ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  tfrcllembxssdm GIF version

Theorem tfrcllembxssdm 6300
Description: Lemma for tfrcl 6308. The union of 𝐵 is defined on all elements of 𝑋. (Contributed by Jim Kingdon, 25-Mar-2022.)
Hypotheses
Ref Expression
tfrcl.f 𝐹 = recs(𝐺)
tfrcl.g (𝜑 → Fun 𝐺)
tfrcl.x (𝜑 → Ord 𝑋)
tfrcl.ex ((𝜑𝑥𝑋𝑓:𝑥𝑆) → (𝐺𝑓) ∈ 𝑆)
tfrcllemsucfn.1 𝐴 = {𝑓 ∣ ∃𝑥𝑋 (𝑓:𝑥𝑆 ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐺‘(𝑓𝑦)))}
tfrcllembacc.3 𝐵 = { ∣ ∃𝑧𝐷𝑔(𝑔:𝑧𝑆𝑔𝐴 = (𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}))}
tfrcllembacc.u ((𝜑𝑥 𝑋) → suc 𝑥𝑋)
tfrcllembacc.4 (𝜑𝐷𝑋)
tfrcllembacc.5 (𝜑 → ∀𝑧𝐷𝑔(𝑔:𝑧𝑆 ∧ ∀𝑤𝑧 (𝑔𝑤) = (𝐺‘(𝑔𝑤))))
Assertion
Ref Expression
tfrcllembxssdm (𝜑𝐷 ⊆ dom 𝐵)
Distinct variable groups:   𝐴,𝑓,𝑔,,𝑥,𝑦,𝑧   𝐷,𝑓,𝑔,𝑥,𝑦   𝑓,𝐺,𝑥,𝑦   𝑆,𝑓,𝑥,𝑦   𝑓,𝑋,𝑥   𝜑,𝑓,𝑔,,𝑥,𝑦,𝑧   𝐵,𝑔,,𝑧   𝑤,𝐵,𝑔,𝑧   𝐷,,𝑧   ,𝐺,𝑧   𝑤,𝐺,𝑦   𝑆,,𝑧   𝑧,𝑋
Allowed substitution hints:   𝜑(𝑤)   𝐴(𝑤)   𝐵(𝑥,𝑦,𝑓)   𝐷(𝑤)   𝑆(𝑤,𝑔)   𝐹(𝑥,𝑦,𝑧,𝑤,𝑓,𝑔,)   𝐺(𝑔)   𝑋(𝑦,𝑤,𝑔,)

Proof of Theorem tfrcllembxssdm
StepHypRef Expression
1 tfrcllembacc.5 . . . 4 (𝜑 → ∀𝑧𝐷𝑔(𝑔:𝑧𝑆 ∧ ∀𝑤𝑧 (𝑔𝑤) = (𝐺‘(𝑔𝑤))))
2 fveq2 5467 . . . . . . . . 9 (𝑤 = 𝑦 → (𝑔𝑤) = (𝑔𝑦))
3 reseq2 4860 . . . . . . . . . 10 (𝑤 = 𝑦 → (𝑔𝑤) = (𝑔𝑦))
43fveq2d 5471 . . . . . . . . 9 (𝑤 = 𝑦 → (𝐺‘(𝑔𝑤)) = (𝐺‘(𝑔𝑦)))
52, 4eqeq12d 2172 . . . . . . . 8 (𝑤 = 𝑦 → ((𝑔𝑤) = (𝐺‘(𝑔𝑤)) ↔ (𝑔𝑦) = (𝐺‘(𝑔𝑦))))
65cbvralv 2680 . . . . . . 7 (∀𝑤𝑧 (𝑔𝑤) = (𝐺‘(𝑔𝑤)) ↔ ∀𝑦𝑧 (𝑔𝑦) = (𝐺‘(𝑔𝑦)))
76anbi2i 453 . . . . . 6 ((𝑔:𝑧𝑆 ∧ ∀𝑤𝑧 (𝑔𝑤) = (𝐺‘(𝑔𝑤))) ↔ (𝑔:𝑧𝑆 ∧ ∀𝑦𝑧 (𝑔𝑦) = (𝐺‘(𝑔𝑦))))
87exbii 1585 . . . . 5 (∃𝑔(𝑔:𝑧𝑆 ∧ ∀𝑤𝑧 (𝑔𝑤) = (𝐺‘(𝑔𝑤))) ↔ ∃𝑔(𝑔:𝑧𝑆 ∧ ∀𝑦𝑧 (𝑔𝑦) = (𝐺‘(𝑔𝑦))))
98ralbii 2463 . . . 4 (∀𝑧𝐷𝑔(𝑔:𝑧𝑆 ∧ ∀𝑤𝑧 (𝑔𝑤) = (𝐺‘(𝑔𝑤))) ↔ ∀𝑧𝐷𝑔(𝑔:𝑧𝑆 ∧ ∀𝑦𝑧 (𝑔𝑦) = (𝐺‘(𝑔𝑦))))
101, 9sylib 121 . . 3 (𝜑 → ∀𝑧𝐷𝑔(𝑔:𝑧𝑆 ∧ ∀𝑦𝑧 (𝑔𝑦) = (𝐺‘(𝑔𝑦))))
11 simp1 982 . . . . . . . 8 ((𝜑𝑧𝐷 ∧ (𝑔:𝑧𝑆 ∧ ∀𝑦𝑧 (𝑔𝑦) = (𝐺‘(𝑔𝑦)))) → 𝜑)
12 simp2 983 . . . . . . . . 9 ((𝜑𝑧𝐷 ∧ (𝑔:𝑧𝑆 ∧ ∀𝑦𝑧 (𝑔𝑦) = (𝐺‘(𝑔𝑦)))) → 𝑧𝐷)
13 tfrcllembacc.4 . . . . . . . . . 10 (𝜑𝐷𝑋)
1411, 13syl 14 . . . . . . . . 9 ((𝜑𝑧𝐷 ∧ (𝑔:𝑧𝑆 ∧ ∀𝑦𝑧 (𝑔𝑦) = (𝐺‘(𝑔𝑦)))) → 𝐷𝑋)
15 tfrcl.x . . . . . . . . . . 11 (𝜑 → Ord 𝑋)
16 ordtr1 4348 . . . . . . . . . . 11 (Ord 𝑋 → ((𝑧𝐷𝐷𝑋) → 𝑧𝑋))
1715, 16syl 14 . . . . . . . . . 10 (𝜑 → ((𝑧𝐷𝐷𝑋) → 𝑧𝑋))
1817imp 123 . . . . . . . . 9 ((𝜑 ∧ (𝑧𝐷𝐷𝑋)) → 𝑧𝑋)
1911, 12, 14, 18syl12anc 1218 . . . . . . . 8 ((𝜑𝑧𝐷 ∧ (𝑔:𝑧𝑆 ∧ ∀𝑦𝑧 (𝑔𝑦) = (𝐺‘(𝑔𝑦)))) → 𝑧𝑋)
20 simp3l 1010 . . . . . . . 8 ((𝜑𝑧𝐷 ∧ (𝑔:𝑧𝑆 ∧ ∀𝑦𝑧 (𝑔𝑦) = (𝐺‘(𝑔𝑦)))) → 𝑔:𝑧𝑆)
21 feq2 5302 . . . . . . . . . . . . 13 (𝑥 = 𝑧 → (𝑓:𝑥𝑆𝑓:𝑧𝑆))
2221imbi1d 230 . . . . . . . . . . . 12 (𝑥 = 𝑧 → ((𝑓:𝑥𝑆 → (𝐺𝑓) ∈ 𝑆) ↔ (𝑓:𝑧𝑆 → (𝐺𝑓) ∈ 𝑆)))
2322albidv 1804 . . . . . . . . . . 11 (𝑥 = 𝑧 → (∀𝑓(𝑓:𝑥𝑆 → (𝐺𝑓) ∈ 𝑆) ↔ ∀𝑓(𝑓:𝑧𝑆 → (𝐺𝑓) ∈ 𝑆)))
24 tfrcl.ex . . . . . . . . . . . . . . 15 ((𝜑𝑥𝑋𝑓:𝑥𝑆) → (𝐺𝑓) ∈ 𝑆)
25243expia 1187 . . . . . . . . . . . . . 14 ((𝜑𝑥𝑋) → (𝑓:𝑥𝑆 → (𝐺𝑓) ∈ 𝑆))
2625alrimiv 1854 . . . . . . . . . . . . 13 ((𝜑𝑥𝑋) → ∀𝑓(𝑓:𝑥𝑆 → (𝐺𝑓) ∈ 𝑆))
2726ralrimiva 2530 . . . . . . . . . . . 12 (𝜑 → ∀𝑥𝑋𝑓(𝑓:𝑥𝑆 → (𝐺𝑓) ∈ 𝑆))
2827adantr 274 . . . . . . . . . . 11 ((𝜑𝑧𝑋) → ∀𝑥𝑋𝑓(𝑓:𝑥𝑆 → (𝐺𝑓) ∈ 𝑆))
29 simpr 109 . . . . . . . . . . 11 ((𝜑𝑧𝑋) → 𝑧𝑋)
3023, 28, 29rspcdva 2821 . . . . . . . . . 10 ((𝜑𝑧𝑋) → ∀𝑓(𝑓:𝑧𝑆 → (𝐺𝑓) ∈ 𝑆))
31 feq1 5301 . . . . . . . . . . . 12 (𝑓 = 𝑔 → (𝑓:𝑧𝑆𝑔:𝑧𝑆))
32 fveq2 5467 . . . . . . . . . . . . 13 (𝑓 = 𝑔 → (𝐺𝑓) = (𝐺𝑔))
3332eleq1d 2226 . . . . . . . . . . . 12 (𝑓 = 𝑔 → ((𝐺𝑓) ∈ 𝑆 ↔ (𝐺𝑔) ∈ 𝑆))
3431, 33imbi12d 233 . . . . . . . . . . 11 (𝑓 = 𝑔 → ((𝑓:𝑧𝑆 → (𝐺𝑓) ∈ 𝑆) ↔ (𝑔:𝑧𝑆 → (𝐺𝑔) ∈ 𝑆)))
3534spv 1840 . . . . . . . . . 10 (∀𝑓(𝑓:𝑧𝑆 → (𝐺𝑓) ∈ 𝑆) → (𝑔:𝑧𝑆 → (𝐺𝑔) ∈ 𝑆))
3630, 35syl 14 . . . . . . . . 9 ((𝜑𝑧𝑋) → (𝑔:𝑧𝑆 → (𝐺𝑔) ∈ 𝑆))
3736imp 123 . . . . . . . 8 (((𝜑𝑧𝑋) ∧ 𝑔:𝑧𝑆) → (𝐺𝑔) ∈ 𝑆)
3811, 19, 20, 37syl21anc 1219 . . . . . . 7 ((𝜑𝑧𝐷 ∧ (𝑔:𝑧𝑆 ∧ ∀𝑦𝑧 (𝑔𝑦) = (𝐺‘(𝑔𝑦)))) → (𝐺𝑔) ∈ 𝑆)
39 vex 2715 . . . . . . . . . 10 𝑧 ∈ V
40 opexg 4188 . . . . . . . . . 10 ((𝑧 ∈ V ∧ (𝐺𝑔) ∈ 𝑆) → ⟨𝑧, (𝐺𝑔)⟩ ∈ V)
4139, 38, 40sylancr 411 . . . . . . . . 9 ((𝜑𝑧𝐷 ∧ (𝑔:𝑧𝑆 ∧ ∀𝑦𝑧 (𝑔𝑦) = (𝐺‘(𝑔𝑦)))) → ⟨𝑧, (𝐺𝑔)⟩ ∈ V)
42 snidg 3589 . . . . . . . . 9 (⟨𝑧, (𝐺𝑔)⟩ ∈ V → ⟨𝑧, (𝐺𝑔)⟩ ∈ {⟨𝑧, (𝐺𝑔)⟩})
43 elun2 3275 . . . . . . . . 9 (⟨𝑧, (𝐺𝑔)⟩ ∈ {⟨𝑧, (𝐺𝑔)⟩} → ⟨𝑧, (𝐺𝑔)⟩ ∈ (𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}))
4441, 42, 433syl 17 . . . . . . . 8 ((𝜑𝑧𝐷 ∧ (𝑔:𝑧𝑆 ∧ ∀𝑦𝑧 (𝑔𝑦) = (𝐺‘(𝑔𝑦)))) → ⟨𝑧, (𝐺𝑔)⟩ ∈ (𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}))
45 simp3r 1011 . . . . . . . . . . . . 13 ((𝜑𝑧𝐷 ∧ (𝑔:𝑧𝑆 ∧ ∀𝑦𝑧 (𝑔𝑦) = (𝐺‘(𝑔𝑦)))) → ∀𝑦𝑧 (𝑔𝑦) = (𝐺‘(𝑔𝑦)))
46 rspe 2506 . . . . . . . . . . . . 13 ((𝑧𝑋 ∧ (𝑔:𝑧𝑆 ∧ ∀𝑦𝑧 (𝑔𝑦) = (𝐺‘(𝑔𝑦)))) → ∃𝑧𝑋 (𝑔:𝑧𝑆 ∧ ∀𝑦𝑧 (𝑔𝑦) = (𝐺‘(𝑔𝑦))))
4719, 20, 45, 46syl12anc 1218 . . . . . . . . . . . 12 ((𝜑𝑧𝐷 ∧ (𝑔:𝑧𝑆 ∧ ∀𝑦𝑧 (𝑔𝑦) = (𝐺‘(𝑔𝑦)))) → ∃𝑧𝑋 (𝑔:𝑧𝑆 ∧ ∀𝑦𝑧 (𝑔𝑦) = (𝐺‘(𝑔𝑦))))
48 feq2 5302 . . . . . . . . . . . . . 14 (𝑧 = 𝑥 → (𝑔:𝑧𝑆𝑔:𝑥𝑆))
49 raleq 2652 . . . . . . . . . . . . . 14 (𝑧 = 𝑥 → (∀𝑦𝑧 (𝑔𝑦) = (𝐺‘(𝑔𝑦)) ↔ ∀𝑦𝑥 (𝑔𝑦) = (𝐺‘(𝑔𝑦))))
5048, 49anbi12d 465 . . . . . . . . . . . . 13 (𝑧 = 𝑥 → ((𝑔:𝑧𝑆 ∧ ∀𝑦𝑧 (𝑔𝑦) = (𝐺‘(𝑔𝑦))) ↔ (𝑔:𝑥𝑆 ∧ ∀𝑦𝑥 (𝑔𝑦) = (𝐺‘(𝑔𝑦)))))
