ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  tfrcllembxssdm GIF version

Theorem tfrcllembxssdm 6455
Description: Lemma for tfrcl 6463. The union of 𝐵 is defined on all elements of 𝑋. (Contributed by Jim Kingdon, 25-Mar-2022.)
Hypotheses
Ref Expression
tfrcl.f 𝐹 = recs(𝐺)
tfrcl.g (𝜑 → Fun 𝐺)
tfrcl.x (𝜑 → Ord 𝑋)
tfrcl.ex ((𝜑𝑥𝑋𝑓:𝑥𝑆) → (𝐺𝑓) ∈ 𝑆)
tfrcllemsucfn.1 𝐴 = {𝑓 ∣ ∃𝑥𝑋 (𝑓:𝑥𝑆 ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐺‘(𝑓𝑦)))}
tfrcllembacc.3 𝐵 = { ∣ ∃𝑧𝐷𝑔(𝑔:𝑧𝑆𝑔𝐴 = (𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}))}
tfrcllembacc.u ((𝜑𝑥 𝑋) → suc 𝑥𝑋)
tfrcllembacc.4 (𝜑𝐷𝑋)
tfrcllembacc.5 (𝜑 → ∀𝑧𝐷𝑔(𝑔:𝑧𝑆 ∧ ∀𝑤𝑧 (𝑔𝑤) = (𝐺‘(𝑔𝑤))))
Assertion
Ref Expression
tfrcllembxssdm (𝜑𝐷 ⊆ dom 𝐵)
Distinct variable groups:   𝐴,𝑓,𝑔,,𝑥,𝑦,𝑧   𝐷,𝑓,𝑔,𝑥,𝑦   𝑓,𝐺,𝑥,𝑦   𝑆,𝑓,𝑥,𝑦   𝑓,𝑋,𝑥   𝜑,𝑓,𝑔,,𝑥,𝑦,𝑧   𝐵,𝑔,,𝑧   𝑤,𝐵,𝑔,𝑧   𝐷,,𝑧   ,𝐺,𝑧   𝑤,𝐺,𝑦   𝑆,,𝑧   𝑧,𝑋
Allowed substitution hints:   𝜑(𝑤)   𝐴(𝑤)   𝐵(𝑥,𝑦,𝑓)   𝐷(𝑤)   𝑆(𝑤,𝑔)   𝐹(𝑥,𝑦,𝑧,𝑤,𝑓,𝑔,)   𝐺(𝑔)   𝑋(𝑦,𝑤,𝑔,)

Proof of Theorem tfrcllembxssdm
StepHypRef Expression
1 tfrcllembacc.5 . . . 4 (𝜑 → ∀𝑧𝐷𝑔(𝑔:𝑧𝑆 ∧ ∀𝑤𝑧 (𝑔𝑤) = (𝐺‘(𝑔𝑤))))
2 fveq2 5589 . . . . . . . . 9 (𝑤 = 𝑦 → (𝑔𝑤) = (𝑔𝑦))
3 reseq2 4963 . . . . . . . . . 10 (𝑤 = 𝑦 → (𝑔𝑤) = (𝑔𝑦))
43fveq2d 5593 . . . . . . . . 9 (𝑤 = 𝑦 → (𝐺‘(𝑔𝑤)) = (𝐺‘(𝑔𝑦)))
52, 4eqeq12d 2221 . . . . . . . 8 (𝑤 = 𝑦 → ((𝑔𝑤) = (𝐺‘(𝑔𝑤)) ↔ (𝑔𝑦) = (𝐺‘(𝑔𝑦))))
65cbvralv 2739 . . . . . . 7 (∀𝑤𝑧 (𝑔𝑤) = (𝐺‘(𝑔𝑤)) ↔ ∀𝑦𝑧 (𝑔𝑦) = (𝐺‘(𝑔𝑦)))
76anbi2i 457 . . . . . 6 ((𝑔:𝑧𝑆 ∧ ∀𝑤𝑧 (𝑔𝑤) = (𝐺‘(𝑔𝑤))) ↔ (𝑔:𝑧𝑆 ∧ ∀𝑦𝑧 (𝑔𝑦) = (𝐺‘(𝑔𝑦))))
87exbii 1629 . . . . 5 (∃𝑔(𝑔:𝑧𝑆 ∧ ∀𝑤𝑧 (𝑔𝑤) = (𝐺‘(𝑔𝑤))) ↔ ∃𝑔(𝑔:𝑧𝑆 ∧ ∀𝑦𝑧 (𝑔𝑦) = (𝐺‘(𝑔𝑦))))
