| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > 3exp2 | GIF version | ||
| Description: Exportation from right triple conjunction. (Contributed by NM, 26-Oct-2006.) | 
| Ref | Expression | 
|---|---|
| 3exp2.1 | ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒 ∧ 𝜃)) → 𝜏) | 
| Ref | Expression | 
|---|---|
| 3exp2 | ⊢ (𝜑 → (𝜓 → (𝜒 → (𝜃 → 𝜏)))) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | 3exp2.1 | . . 3 ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒 ∧ 𝜃)) → 𝜏) | |
| 2 | 1 | ex 115 | . 2 ⊢ (𝜑 → ((𝜓 ∧ 𝜒 ∧ 𝜃) → 𝜏)) | 
| 3 | 2 | 3expd 1226 | 1 ⊢ (𝜑 → (𝜓 → (𝜒 → (𝜃 → 𝜏)))) | 
| Colors of variables: wff set class | 
| Syntax hints: → wi 4 ∧ wa 104 ∧ w3a 980 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 | 
| This theorem depends on definitions: df-bi 117 df-3an 982 | 
| This theorem is referenced by: 3anassrs 1231 po2nr 4344 fliftfund 5844 tfrlemibxssdm 6385 tfr1onlembxssdm 6401 tfrcllembxssdm 6414 grpinveu 13170 grpid 13171 grpasscan1 13195 imasgrp2 13240 imasrng 13512 imasring 13620 islmodd 13849 islssmd 13915 mulgghm2 14164 isxmetd 14583 dvidlemap 14927 dvidrelem 14928 dvidsslem 14929 | 
| Copyright terms: Public domain | W3C validator |