → (𝜑𝜓))
1614, 15syl 14 . . . . . . 7 (𝐴 = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ → (𝜑𝜓))
1711fveq2d 5579 . . . . . . . . 9 (𝐴 = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ → (2nd ‘(1st𝐴)) = (2nd ‘⟨𝑥, 𝑦⟩))
187, 8op2nd 6232 . . . . . . . . 9 (2nd ‘⟨𝑥, 𝑦⟩) = 𝑦
1917, 18eqtr2di 2254 . . . . . . . 8 (𝐴 = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ → 𝑦 = (2nd ‘(1st𝐴)))
20 eloprabi.2 . . . . . . . 8 (𝑦 = (2nd ‘(1st𝐴)) → (𝜓𝜒))
2119, 20syl 14 . . . . . . 7 (𝐴 = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ → (𝜓𝜒))
229, 10op2ndd 6234 . . . . . . . . 9 (𝐴 = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ → (2nd𝐴) = 𝑧)
2322eqcomd 2210 . . . . . . . 8 (𝐴 = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ → 𝑧 = (2nd𝐴))
24 eloprabi.3 . . . . . . . 8 (𝑧 = (2nd𝐴) → (𝜒𝜃))
2523, 24syl 14 . . . . . . 7 (𝐴 = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ → (𝜒𝜃))
2616, 21, 253bitrd 214 . . . . . 6 (𝐴 = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ → (𝜑𝜃))
2726biimpa 296 . . . . 5 ((𝐴 = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∧ 𝜑) → 𝜃)
2827exlimiv 1620 . . . 4 (∃𝑧(𝐴 = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∧ 𝜑) → 𝜃)
2928exlimiv 1620 . . 3 (∃𝑦𝑧(𝐴 = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∧ 𝜑) → 𝜃)
3029exlimiv 1620 . 2 (∃𝑥𝑦𝑧(𝐴 = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∧ 𝜑) → 𝜃)
316, 30syl 14 1 (𝐴 ∈ {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜑} → 𝜃)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105   = wceq 1372  wex 1514  wcel 2175  cop 3635  cfv 5270  {coprab 5944  1st c1st 6223  2nd c2nd 6224
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-13 2177  ax-14 2178  ax-ext 2186  ax-sep 4161  ax-pow 4217  ax-pr 4252  ax-un 4479
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1375  df-nf 1483  df-sb 1785  df-eu 2056  df-mo 2057  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-ral 2488  df-rex 2489  df-v 2773  df-sbc 2998  df-un 3169  df-in 3171  df-ss 3178  df-pw 3617  df-sn 3638  df-pr 3639  df-op 3641  df-uni 3850  df-br 4044  df-opab 4105  df-mpt 4106  df-id 4339  df-xp 4680  df-rel 4681  df-cnv 4682  df-co 4683  df-dm 4684  df-rn 4685  df-iota 5231  df-fun 5272  df-fv 5278  df-oprab 5947  df-1st 6225  df-2nd 6226
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator