ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  3exp2 Unicode version

Theorem 3exp2 1227
Description: Exportation from right triple conjunction. (Contributed by NM, 26-Oct-2006.)
Hypothesis
Ref Expression
3exp2.1  |-  ( (
ph  /\  ( ps  /\ 
ch  /\  th )
)  ->  ta )
Assertion
Ref Expression
3exp2  |-  ( ph  ->  ( ps  ->  ( ch  ->  ( th  ->  ta ) ) ) )

Proof of Theorem 3exp2
StepHypRef Expression
1 3exp2.1 . . 3  |-  ( (
ph  /\  ( ps  /\ 
ch  /\  th )
)  ->  ta )
21ex 115 . 2  |-  ( ph  ->  ( ( ps  /\  ch  /\  th )  ->  ta ) )
323expd 1226 1  |-  ( ph  ->  ( ps  ->  ( ch  ->  ( th  ->  ta ) ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    /\ w3a 980
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108
This theorem depends on definitions:  df-bi 117  df-3an 982
This theorem is referenced by:  3anassrs  1231  po2nr  4345  fliftfund  5847  tfrlemibxssdm  6394  tfr1onlembxssdm  6410  tfrcllembxssdm  6423  imasmnd2  13154  grpinveu  13240  grpid  13241  grpasscan1  13265  imasgrp2  13316  imasrng  13588  imasring  13696  islmodd  13925  islssmd  13991  mulgghm2  14240  isxmetd  14667  dvidlemap  15011  dvidrelem  15012  dvidsslem  15013
  Copyright terms: Public domain W3C validator