ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  3exp2 GIF version

Theorem 3exp2 1228
Description: Exportation from right triple conjunction. (Contributed by NM, 26-Oct-2006.)
Hypothesis
Ref Expression
3exp2.1 ((𝜑 ∧ (𝜓𝜒𝜃)) → 𝜏)
Assertion
Ref Expression
3exp2 (𝜑 → (𝜓 → (𝜒 → (𝜃𝜏))))

Proof of Theorem 3exp2
StepHypRef Expression
1 3exp2.1 . . 3 ((𝜑 ∧ (𝜓𝜒𝜃)) → 𝜏)
21ex 115 . 2 (𝜑 → ((𝜓𝜒𝜃) → 𝜏))
323expd 1227 1 (𝜑 → (𝜓 → (𝜒 → (𝜃𝜏))))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  w3a 981
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108
This theorem depends on definitions:  df-bi 117  df-3an 983
This theorem is referenced by:  3anassrs  1232  po2nr  4364  fliftfund  5879  tfrlemibxssdm  6426  tfr1onlembxssdm  6442  tfrcllembxssdm  6455  imasmnd2  13359  grpinveu  13445  grpid  13446  grpasscan1  13470  imasgrp2  13521  imasrng  13793  imasring  13901  islmodd  14130  islssmd  14196  mulgghm2  14445  isxmetd  14894  dvidlemap  15238  dvidrelem  15239  dvidsslem  15240
  Copyright terms: Public domain W3C validator