Proof of Theorem tfrcllembxssdm
| Step | Hyp | Ref
 | Expression | 
| 1 |   | tfrcllembacc.5 | 
. . . 4
⊢ (𝜑 → ∀𝑧 ∈ 𝐷 ∃𝑔(𝑔:𝑧⟶𝑆 ∧ ∀𝑤 ∈ 𝑧 (𝑔‘𝑤) = (𝐺‘(𝑔 ↾ 𝑤)))) | 
| 2 |   | fveq2 5558 | 
. . . . . . . . 9
⊢ (𝑤 = 𝑦 → (𝑔‘𝑤) = (𝑔‘𝑦)) | 
| 3 |   | reseq2 4941 | 
. . . . . . . . . 10
⊢ (𝑤 = 𝑦 → (𝑔 ↾ 𝑤) = (𝑔 ↾ 𝑦)) | 
| 4 | 3 | fveq2d 5562 | 
. . . . . . . . 9
⊢ (𝑤 = 𝑦 → (𝐺‘(𝑔 ↾ 𝑤)) = (𝐺‘(𝑔 ↾ 𝑦))) | 
| 5 | 2, 4 | eqeq12d 2211 | 
. . . . . . . 8
⊢ (𝑤 = 𝑦 → ((𝑔‘𝑤) = (𝐺‘(𝑔 ↾ 𝑤)) ↔ (𝑔‘𝑦) = (𝐺‘(𝑔 ↾ 𝑦)))) | 
| 6 | 5 | cbvralv 2729 | 
. . . . . . 7
⊢
(∀𝑤 ∈
𝑧 (𝑔‘𝑤) = (𝐺‘(𝑔 ↾ 𝑤)) ↔ ∀𝑦 ∈ 𝑧 (𝑔‘𝑦) = (𝐺‘(𝑔 ↾ 𝑦))) | 
| 7 | 6 | anbi2i 457 | 
. . . . . 6
⊢ ((𝑔:𝑧⟶𝑆 ∧ ∀𝑤 ∈ 𝑧 (𝑔‘𝑤) = (𝐺‘(𝑔 ↾ 𝑤))) ↔ (𝑔:𝑧⟶𝑆 ∧ ∀𝑦 ∈ 𝑧 (𝑔‘𝑦) = (𝐺‘(𝑔 ↾ 𝑦)))) | 
| 8 | 7 | exbii 1619 | 
. . . . 5
⊢
(∃𝑔(𝑔:𝑧⟶𝑆 ∧ ∀𝑤 ∈ 𝑧 (𝑔‘𝑤) = (𝐺‘(𝑔 ↾ 𝑤))) ↔ ∃𝑔(𝑔:𝑧⟶𝑆 ∧ ∀𝑦 ∈ 𝑧 (𝑔‘𝑦) = (𝐺‘(𝑔 ↾ 𝑦)))) | 
| 9 | 8 | ralbii 2503 | 
. . . 4
⊢
(∀𝑧 ∈
𝐷 ∃𝑔(𝑔:𝑧⟶𝑆 ∧ ∀𝑤 ∈ 𝑧 (𝑔‘𝑤) = (𝐺‘(𝑔 ↾ 𝑤))) ↔ ∀𝑧 ∈ 𝐷 ∃𝑔(𝑔:𝑧⟶𝑆 ∧ ∀𝑦 ∈ 𝑧 (𝑔‘𝑦) = (𝐺‘(𝑔 ↾ 𝑦)))) | 
| 10 | 1, 9 | sylib 122 | 
. . 3
⊢ (𝜑 → ∀𝑧 ∈ 𝐷 ∃𝑔(𝑔:𝑧⟶𝑆 ∧ ∀𝑦 ∈ 𝑧 (𝑔‘𝑦) = (𝐺‘(𝑔 ↾ 𝑦)))) | 
| 11 |   | simp1 999 | 
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑧 ∈ 𝐷 ∧ (𝑔:𝑧⟶𝑆 ∧ ∀𝑦 ∈ 𝑧 (𝑔‘𝑦) = (𝐺‘(𝑔 ↾ 𝑦)))) → 𝜑) | 
| 12 |   | simp2 1000 | 
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑧 ∈ 𝐷 ∧ (𝑔:𝑧⟶𝑆 ∧ ∀𝑦 ∈ 𝑧 (𝑔‘𝑦) = (𝐺‘(𝑔 ↾ 𝑦)))) → 𝑧 ∈ 𝐷) | 
| 13 |   | tfrcllembacc.4 | 
. . . . . . . . . 10
⊢ (𝜑 → 𝐷 ∈ 𝑋) | 
| 14 | 11, 13 | syl 14 | 
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑧 ∈ 𝐷 ∧ (𝑔:𝑧⟶𝑆 ∧ ∀𝑦 ∈ 𝑧 (𝑔‘𝑦) = (𝐺‘(𝑔 ↾ 𝑦)))) → 𝐷 ∈ 𝑋) | 
| 15 |   | tfrcl.x | 
. . . . . . . . . . 11
⊢ (𝜑 → Ord 𝑋) | 
| 16 |   | ordtr1 4423 | 
. . . . . . . . . . 11
⊢ (Ord
𝑋 → ((𝑧 ∈ 𝐷 ∧ 𝐷 ∈ 𝑋) → 𝑧 ∈ 𝑋)) | 
| 17 | 15, 16 | syl 14 | 
. . . . . . . . . 10
⊢ (𝜑 → ((𝑧 ∈ 𝐷 ∧ 𝐷 ∈ 𝑋) → 𝑧 ∈ 𝑋)) | 
| 18 | 17 | imp 124 | 
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑧 ∈ 𝐷 ∧ 𝐷 ∈ 𝑋)) → 𝑧 ∈ 𝑋) | 
| 19 | 11, 12, 14, 18 | syl12anc 1247 | 
