ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  eloprabi GIF version

Theorem eloprabi 6045
Description: A consequence of membership in an operation class abstraction, using ordered pair extractors. (Contributed by NM, 6-Nov-2006.) (Revised by David Abernethy, 19-Jun-2012.)
Hypotheses
Ref Expression
eloprabi.1 (𝑥 = (1st ‘(1st𝐴)) → (𝜑𝜓))
eloprabi.2 (𝑦 = (2nd ‘(1st𝐴)) → (𝜓𝜒))
eloprabi.3 (𝑧 = (2nd𝐴) → (𝜒𝜃))
Assertion
Ref Expression
eloprabi (𝐴 ∈ {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜑} → 𝜃)
Distinct variable groups:   𝑥,𝑦,𝑧,𝐴   𝜃,𝑥,𝑦,𝑧
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑧)   𝜓(𝑥,𝑦,𝑧)   𝜒(𝑥,𝑦,𝑧)

Proof of Theorem eloprabi
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 eqeq1 2119 . . . . . 6 (𝑤 = 𝐴 → (𝑤 = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ↔ 𝐴 = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩))
21anbi1d 458 . . . . 5 (𝑤 = 𝐴 → ((𝑤 = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∧ 𝜑) ↔ (𝐴 = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∧ 𝜑)))
323exbidv 1821 . . . 4 (𝑤 = 𝐴 → (∃𝑥𝑦𝑧(𝑤 = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∧ 𝜑) ↔ ∃𝑥𝑦𝑧(𝐴 = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∧ 𝜑)))
4 df-oprab 5730 . . . 4 {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜑} = {𝑤 ∣ ∃𝑥𝑦𝑧(𝑤 = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∧ 𝜑)}
53, 4elab2g 2798 . . 3 (𝐴 ∈ {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜑} → (𝐴 ∈ {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜑} ↔ ∃𝑥𝑦𝑧(𝐴 = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∧ 𝜑)))
65ibi 175 . 2 (𝐴 ∈ {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜑} → ∃𝑥𝑦𝑧(𝐴 = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∧ 𝜑))
7 vex 2658 . . . . . . . . . . . 12 𝑥 ∈ V
8 vex 2658 . . . . . . . . . . . 12 𝑦 ∈ V
97, 8opex 4109 . . . . . . . . . . 11 𝑥, 𝑦⟩ ∈ V
10 vex 2658 . . . . . . . . . . 11 𝑧 ∈ V
119, 10op1std 5997 . . . . . . . . . 10 (𝐴 = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ → (1st𝐴) = ⟨𝑥, 𝑦⟩)
1211fveq2d 5377 . . . . . . . . 9 (𝐴 = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ → (1st ‘(1st𝐴)) = (1st ‘⟨𝑥, 𝑦⟩))
137, 8op1st 5995 . . . . . . . . 9 (1st ‘⟨𝑥, 𝑦⟩) = 𝑥
1412, 13syl6req 2162 . . . . . . . 8 (𝐴 = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ → 𝑥 = (1st ‘(1st𝐴)))
15 eloprabi.1 . . . . . . . 8 (𝑥 = (1st ‘(1st𝐴)) → (𝜑𝜓))
1614, 15syl 14 . . . . . . 7 (𝐴 = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ → (𝜑𝜓))
1711fveq2d 5377 . . . . . . . . 9 (𝐴 = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ → (2nd ‘(1st𝐴)) = (2nd ‘⟨𝑥, 𝑦⟩))
187, 8op2nd 5996 . . . . . . . . 9 (2nd ‘⟨𝑥, 𝑦⟩) = 𝑦
1917, 18syl6req 2162 . . . . . . . 8 (𝐴 = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ → 𝑦 = (2nd ‘(1st𝐴)))
20 eloprabi.2 . . . . . . . 8 (𝑦 = (2nd ‘(1st𝐴)) → (𝜓𝜒))
2119, 20syl 14 . . . . . . 7 (𝐴 = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ → (𝜓𝜒))
229, 10op2ndd 5998 . . . . . . . . 9 (𝐴 = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ → (2nd𝐴) = 𝑧)
2322eqcomd 2118 . . . . . . . 8 (𝐴 = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ → 𝑧 = (2nd𝐴))
24 eloprabi.3 . . . . . . . 8 (𝑧 = (2nd𝐴) → (𝜒𝜃))
2523, 24syl 14 . . . . . . 7 (𝐴 = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ → (𝜒𝜃))
2616, 21, 253bitrd 213 . . . . . 6 (𝐴 = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ → (𝜑𝜃))
2726biimpa 292 . . . . 5 ((𝐴 = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∧ 𝜑) → 𝜃)
2827exlimiv 1558 . . . 4 (∃𝑧(𝐴 = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∧ 𝜑) → 𝜃)
2928exlimiv 1558 . . 3 (∃𝑦𝑧(𝐴 = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∧ 𝜑) → 𝜃)
3029exlimiv 1558 . 2 (∃𝑥𝑦𝑧(𝐴 = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∧ 𝜑) → 𝜃)
316, 30syl 14 1 (𝐴 ∈ {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜑} → 𝜃)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104   = wceq 1312  wex 1449  wcel 1461  cop 3494  cfv 5079  {coprab 5727  1st c1st 5987  2nd c2nd 5988
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 681  ax-5 1404  ax-7 1405  ax-gen 1406  ax-ie1 1450  ax-ie2 1451  ax-8 1463  ax-10 1464  ax-11 1465  ax-i12 1466  ax-bndl 1467  ax-4 1468  ax-13 1472  ax-14 1473  ax-17 1487  ax-i9 1491  ax-ial 1495  ax-i5r 1496  ax-ext 2095  ax-sep 4004  ax-pow 4056  ax-pr 4089  ax-un 4313
This theorem depends on definitions:  df-bi 116  df-3an 945  df-tru 1315  df-nf 1418  df-sb 1717  df-eu 1976  df-mo 1977  df-clab 2100  df-cleq 2106  df-clel 2109  df-nfc 2242  df-ral 2393  df-rex 2394  df-v 2657  df-sbc 2877  df-un 3039  df-in 3041  df-ss 3048  df-pw 3476  df-sn 3497  df-pr 3498  df-op 3500  df-uni 3701  df-br 3894  df-opab 3948  df-mpt 3949  df-id 4173  df-xp 4503  df-rel 4504  df-cnv 4505  df-co 4506  df-dm 4507  df-rn 4508  df-iota 5044  df-fun 5081  df-fv 5087  df-oprab 5730  df-1st 5989  df-2nd 5990
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator