ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  3exp2 GIF version

Theorem 3exp2 1220
Description: Exportation from right triple conjunction. (Contributed by NM, 26-Oct-2006.)
Hypothesis
Ref Expression
3exp2.1 ((𝜑 ∧ (𝜓𝜒𝜃)) → 𝜏)
Assertion
Ref Expression
3exp2 (𝜑 → (𝜓 → (𝜒 → (𝜃𝜏))))

Proof of Theorem 3exp2
StepHypRef Expression
1 3exp2.1 . . 3 ((𝜑 ∧ (𝜓𝜒𝜃)) → 𝜏)
21ex 114 . 2 (𝜑 → ((𝜓𝜒𝜃) → 𝜏))
323expd 1219 1 (𝜑 → (𝜓 → (𝜒 → (𝜃𝜏))))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  w3a 973
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107
This theorem depends on definitions:  df-bi 116  df-3an 975
This theorem is referenced by:  3anassrs  1224  po2nr  4292  fliftfund  5773  tfrlemibxssdm  6303  tfr1onlembxssdm  6319  tfrcllembxssdm  6332  grpinveu  12728  grpid  12729  isxmetd  13100  dvidlemap  13413
  Copyright terms: Public domain W3C validator