98ralbii 2513 . . . 4 (∀𝑧𝐷𝑔(𝑔:𝑧𝑆 ∧ ∀𝑤𝑧 (𝑔𝑤) = (𝐺‘(𝑔𝑤))) ↔ ∀𝑧𝐷𝑔(𝑔:𝑧𝑆 ∧ ∀𝑦𝑧 (𝑔𝑦) = (𝐺‘(𝑔𝑦))))
101, 9sylib 122 . . 3 (𝜑 → ∀𝑧𝐷𝑔(𝑔:𝑧𝑆 ∧ ∀𝑦𝑧 (𝑔𝑦) = (𝐺‘(𝑔𝑦))))
11 simp1 1000 . . . . . . . 8 ((𝜑𝑧𝐷 ∧ (𝑔:𝑧𝑆 ∧ ∀𝑦𝑧 (𝑔𝑦) = (𝐺‘(𝑔𝑦)))) → 𝜑)
12 simp2 1001 . . . . . . . . 9 ((𝜑𝑧𝐷 ∧ (𝑔:𝑧𝑆 ∧ ∀𝑦𝑧 (𝑔𝑦) = (𝐺‘(𝑔𝑦)))) → 𝑧𝐷)
13 tfrcllembacc.4 . . . . . . . . . 10 (𝜑𝐷𝑋)
1411, 13syl 14 . . . . . . . . 9 ((𝜑𝑧𝐷 ∧ (𝑔:𝑧𝑆 ∧ ∀𝑦𝑧 (𝑔𝑦) = (𝐺‘(𝑔𝑦)))) → 𝐷𝑋)
15 tfrcl.x . . . . . . . . . . 11 (𝜑 → Ord 𝑋)
16 ordtr1 4443 . . . . . . . . . . 11 (Ord 𝑋 → ((𝑧𝐷𝐷𝑋) → 𝑧𝑋))
1715, 16syl 14 . . . . . . . . . 10 (𝜑 → ((𝑧𝐷𝐷𝑋) → 𝑧𝑋))
1817imp 124 . . . . . . . . 9 ((𝜑 ∧ (𝑧𝐷𝐷𝑋)) → 𝑧𝑋)
1911, 12, 14, 18syl12anc 1248 . . . . . . . 8 ((𝜑𝑧𝐷 ∧ (𝑔:𝑧𝑆 ∧ ∀𝑦𝑧 (𝑔𝑦) = (𝐺‘(𝑔𝑦)))) → 𝑧𝑋)
20 simp3l 1028 . . . . . . . 8 ((𝜑𝑧𝐷 ∧ (𝑔:𝑧𝑆 ∧ ∀𝑦𝑧 (𝑔𝑦) = (𝐺‘(𝑔𝑦)))) → 𝑔:𝑧𝑆)
21 feq2 5419 . . . . . . . . . . . . 13 (𝑥 = 𝑧 → (𝑓:𝑥𝑆𝑓:𝑧𝑆))
2221imbi1d 231 . . . . . . . . . . . 12 (𝑥 = 𝑧 → ((𝑓:𝑥𝑆 → (𝐺𝑓) ∈ 𝑆) ↔ (𝑓:𝑧𝑆 → (𝐺𝑓) ∈ 𝑆)))
2322albidv 1848 . . . . . . . . . . 11 (𝑥 = 𝑧 → (∀𝑓(𝑓:𝑥𝑆 → (𝐺𝑓) ∈ 𝑆) ↔ ∀𝑓(𝑓:𝑧𝑆 → (𝐺𝑓) ∈ 𝑆)))
24 tfrcl.ex . . . . . . . . . . . . . . 15 ((𝜑𝑥𝑋𝑓:𝑥𝑆) → (𝐺𝑓) ∈ 𝑆)
25243expia 1208 . . . . . . . . . . . . . 14 ((𝜑𝑥𝑋) → (𝑓:𝑥𝑆 → (𝐺𝑓) ∈ 𝑆))
2625alrimiv 1898 . . . . . . . . . . . . 13 ((𝜑𝑥𝑋) → ∀𝑓(𝑓:𝑥𝑆 → (𝐺𝑓) ∈ 𝑆))
2726ralrimiva 2580 . . . . . . . . . . . 12 (𝜑 → ∀𝑥𝑋𝑓(𝑓:𝑥𝑆 → (𝐺𝑓) ∈ 𝑆))
2827adantr 276 . . . . . . . . . . 11 ((𝜑𝑧𝑋) → ∀𝑥𝑋𝑓(𝑓:𝑥𝑆 → (𝐺𝑓) ∈ 𝑆))
29 simpr 110 . . . . . . . . . . 11 ((𝜑𝑧𝑋) → 𝑧𝑋)
3023, 28, 29rspcdva 2886 . . . . . . . . . 10 ((𝜑𝑧𝑋) → ∀𝑓(𝑓:𝑧𝑆 → (𝐺𝑓) ∈ 𝑆))
31 feq1 5418 . . . . . . . . . . . 12 (𝑓 = 𝑔 → (𝑓:𝑧𝑆𝑔:𝑧𝑆))