5150cbvrexv 2681 . . . . . . . . . . . 12 (∃𝑧𝑋 (𝑔:𝑧𝑆 ∧ ∀𝑦𝑧 (𝑔𝑦) = (𝐺‘(𝑔𝑦))) ↔ ∃𝑥𝑋 (𝑔:𝑥𝑆 ∧ ∀𝑦𝑥 (𝑔𝑦) = (𝐺‘(𝑔𝑦))))
5247, 51sylib 121 . . . . . . . . . . 11 ((𝜑𝑧𝐷 ∧ (𝑔:𝑧𝑆 ∧ ∀𝑦𝑧 (𝑔𝑦) = (𝐺‘(𝑔𝑦)))) → ∃𝑥𝑋 (𝑔:𝑥𝑆 ∧ ∀𝑦𝑥 (𝑔𝑦) = (𝐺‘(𝑔𝑦))))
53 vex 2715 . . . . . . . . . . . 12 𝑔 ∈ V
54 feq1 5301 . . . . . . . . . . . . . 14 (𝑓 = 𝑔 → (𝑓:𝑥𝑆𝑔:𝑥𝑆))
55 fveq1 5466 . . . . . . . . . . . . . . . 16 (𝑓 = 𝑔 → (𝑓𝑦) = (𝑔𝑦))
56 reseq1 4859 . . . . . . . . . . . . . . . . 17 (𝑓 = 𝑔 → (𝑓𝑦) = (𝑔𝑦))
5756fveq2d 5471 . . . . . . . . . . . . . . . 16 (𝑓 = 𝑔 → (𝐺‘(𝑓𝑦)) = (𝐺‘(𝑔𝑦)))
5855, 57eqeq12d 2172 . . . . . . . . . . . . . . 15 (𝑓 = 𝑔 → ((𝑓𝑦) = (𝐺‘(𝑓𝑦)) ↔ (𝑔𝑦) = (𝐺‘(𝑔𝑦))))
5958ralbidv 2457 . . . . . . . . . . . . . 14 (𝑓 = 𝑔 → (∀𝑦𝑥 (𝑓𝑦) = (𝐺‘(𝑓𝑦)) ↔ ∀𝑦𝑥 (𝑔𝑦) = (𝐺‘(𝑔𝑦))))
6054, 59anbi12d 465 . . . . . . . . . . . . 13 (𝑓 = 𝑔 → ((𝑓:𝑥𝑆 ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐺‘(𝑓𝑦))) ↔ (𝑔:𝑥𝑆 ∧ ∀𝑦𝑥 (𝑔𝑦) = (𝐺‘(𝑔𝑦)))))
6160rexbidv 2458 . . . . . . . . . . . 12 (𝑓 = 𝑔 → (∃𝑥𝑋 (𝑓:𝑥𝑆 ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐺‘(𝑓𝑦))) ↔ ∃𝑥𝑋 (𝑔:𝑥𝑆 ∧ ∀𝑦𝑥 (𝑔𝑦) = (𝐺‘(𝑔𝑦)))))
62 tfrcllemsucfn.1 . . . . . . . . . . . 12 𝐴 = {𝑓 ∣ ∃𝑥𝑋 (𝑓:𝑥𝑆 ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐺‘(𝑓𝑦)))}
6353, 61, 62elab2 2860 . . . . . . . . . . 11 (𝑔𝐴 ↔ ∃𝑥𝑋 (𝑔:𝑥𝑆 ∧ ∀𝑦𝑥 (𝑔𝑦) = (𝐺‘(𝑔𝑦))))
6452, 63sylibr 133 . . . . . . . . . 10 ((𝜑𝑧𝐷 ∧ (𝑔:𝑧𝑆 ∧ ∀𝑦𝑧 (𝑔𝑦) = (𝐺‘(𝑔𝑦)))) → 𝑔𝐴)
6512, 20, 643jca 1162 . . . . . . . . 9 ((𝜑𝑧𝐷 ∧ (𝑔:𝑧𝑆 ∧ ∀𝑦𝑧 (𝑔𝑦) = (𝐺‘(𝑔𝑦)))) → (𝑧𝐷𝑔:𝑧𝑆𝑔𝐴))
66 snexg 4145 . . . . . . . . . . 11 (⟨𝑧, (𝐺𝑔)⟩ ∈ V → {⟨𝑧, (𝐺𝑔)⟩} ∈ V)
67 unexg 4402 . . . . . . . . . . . 12 ((𝑔 ∈ V ∧ {⟨𝑧, (𝐺𝑔)⟩} ∈ V) → (𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}) ∈ V)
