ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  3exp2 GIF version

Theorem 3exp2 1227
Description: Exportation from right triple conjunction. (Contributed by NM, 26-Oct-2006.)
Hypothesis
Ref Expression
3exp2.1 ((𝜑 ∧ (𝜓𝜒𝜃)) → 𝜏)
Assertion
Ref Expression
3exp2 (𝜑 → (𝜓 → (𝜒 → (𝜃𝜏))))

Proof of Theorem 3exp2
StepHypRef Expression
1 3exp2.1 . . 3 ((𝜑 ∧ (𝜓𝜒𝜃)) → 𝜏)
21ex 115 . 2 (𝜑 → ((𝜓𝜒𝜃) → 𝜏))
323expd 1226 1 (𝜑 → (𝜓 → (𝜒 → (𝜃𝜏))))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  w3a 980
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108
This theorem depends on definitions:  df-bi 117  df-3an 982
This theorem is referenced by:  3anassrs  1231  po2nr  4340  fliftfund  5840  tfrlemibxssdm  6380  tfr1onlembxssdm  6396  tfrcllembxssdm  6409  grpinveu  13110  grpid  13111  grpasscan1  13135  imasgrp2  13180  imasrng  13452  imasring  13560  islmodd  13789  islssmd  13855  mulgghm2  14096  isxmetd  14515  dvidlemap  14845
  Copyright terms: Public domain W3C validator