32 fveq2 5589 . . . . . . . . . . . . 13 (𝑓 = 𝑔 → (𝐺𝑓) = (𝐺𝑔))
3332eleq1d 2275 . . . . . . . . . . . 12 (𝑓 = 𝑔 → ((𝐺𝑓) ∈ 𝑆 ↔ (𝐺𝑔) ∈ 𝑆))
3431, 33imbi12d 234 . . . . . . . . . . 11 (𝑓 = 𝑔 → ((𝑓:𝑧𝑆 → (𝐺𝑓) ∈ 𝑆) ↔ (𝑔:𝑧𝑆 → (𝐺𝑔) ∈ 𝑆)))
3534spv 1884 . . . . . . . . . 10 (∀𝑓(𝑓:𝑧𝑆 → (𝐺𝑓) ∈ 𝑆) → (𝑔:𝑧𝑆 → (𝐺𝑔) ∈ 𝑆))
3630, 35syl 14 . . . . . . . . 9 ((𝜑𝑧𝑋) → (𝑔:𝑧𝑆 → (𝐺𝑔) ∈ 𝑆))
3736imp 124 . . . . . . . 8 (((𝜑𝑧𝑋) ∧ 𝑔:𝑧𝑆) → (𝐺𝑔) ∈ 𝑆)
3811, 19, 20, 37syl21anc 1249 . . . . . . 7 ((𝜑𝑧𝐷 ∧ (𝑔:𝑧𝑆 ∧ ∀𝑦𝑧 (𝑔𝑦) = (𝐺‘(𝑔𝑦)))) → (𝐺𝑔) ∈ 𝑆)
39 vex 2776 . . . . . . . . . 10 𝑧 ∈ V
40 opexg 4280 . . . . . . . . . 10 ((𝑧 ∈ V ∧ (𝐺𝑔) ∈ 𝑆) → ⟨𝑧, (𝐺𝑔)⟩ ∈ V)
4139, 38, 40sylancr 414 . . . . . . . . 9 ((𝜑𝑧𝐷 ∧ (𝑔:𝑧𝑆 ∧ ∀𝑦𝑧 (𝑔𝑦) = (𝐺‘(𝑔𝑦)))) → ⟨𝑧, (𝐺𝑔)⟩ ∈ V)
42 snidg 3667 . . . . . . . . 9 (⟨𝑧, (𝐺𝑔)⟩ ∈ V → ⟨𝑧, (𝐺𝑔)⟩ ∈ {⟨𝑧, (𝐺𝑔)⟩})
43 elun2 3345 . . . . . . . . 9 (⟨𝑧, (𝐺𝑔)⟩ ∈ {⟨𝑧, (𝐺𝑔)⟩} → ⟨𝑧, (𝐺𝑔)⟩ ∈ (𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}))
4441, 42, 433syl 17 . . . . . . . 8 ((𝜑𝑧𝐷 ∧ (𝑔:𝑧𝑆 ∧ ∀𝑦𝑧 (𝑔𝑦) = (𝐺‘(𝑔𝑦)))) → ⟨𝑧, (𝐺𝑔)⟩ ∈ (𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}))
45 simp3r 1029 . . . . . . . . . . . . 13 ((𝜑𝑧𝐷 ∧ (𝑔:𝑧𝑆 ∧ ∀𝑦𝑧 (𝑔𝑦) = (𝐺‘(𝑔𝑦)))) → ∀𝑦𝑧 (𝑔𝑦) = (𝐺‘(𝑔𝑦)))
46 rspe 2556 . . . . . . . . . . . . 13 ((𝑧𝑋 ∧ (𝑔:𝑧𝑆 ∧ ∀𝑦𝑧 (𝑔𝑦) = (𝐺‘(𝑔𝑦)))) → ∃𝑧𝑋 (𝑔:𝑧𝑆 ∧ ∀𝑦𝑧 (𝑔𝑦) = (𝐺‘(𝑔𝑦))))
4719, 20, 45, 46syl12anc 1248 . . . . . . . . . . . 12 ((𝜑𝑧𝐷 ∧ (𝑔:𝑧𝑆 ∧ ∀𝑦𝑧 (𝑔𝑦) = (𝐺‘(𝑔𝑦)))) → ∃𝑧𝑋 (𝑔:𝑧𝑆 ∧ ∀𝑦𝑧 (𝑔𝑦) = (𝐺‘(𝑔𝑦))))
48 feq2 5419 . . . . . . . . . . . . . 14 (𝑧 = 𝑥 → (𝑔:𝑧𝑆𝑔:𝑥𝑆))
49 raleq 2703 . . . . . . . . . . . . . 14 (𝑧 = 𝑥 → (∀𝑦𝑧 (𝑔𝑦) = (𝐺‘(𝑔𝑦)) ↔ ∀𝑦𝑥 (𝑔𝑦) = (𝐺‘(𝑔𝑦))))