6853, 67mpan 421 . . . . . . . . . . 11 ({⟨𝑧, (𝐺𝑔)⟩} ∈ V → (𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}) ∈ V)
6941, 66, 683syl 17 . . . . . . . . . 10 ((𝜑𝑧𝐷 ∧ (𝑔:𝑧𝑆 ∧ ∀𝑦𝑧 (𝑔𝑦) = (𝐺‘(𝑔𝑦)))) → (𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}) ∈ V)
70 isset 2718 . . . . . . . . . 10 ((𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}) ∈ V ↔ ∃ = (𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}))
7169, 70sylib 121 . . . . . . . . 9 ((𝜑𝑧𝐷 ∧ (𝑔:𝑧𝑆 ∧ ∀𝑦𝑧 (𝑔𝑦) = (𝐺‘(𝑔𝑦)))) → ∃ = (𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}))
72 simpr3 990 . . . . . . . . . . . . 13 ((𝑧𝐷 ∧ (𝑔:𝑧𝑆𝑔𝐴 = (𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}))) → = (𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}))
73 19.8a 1570 . . . . . . . . . . . . . 14 ((𝑔:𝑧𝑆𝑔𝐴 = (𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩})) → ∃𝑔(𝑔:𝑧𝑆𝑔𝐴 = (𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩})))
74 rspe 2506 . . . . . . . . . . . . . . 15 ((𝑧𝐷 ∧ ∃𝑔(𝑔:𝑧𝑆𝑔𝐴 = (𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}))) → ∃𝑧𝐷𝑔(𝑔:𝑧𝑆𝑔𝐴 = (𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩})))
75 tfrcllembacc.3 . . . . . . . . . . . . . . . 16 𝐵 = { ∣ ∃𝑧𝐷𝑔(𝑔:𝑧𝑆𝑔𝐴 = (𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}))}
7675abeq2i 2268 . . . . . . . . . . . . . . 15 (𝐵 ↔ ∃𝑧𝐷𝑔(𝑔:𝑧𝑆𝑔𝐴 = (𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩})))
7774, 76sylibr 133 . . . . . . . . . . . . . 14 ((𝑧𝐷 ∧ ∃𝑔(𝑔:𝑧𝑆𝑔𝐴 = (𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}))) → 𝐵)
