| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > grpasscan1 | GIF version | ||
| Description: An associative cancellation law for groups. (Contributed by Paul Chapman, 25-Feb-2008.) (Revised by AV, 30-Aug-2021.) |
| Ref | Expression |
|---|---|
| grplcan.b | ⊢ 𝐵 = (Base‘𝐺) |
| grplcan.p | ⊢ + = (+g‘𝐺) |
| grpasscan1.n | ⊢ 𝑁 = (invg‘𝐺) |
| Ref | Expression |
|---|---|
| grpasscan1 | ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 + ((𝑁‘𝑋) + 𝑌)) = 𝑌) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | grplcan.b | . . . . 5 ⊢ 𝐵 = (Base‘𝐺) | |
| 2 | grplcan.p | . . . . 5 ⊢ + = (+g‘𝐺) | |
| 3 | eqid 2206 | . . . . 5 ⊢ (0g‘𝐺) = (0g‘𝐺) | |
| 4 | grpasscan1.n | . . . . 5 ⊢ 𝑁 = (invg‘𝐺) | |
| 5 | 1, 2, 3, 4 | grprinv 13433 | . . . 4 ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵) → (𝑋 + (𝑁‘𝑋)) = (0g‘𝐺)) |
| 6 | 5 | 3adant3 1020 | . . 3 ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 + (𝑁‘𝑋)) = (0g‘𝐺)) |
| 7 | 6 | oveq1d 5969 | . 2 ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → ((𝑋 + (𝑁‘𝑋)) + 𝑌) = ((0g‘𝐺) + 𝑌)) |
| 8 | 1, 4 | grpinvcl 13430 | . . . 4 ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵) → (𝑁‘𝑋) ∈ 𝐵) |
| 9 | 1, 2 | grpass 13391 | . . . . . 6 ⊢ ((𝐺 ∈ Grp ∧ (𝑋 ∈ 𝐵 ∧ (𝑁‘𝑋) ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) → ((𝑋 + (𝑁‘𝑋)) + 𝑌) = (𝑋 + ((𝑁‘𝑋) + 𝑌))) |
| 10 | 9 | 3exp2 1228 | . . . . 5 ⊢ (𝐺 ∈ Grp → (𝑋 ∈ 𝐵 → ((𝑁‘𝑋) ∈ 𝐵 → (𝑌 ∈ 𝐵 → ((𝑋 + (𝑁‘𝑋)) + 𝑌) = (𝑋 + ((𝑁‘𝑋) + 𝑌)))))) |
| 11 | 10 | imp 124 | . . . 4 ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵) → ((𝑁‘𝑋) ∈ 𝐵 → (𝑌 ∈ 𝐵 → ((𝑋 + (𝑁‘𝑋)) + 𝑌) = (𝑋 + ((𝑁‘𝑋) + 𝑌))))) |
| 12 | 8, 11 | mpd 13 | . . 3 ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵) → (𝑌 ∈ 𝐵 → ((𝑋 + (𝑁‘𝑋)) + 𝑌) = (𝑋 + ((𝑁‘𝑋) + 𝑌)))) |
| 13 | 12 | 3impia 1203 | . 2 ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → ((𝑋 + (𝑁‘𝑋)) + 𝑌) = (𝑋 + ((𝑁‘𝑋) + 𝑌))) |
| 14 | 1, 2, 3 | grplid 13413 | . . 3 ⊢ ((𝐺 ∈ Grp ∧ 𝑌 ∈ 𝐵) → ((0g‘𝐺) + 𝑌) = 𝑌) |
| 15 | 14 | 3adant2 1019 | . 2 ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → ((0g‘𝐺) + 𝑌) = 𝑌) |
| 16 | 7, 13, 15 | 3eqtr3d 2247 | 1 ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 + ((𝑁‘𝑋) + 𝑌)) = 𝑌) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ∧ w3a 981 = wceq 1373 ∈ wcel 2177 ‘cfv 5277 (class class class)co 5954 Basecbs 12882 +gcplusg 12959 0gc0g 13138 Grpcgrp 13382 invgcminusg 13383 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-coll 4164 ax-sep 4167 ax-pow 4223 ax-pr 4258 ax-un 4485 ax-cnex 8029 ax-resscn 8030 ax-1re 8032 ax-addrcl 8035 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ral 2490 df-rex 2491 df-reu 2492 df-rmo 2493 df-rab 2494 df-v 2775 df-sbc 3001 df-csb 3096 df-un 3172 df-in 3174 df-ss 3181 df-pw 3620 df-sn 3641 df-pr 3642 df-op 3644 df-uni 3854 df-int 3889 df-iun 3932 df-br 4049 df-opab 4111 df-mpt 4112 df-id 4345 df-xp 4686 df-rel 4687 df-cnv 4688 df-co 4689 df-dm 4690 df-rn 4691 df-res 4692 df-ima 4693 df-iota 5238 df-fun 5279 df-fn 5280 df-f 5281 df-f1 5282 df-fo 5283 df-f1o 5284 df-fv 5285 df-riota 5909 df-ov 5957 df-inn 9050 df-2 9108 df-ndx 12885 df-slot 12886 df-base 12888 df-plusg 12972 df-0g 13140 df-mgm 13238 df-sgrp 13284 df-mnd 13299 df-grp 13385 df-minusg 13386 |
| This theorem is referenced by: mulgaddcomlem 13531 |
| Copyright terms: Public domain | W3C validator |