5048, 49anbi12d 473 . . . . . . . . . . . . 13 (𝑧 = 𝑥 → ((𝑔:𝑧𝑆 ∧ ∀𝑦𝑧 (𝑔𝑦) = (𝐺‘(𝑔𝑦))) ↔ (𝑔:𝑥𝑆 ∧ ∀𝑦𝑥 (𝑔𝑦) = (𝐺‘(𝑔𝑦)))))
5150cbvrexv 2740 . . . . . . . . . . . 12 (∃𝑧𝑋 (𝑔:𝑧𝑆 ∧ ∀𝑦𝑧 (𝑔𝑦) = (𝐺‘(𝑔𝑦))) ↔ ∃𝑥𝑋 (𝑔:𝑥𝑆 ∧ ∀𝑦𝑥 (𝑔𝑦) = (𝐺‘(𝑔𝑦))))
5247, 51sylib 122 . . . . . . . . . . 11 ((𝜑𝑧𝐷 ∧ (𝑔:𝑧𝑆 ∧ ∀𝑦𝑧 (𝑔𝑦) = (𝐺‘(𝑔𝑦)))) → ∃𝑥𝑋 (𝑔:𝑥𝑆 ∧ ∀𝑦𝑥 (𝑔𝑦) = (𝐺‘(𝑔𝑦))))
53 vex 2776 . . . . . . . . . . . 12 𝑔 ∈ V
54 feq1 5418 . . . . . . . . . . . . . 14 (𝑓 = 𝑔 → (𝑓:𝑥𝑆𝑔:𝑥𝑆))
55 fveq1 5588 . . . . . . . . . . . . . . . 16 (𝑓 = 𝑔 → (𝑓𝑦) = (𝑔𝑦))
56 reseq1 4962 . . . . . . . . . . . . . . . . 17 (𝑓 = 𝑔 → (𝑓𝑦) = (𝑔𝑦))
5756fveq2d 5593 . . . . . . . . . . . . . . . 16 (𝑓 = 𝑔 → (𝐺‘(𝑓𝑦)) = (𝐺‘(𝑔𝑦)))
5855, 57eqeq12d 2221 . . . . . . . . . . . . . . 15 (𝑓 = 𝑔 → ((𝑓𝑦) = (𝐺‘(𝑓𝑦)) ↔ (𝑔𝑦) = (𝐺‘(𝑔𝑦))))
5958ralbidv 2507 . . . . . . . . . . . . . 14 (𝑓 = 𝑔 → (∀𝑦𝑥 (𝑓𝑦) = (𝐺‘(𝑓𝑦)) ↔ ∀𝑦𝑥 (𝑔𝑦) = (𝐺‘(𝑔𝑦))))
6054, 59anbi12d 473 . . . . . . . . . . . . 13 (𝑓 = 𝑔 → ((𝑓:𝑥𝑆 ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐺‘(𝑓𝑦))) ↔ (𝑔:𝑥𝑆 ∧ ∀𝑦𝑥 (𝑔𝑦) = (𝐺‘(𝑔𝑦)))))
6160rexbidv 2508 . . . . . . . . . . . 12 (𝑓 = 𝑔 → (∃𝑥𝑋 (𝑓:𝑥𝑆 ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐺‘(𝑓𝑦))) ↔ ∃𝑥𝑋 (𝑔:𝑥𝑆 ∧ ∀𝑦𝑥 (𝑔𝑦) = (𝐺‘(𝑔𝑦)))))
62 tfrcllemsucfn.1 . . . . . . . . . . . 12 𝐴 = {𝑓 ∣ ∃𝑥𝑋 (𝑓:𝑥𝑆 ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐺‘(𝑓𝑦)))}
6353, 61, 62elab2 2925 . . . . . . . . . . 11 (𝑔𝐴 ↔ ∃𝑥𝑋 (𝑔:𝑥𝑆 ∧ ∀𝑦𝑥 (𝑔𝑦) = (𝐺‘(𝑔𝑦))))
6452, 63sylibr 134 . . . . . . . . . 10 ((𝜑𝑧𝐷 ∧ (𝑔:𝑧𝑆 ∧ ∀𝑦𝑧 (𝑔𝑦) = (𝐺‘(𝑔𝑦)))) → 𝑔𝐴)
6512, 20, 643jca 1180 . . . . . . . . 9 ((𝜑𝑧𝐷 ∧ (𝑔:𝑧𝑆 ∧ ∀𝑦𝑧 (𝑔𝑦) = (𝐺‘(𝑔𝑦)))) → (𝑧𝐷𝑔:𝑧𝑆𝑔𝐴))