7873, 77sylan2 284 . . . . . . . . . . . . 13 ((𝑧𝐷 ∧ (𝑔:𝑧𝑆𝑔𝐴 = (𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}))) → 𝐵)
7972, 78eqeltrrd 2235 . . . . . . . . . . . 12 ((𝑧𝐷 ∧ (𝑔:𝑧𝑆𝑔𝐴 = (𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}))) → (𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}) ∈ 𝐵)
80793exp2 1207 . . . . . . . . . . 11 (𝑧𝐷 → (𝑔:𝑧𝑆 → (𝑔𝐴 → ( = (𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}) → (𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}) ∈ 𝐵))))
81803imp 1176 . . . . . . . . . 10 ((𝑧𝐷𝑔:𝑧𝑆𝑔𝐴) → ( = (𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}) → (𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}) ∈ 𝐵))
8281exlimdv 1799 . . . . . . . . 9 ((𝑧𝐷𝑔:𝑧𝑆𝑔𝐴) → (∃ = (𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}) → (𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}) ∈ 𝐵))
8365, 71, 82sylc 62 . . . . . . . 8 ((𝜑𝑧𝐷 ∧ (𝑔:𝑧𝑆 ∧ ∀𝑦𝑧 (𝑔𝑦) = (𝐺‘(𝑔𝑦)))) → (𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}) ∈ 𝐵)
84 elunii 3777 . . . . . . . 8 ((⟨𝑧, (𝐺𝑔)⟩ ∈ (𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}) ∧ (𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}) ∈ 𝐵) → ⟨𝑧, (𝐺𝑔)⟩ ∈ 𝐵)
8544, 83, 84syl2anc 409 . . . . . . 7 ((𝜑𝑧𝐷 ∧ (𝑔:𝑧𝑆 ∧ ∀𝑦𝑧 (𝑔𝑦) = (𝐺‘(𝑔𝑦)))) → ⟨𝑧, (𝐺𝑔)⟩ ∈ 𝐵)
86 opeq2 3742 . . . . . . . . . 10 (𝑤 = (𝐺𝑔) → ⟨𝑧, 𝑤⟩ = ⟨𝑧, (𝐺𝑔)⟩)
8786eleq1d 2226 . . . . . . . . 9 (𝑤 = (𝐺𝑔) → (⟨𝑧, 𝑤⟩ ∈ 𝐵 ↔ ⟨𝑧, (𝐺𝑔)⟩ ∈ 𝐵))
8887spcegv 2800 . . . . . . . 8 ((𝐺𝑔) ∈ 𝑆 → (⟨𝑧, (𝐺𝑔)⟩ ∈ 𝐵 → ∃𝑤𝑧, 𝑤⟩ ∈ 𝐵))
8939eldm2 4783 . . . . . . . 8 (𝑧 ∈ dom 𝐵 ↔ ∃𝑤𝑧, 𝑤⟩ ∈ 𝐵)
9088, 89syl6ibr 161 . . . . . . 7 ((𝐺𝑔) ∈ 𝑆 → (⟨𝑧, (𝐺𝑔)⟩ ∈ 𝐵𝑧 ∈ dom 𝐵))
