ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  grpasscan1 GIF version

Theorem grpasscan1 12938
Description: An associative cancellation law for groups. (Contributed by Paul Chapman, 25-Feb-2008.) (Revised by AV, 30-Aug-2021.)
Hypotheses
Ref Expression
grplcan.b 𝐵 = (Base‘𝐺)
grplcan.p + = (+g𝐺)
grpasscan1.n 𝑁 = (invg𝐺)
Assertion
Ref Expression
grpasscan1 ((𝐺 ∈ Grp ∧ 𝑋𝐵𝑌𝐵) → (𝑋 + ((𝑁𝑋) + 𝑌)) = 𝑌)

Proof of Theorem grpasscan1
StepHypRef Expression
1 grplcan.b . . . . 5 𝐵 = (Base‘𝐺)
2 grplcan.p . . . . 5 + = (+g𝐺)
3 eqid 2177 . . . . 5 (0g𝐺) = (0g𝐺)
4 grpasscan1.n . . . . 5 𝑁 = (invg𝐺)
51, 2, 3, 4grprinv 12928 . . . 4 ((𝐺 ∈ Grp ∧ 𝑋𝐵) → (𝑋 + (𝑁𝑋)) = (0g𝐺))
653adant3 1017 . . 3 ((𝐺 ∈ Grp ∧ 𝑋𝐵𝑌𝐵) → (𝑋 + (𝑁𝑋)) = (0g𝐺))
76oveq1d 5892 . 2 ((𝐺 ∈ Grp ∧ 𝑋𝐵𝑌𝐵) → ((𝑋 + (𝑁𝑋)) + 𝑌) = ((0g𝐺) + 𝑌))
81, 4grpinvcl 12926 . . . 4 ((𝐺 ∈ Grp ∧ 𝑋𝐵) → (𝑁𝑋) ∈ 𝐵)
91, 2grpass 12891 . . . . . 6 ((𝐺 ∈ Grp ∧ (𝑋𝐵 ∧ (𝑁𝑋) ∈ 𝐵𝑌𝐵)) → ((𝑋 + (𝑁𝑋)) + 𝑌) = (𝑋 + ((𝑁𝑋) + 𝑌)))
1093exp2 1225 . . . . 5 (𝐺 ∈ Grp → (𝑋𝐵 → ((𝑁𝑋) ∈ 𝐵 → (𝑌𝐵 → ((𝑋 + (𝑁𝑋)) + 𝑌) = (𝑋 + ((𝑁𝑋) + 𝑌))))))
1110imp 124 . . . 4 ((𝐺 ∈ Grp ∧ 𝑋𝐵) → ((𝑁𝑋) ∈ 𝐵 → (𝑌𝐵 → ((𝑋 + (𝑁𝑋)) + 𝑌) = (𝑋 + ((𝑁𝑋) + 𝑌)))))
128, 11mpd 13 . . 3 ((𝐺 ∈ Grp ∧ 𝑋𝐵) → (𝑌𝐵 → ((𝑋 + (𝑁𝑋)) + 𝑌) = (𝑋 + ((𝑁𝑋) + 𝑌))))
13123impia 1200 . 2 ((𝐺 ∈ Grp ∧ 𝑋𝐵𝑌𝐵) → ((𝑋 + (𝑁𝑋)) + 𝑌) = (𝑋 + ((𝑁𝑋) + 𝑌)))
141, 2, 3grplid 12911 . . 3 ((𝐺 ∈ Grp ∧ 𝑌𝐵) → ((0g𝐺) + 𝑌) = 𝑌)
15143adant2 1016 . 2 ((𝐺 ∈ Grp ∧ 𝑋𝐵𝑌𝐵) → ((0g𝐺) + 𝑌) = 𝑌)
167, 13, 153eqtr3d 2218 1 ((𝐺 ∈ Grp ∧ 𝑋𝐵𝑌𝐵) → (𝑋 + ((𝑁𝑋) + 𝑌)) = 𝑌)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  w3a 978   = wceq 1353  wcel 2148  cfv 5218  (class class class)co 5877  Basecbs 12464  +gcplusg 12538  0gc0g 12710  Grpcgrp 12882  invgcminusg 12883
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-coll 4120  ax-sep 4123  ax-pow 4176  ax-pr 4211  ax-un 4435  ax-cnex 7904  ax-resscn 7905  ax-1re 7907  ax-addrcl 7910
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ral 2460  df-rex 2461  df-reu 2462  df-rmo 2463  df-rab 2464  df-v 2741  df-sbc 2965  df-csb 3060  df-un 3135  df-in 3137  df-ss 3144  df-pw 3579  df-sn 3600  df-pr 3601  df-op 3603  df-uni 3812  df-int 3847  df-iun 3890  df-br 4006  df-opab 4067  df-mpt 4068  df-id 4295  df-xp 4634  df-rel 4635  df-cnv 4636  df-co 4637  df-dm 4638  df-rn 4639  df-res 4640  df-ima 4641  df-iota 5180  df-fun 5220  df-fn 5221  df-f 5222  df-f1 5223  df-fo 5224  df-f1o 5225  df-fv 5226  df-riota 5833  df-ov 5880  df-inn 8922  df-2 8980  df-ndx 12467  df-slot 12468  df-base 12470  df-plusg 12551  df-0g 12712  df-mgm 12780  df-sgrp 12813  df-mnd 12823  df-grp 12885  df-minusg 12886
This theorem is referenced by:  mulgaddcomlem  13011
  Copyright terms: Public domain W3C validator