66 snexg 4236 . . . . . . . . . . 11 (⟨𝑧, (𝐺𝑔)⟩ ∈ V → {⟨𝑧, (𝐺𝑔)⟩} ∈ V)
67 unexg 4498 . . . . . . . . . . . 12 ((𝑔 ∈ V ∧ {⟨𝑧, (𝐺𝑔)⟩} ∈ V) → (𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}) ∈ V)
6853, 67mpan 424 . . . . . . . . . . 11 ({⟨𝑧, (𝐺𝑔)⟩} ∈ V → (𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}) ∈ V)
6941, 66, 683syl 17 . . . . . . . . . 10 ((𝜑𝑧𝐷 ∧ (𝑔:𝑧𝑆 ∧ ∀𝑦𝑧 (𝑔𝑦) = (𝐺‘(𝑔𝑦)))) → (𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}) ∈ V)
70 isset 2780 . . . . . . . . . 10 ((𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}) ∈ V ↔ ∃ = (𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}))
7169, 70sylib 122 . . . . . . . . 9 ((𝜑𝑧𝐷 ∧ (𝑔:𝑧𝑆 ∧ ∀𝑦𝑧 (𝑔𝑦) = (𝐺‘(𝑔𝑦)))) → ∃ = (𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}))
72 simpr3 1008 . . . . . . . . . . . . 13 ((𝑧𝐷 ∧ (𝑔:𝑧𝑆𝑔𝐴 = (𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}))) → = (𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}))
73 19.8a 1614 . . . . . . . . . . . . . 14 ((𝑔:𝑧𝑆𝑔𝐴 = (𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩})) → ∃𝑔(𝑔:𝑧𝑆𝑔𝐴 = (𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩})))
74 rspe 2556 . . . . . . . . . . . . . . 15 ((𝑧𝐷 ∧ ∃𝑔(𝑔:𝑧𝑆𝑔𝐴 = (𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}))) → ∃𝑧𝐷𝑔(𝑔:𝑧𝑆𝑔𝐴 = (𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩})))
75 tfrcllembacc.3 . . . . . . . . . . . . . . . 16 𝐵 = { ∣ ∃𝑧𝐷𝑔(𝑔:𝑧𝑆𝑔𝐴 = (𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}))}
7675abeq2i 2317 . . . . . . . . . . . . . . 15 (𝐵 ↔ ∃𝑧𝐷𝑔(𝑔:𝑧𝑆𝑔𝐴 = (𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩})))