9138, 85, 90sylc 62 . . . . . 6 ((𝜑𝑧𝐷 ∧ (𝑔:𝑧𝑆 ∧ ∀𝑦𝑧 (𝑔𝑦) = (𝐺‘(𝑔𝑦)))) → 𝑧 ∈ dom 𝐵)
92913expia 1187 . . . . 5 ((𝜑𝑧𝐷) → ((𝑔:𝑧𝑆 ∧ ∀𝑦𝑧 (𝑔𝑦) = (𝐺‘(𝑔𝑦))) → 𝑧 ∈ dom 𝐵))
9392exlimdv 1799 . . . 4 ((𝜑𝑧𝐷) → (∃𝑔(𝑔:𝑧𝑆 ∧ ∀𝑦𝑧 (𝑔𝑦) = (𝐺‘(𝑔𝑦))) → 𝑧 ∈ dom 𝐵))
9493ralimdva 2524 . . 3 (𝜑 → (∀𝑧𝐷𝑔(𝑔:𝑧𝑆 ∧ ∀𝑦𝑧 (𝑔𝑦) = (𝐺‘(𝑔𝑦))) → ∀𝑧𝐷 𝑧 ∈ dom 𝐵))
9510, 94mpd 13 . 2 (𝜑 → ∀𝑧𝐷 𝑧 ∈ dom 𝐵)
96 dfss3 3118 . 2 (𝐷 ⊆ dom 𝐵 ↔ ∀𝑧𝐷 𝑧 ∈ dom 𝐵)
9795, 96sylibr 133 1 (𝜑𝐷 ⊆ dom 𝐵)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  w3a 963  wal 1333   = wceq 1335  wex 1472  wcel 2128  {cab 2143  wral 2435  wrex 2436  Vcvv 2712  cun 3100  wss 3102  {csn 3560  cop 3563   cuni 3772  Ord word 4322  suc csuc 4325  dom cdm 4585  cres 4587  Fun wfun 5163  wf 5165  cfv 5169  recscrecs 6248
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1427  ax-7 1428  ax-gen 1429  ax-ie1 1473  ax-ie2 1474  ax-8 1484  ax-10 1485  ax-11 1486  ax-i12 1487  ax-bndl 1489  ax-4 1490  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-13 2130  ax-14 2131  ax-ext 2139  ax-sep 4082  ax-pow 4135  ax-pr 4169  ax-un 4393
This theorem depends on definitions:  df-bi 116  df-3an 965  df-tru 1338  df-nf 1441  df-sb 1743  df-clab 2144  df-cleq 2150  df-clel 2153  df-nfc 2288  df-ral 2440  df-rex 2441  df-v 2714  df-un 3106  df-in 3108  df-ss 3115  df-pw 3545  df-sn 3566  df-pr 3567  df-op 3569  df-uni 3773  df-br 3966  df-opab 4026  df-tr 4063  df-iord 4326  df-xp 4591  df-rel 4592  df-cnv 4593  df-co 4594  df-dm 4595  df-rn 4596  df-res 4597  df-iota 5134  df-fun 5171  df-fn 5172  df-f 5173  df-fv 5177
This theorem is referenced by:  tfrcllembfn  6301
  Copyright terms: Public domain W3C validator