ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  3exp2 GIF version

Theorem 3exp2 1227
Description: Exportation from right triple conjunction. (Contributed by NM, 26-Oct-2006.)
Hypothesis
Ref Expression
3exp2.1 ((𝜑 ∧ (𝜓𝜒𝜃)) → 𝜏)
Assertion
Ref Expression
3exp2 (𝜑 → (𝜓 → (𝜒 → (𝜃𝜏))))

Proof of Theorem 3exp2
StepHypRef Expression
1 3exp2.1 . . 3 ((𝜑 ∧ (𝜓𝜒𝜃)) → 𝜏)
21ex 115 . 2 (𝜑 → ((𝜓𝜒𝜃) → 𝜏))
323expd 1226 1 (𝜑 → (𝜓 → (𝜒 → (𝜃𝜏))))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  w3a 980
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108
This theorem depends on definitions:  df-bi 117  df-3an 982
This theorem is referenced by:  3anassrs  1231  po2nr  4345  fliftfund  5847  tfrlemibxssdm  6394  tfr1onlembxssdm  6410  tfrcllembxssdm  6423  imasmnd2  13156  grpinveu  13242  grpid  13243  grpasscan1  13267  imasgrp2  13318  imasrng  13590  imasring  13698  islmodd  13927  islssmd  13993  mulgghm2  14242  isxmetd  14691  dvidlemap  15035  dvidrelem  15036  dvidsslem  15037
  Copyright terms: Public domain W3C validator