7774, 76sylibr 134 . . . . . . . . . . . . . 14 ((𝑧𝐷 ∧ ∃𝑔(𝑔:𝑧𝑆𝑔𝐴 = (𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}))) → 𝐵)
7873, 77sylan2 286 . . . . . . . . . . . . 13 ((𝑧𝐷 ∧ (𝑔:𝑧𝑆𝑔𝐴 = (𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}))) → 𝐵)
7972, 78eqeltrrd 2284 . . . . . . . . . . . 12 ((𝑧𝐷 ∧ (𝑔:𝑧𝑆𝑔𝐴 = (𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}))) → (𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}) ∈ 𝐵)
80793exp2 1228 . . . . . . . . . . 11 (𝑧𝐷 → (𝑔:𝑧𝑆 → (𝑔𝐴 → ( = (𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}) → (𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}) ∈ 𝐵))))
81803imp 1196 . . . . . . . . . 10 ((𝑧𝐷𝑔:𝑧𝑆𝑔𝐴) → ( = (𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}) → (𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}) ∈ 𝐵))
8281exlimdv 1843 . . . . . . . . 9 ((𝑧𝐷𝑔:𝑧𝑆𝑔𝐴) → (∃ = (𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}) → (𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}) ∈ 𝐵))
8365, 71, 82sylc 62 . . . . . . . 8 ((𝜑𝑧𝐷 ∧ (𝑔:𝑧𝑆 ∧ ∀𝑦𝑧 (𝑔𝑦) = (𝐺‘(𝑔𝑦)))) → (𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}) ∈ 𝐵)
84 elunii 3861 . . . . . . . 8 ((⟨𝑧, (𝐺𝑔)⟩ ∈ (𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}) ∧ (𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}) ∈ 𝐵) → ⟨𝑧, (𝐺𝑔)⟩ ∈ 𝐵)
8544, 83, 84syl2anc 411 . . . . . . 7 ((𝜑𝑧𝐷 ∧ (𝑔:𝑧𝑆 ∧ ∀𝑦𝑧 (𝑔𝑦) = (𝐺‘(𝑔𝑦)))) → ⟨𝑧, (𝐺𝑔)⟩ ∈ 𝐵)
86 opeq2 3826 . . . . . . . . . 10 (𝑤 = (𝐺𝑔) → ⟨𝑧, 𝑤⟩ = ⟨𝑧, (𝐺𝑔)⟩)
8786eleq1d 2275 . . . . . . . . 9 (𝑤 = (𝐺𝑔) → (⟨𝑧, 𝑤⟩ ∈ 𝐵 ↔ ⟨𝑧, (𝐺𝑔)⟩ ∈ 𝐵))
