ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  3exp2 Unicode version

Theorem 3exp2 1227
Description: Exportation from right triple conjunction. (Contributed by NM, 26-Oct-2006.)
Hypothesis
Ref Expression
3exp2.1  |-  ( (
ph  /\  ( ps  /\ 
ch  /\  th )
)  ->  ta )
Assertion
Ref Expression
3exp2  |-  ( ph  ->  ( ps  ->  ( ch  ->  ( th  ->  ta ) ) ) )

Proof of Theorem 3exp2
StepHypRef Expression
1 3exp2.1 . . 3  |-  ( (
ph  /\  ( ps  /\ 
ch  /\  th )
)  ->  ta )
21ex 115 . 2  |-  ( ph  ->  ( ( ps  /\  ch  /\  th )  ->  ta ) )
323expd 1226 1  |-  ( ph  ->  ( ps  ->  ( ch  ->  ( th  ->  ta ) ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    /\ w3a 980
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108
This theorem depends on definitions:  df-bi 117  df-3an 982
This theorem is referenced by:  3anassrs  1231  po2nr  4341  fliftfund  5841  tfrlemibxssdm  6382  tfr1onlembxssdm  6398  tfrcllembxssdm  6411  grpinveu  13113  grpid  13114  grpasscan1  13138  imasgrp2  13183  imasrng  13455  imasring  13563  islmodd  13792  islssmd  13858  mulgghm2  14107  isxmetd  14526  dvidlemap  14870  dvidrelem  14871  dvidsslem  14872
  Copyright terms: Public domain W3C validator