ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  3exp2 GIF version

Theorem 3exp2 1227
Description: Exportation from right triple conjunction. (Contributed by NM, 26-Oct-2006.)
Hypothesis
Ref Expression
3exp2.1 ((𝜑 ∧ (𝜓𝜒𝜃)) → 𝜏)
Assertion
Ref Expression
3exp2 (𝜑 → (𝜓 → (𝜒 → (𝜃𝜏))))

Proof of Theorem 3exp2
StepHypRef Expression
1 3exp2.1 . . 3 ((𝜑 ∧ (𝜓𝜒𝜃)) → 𝜏)
21ex 115 . 2 (𝜑 → ((𝜓𝜒𝜃) → 𝜏))
323expd 1226 1 (𝜑 → (𝜓 → (𝜒 → (𝜃𝜏))))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  w3a 980
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108
This theorem depends on definitions:  df-bi 117  df-3an 982
This theorem is referenced by:  3anassrs  1231  po2nr  4354  fliftfund  5856  tfrlemibxssdm  6403  tfr1onlembxssdm  6419  tfrcllembxssdm  6432  imasmnd2  13202  grpinveu  13288  grpid  13289  grpasscan1  13313  imasgrp2  13364  imasrng  13636  imasring  13744  islmodd  13973  islssmd  14039  mulgghm2  14288  isxmetd  14737  dvidlemap  15081  dvidrelem  15082  dvidsslem  15083
  Copyright terms: Public domain W3C validator