8887spcegv 2865 . . . . . . . 8 ((𝐺𝑔) ∈ 𝑆 → (⟨𝑧, (𝐺𝑔)⟩ ∈ 𝐵 → ∃𝑤𝑧, 𝑤⟩ ∈ 𝐵))
8939eldm2 4885 . . . . . . . 8 (𝑧 ∈ dom 𝐵 ↔ ∃𝑤𝑧, 𝑤⟩ ∈ 𝐵)
9088, 89imbitrrdi 162 . . . . . . 7 ((𝐺𝑔) ∈ 𝑆 → (⟨𝑧, (𝐺𝑔)⟩ ∈ 𝐵𝑧 ∈ dom 𝐵))
9138, 85, 90sylc 62 . . . . . 6 ((𝜑𝑧𝐷 ∧ (𝑔:𝑧𝑆 ∧ ∀𝑦𝑧 (𝑔𝑦) = (𝐺‘(𝑔𝑦)))) → 𝑧 ∈ dom 𝐵)
92913expia 1208 . . . . 5 ((𝜑𝑧𝐷) → ((𝑔:𝑧𝑆 ∧ ∀𝑦𝑧 (𝑔𝑦) = (𝐺‘(𝑔𝑦))) → 𝑧 ∈ dom 𝐵))
9392exlimdv 1843 . . . 4 ((𝜑𝑧𝐷) → (∃𝑔(𝑔:𝑧𝑆 ∧ ∀𝑦𝑧 (𝑔𝑦) = (𝐺‘(𝑔𝑦))) → 𝑧 ∈ dom 𝐵))
9493ralimdva 2574 . . 3 (𝜑 → (∀𝑧𝐷𝑔(𝑔:𝑧𝑆 ∧ ∀𝑦𝑧 (𝑔𝑦) = (𝐺‘(𝑔𝑦))) → ∀𝑧𝐷 𝑧 ∈ dom 𝐵))
9510, 94mpd 13 . 2 (𝜑 → ∀𝑧𝐷 𝑧 ∈ dom 𝐵)
96 dfss3 3186 . 2 (𝐷 ⊆ dom 𝐵 ↔ ∀𝑧𝐷 𝑧 ∈ dom 𝐵)
9795, 96sylibr 134 1 (𝜑𝐷 ⊆ dom 𝐵)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  w3a 981  wal 1371   = wceq 1373  wex 1516  wcel 2177  {cab 2192  wral 2485  wrex 2486  Vcvv 2773  cun 3168  wss 3170  {csn 3638  cop 3641   cuni 3856  Ord word 4417  suc csuc 4420  dom cdm 4683  cres 4685  Fun wfun 5274  wf 5276  cfv 5280  recscrecs 6403
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-sep 4170  ax-pow 4226  ax-pr 4261  ax-un 4488
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1485  df-sb 1787  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ral 2490  df-rex 2491  df-v 2775  df-un 3174  df-in 3176  df-ss 3183  df-pw 3623  df-sn 3644  df-pr 3645  df-op 3647  df-uni 3857  df-br 4052  df-opab 4114  df-tr 4151  df-iord 4421  df-xp 4689  df-rel 4690  df-cnv 4691  df-co 4692  df-dm 4693  df-rn 4694  df-res 4695  df-iota 5241  df-fun 5282  df-fn 5283  df-f 5284  df-fv 5288
This theorem is referenced by:  tfrcllembfn  6456
  Copyright terms: Public domain W3C validator