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑧 ∈ 𝐷 ∧ (𝑔:𝑧⟶𝑆 ∧ ∀𝑦 ∈ 𝑧 (𝑔‘𝑦) = (𝐺‘(𝑔 ↾ 𝑦)))) → 𝑧 ∈ 𝑋) | 
| 20 |   | simp3l 1027 | 
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑧 ∈ 𝐷 ∧ (𝑔:𝑧⟶𝑆 ∧ ∀𝑦 ∈ 𝑧 (𝑔‘𝑦) = (𝐺‘(𝑔 ↾ 𝑦)))) → 𝑔:𝑧⟶𝑆) | 
| 21 |   | feq2 5391 | 
. . . . . . . . . . . . 13
⊢ (𝑥 = 𝑧 → (𝑓:𝑥⟶𝑆 ↔ 𝑓:𝑧⟶𝑆)) | 
| 22 | 21 | imbi1d 231 | 
. . . . . . . . . . . 12
⊢ (𝑥 = 𝑧 → ((𝑓:𝑥⟶𝑆 → (𝐺‘𝑓) ∈ 𝑆) ↔ (𝑓:𝑧⟶𝑆 → (𝐺‘𝑓) ∈ 𝑆))) | 
| 23 | 22 | albidv 1838 | 
. . . . . . . . . . 11
⊢ (𝑥 = 𝑧 → (∀𝑓(𝑓:𝑥⟶𝑆 → (𝐺‘𝑓) ∈ 𝑆) ↔ ∀𝑓(𝑓:𝑧⟶𝑆 → (𝐺‘𝑓) ∈ 𝑆))) | 
| 24 |   | tfrcl.ex | 
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋 ∧ 𝑓:𝑥⟶𝑆) → (𝐺‘𝑓) ∈ 𝑆) | 
| 25 | 24 | 3expia 1207 | 
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → (𝑓:𝑥⟶𝑆 → (𝐺‘𝑓) ∈ 𝑆)) | 
| 26 | 25 | alrimiv 1888 | 
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → ∀𝑓(𝑓:𝑥⟶𝑆 → (𝐺‘𝑓) ∈ 𝑆)) | 
| 27 | 26 | ralrimiva 2570 | 
. . . . . . . . . . . 12
⊢ (𝜑 → ∀𝑥 ∈ 𝑋 ∀𝑓(𝑓:𝑥⟶𝑆 → (𝐺‘𝑓) ∈ 𝑆)) | 
| 28 | 27 | adantr 276 | 
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑧 ∈ 𝑋) → ∀𝑥 ∈ 𝑋 ∀𝑓(𝑓:𝑥⟶𝑆 → (𝐺‘𝑓) ∈ 𝑆)) | 
| 29 |   | simpr 110 | 
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑧 ∈ 𝑋) → 𝑧 ∈ 𝑋) | 
| 30 | 23, 28, 29 | rspcdva 2873 | 
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑧 ∈ 𝑋) → ∀𝑓(𝑓:𝑧⟶𝑆 → (𝐺‘𝑓) ∈ 𝑆)) | 
| 31 |   | feq1 5390 | 
. . . . . . . . . . . 12
⊢ (𝑓 = 𝑔 → (𝑓:𝑧⟶𝑆 ↔ 𝑔:𝑧⟶𝑆)) | 
| 32 |   | fveq2 5558 | 
. . . . . . . . . . . . 13
⊢ (𝑓 = 𝑔 → (𝐺‘𝑓) = (𝐺‘𝑔)) | 
| 33 | 32 | eleq1d 2265 | 
. . . . . . . . . . . 12
⊢ (𝑓 = 𝑔 → ((𝐺‘𝑓) ∈ 𝑆 ↔ (𝐺‘𝑔) ∈ 𝑆)) | 
| 34 | 31, 33 | imbi12d 234 | 
. . . . . . . . . . 11
⊢ (𝑓 = 𝑔 → ((𝑓:𝑧⟶𝑆 → (𝐺‘𝑓) ∈ 𝑆) ↔ (𝑔:𝑧⟶𝑆 → (𝐺‘𝑔) ∈ 𝑆))) | 
| 35 | 34 | spv 1874 | 
. . . . . . . . . 10
⊢
(∀𝑓(𝑓:𝑧⟶𝑆 → (𝐺‘𝑓) ∈ 𝑆) → (𝑔:𝑧⟶𝑆 → (𝐺‘𝑔) ∈ 𝑆)) | 
| 36 | 30, 35 | syl 14 | 
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑧 ∈ 𝑋) → (𝑔:𝑧⟶𝑆 → (𝐺‘𝑔) ∈ 𝑆)) | 
| 37 | 36 | imp 124 | 
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑧 ∈ 𝑋) ∧ 𝑔:𝑧⟶𝑆) → (𝐺‘𝑔) ∈ 𝑆) | 
| 38 | 11, 19, 20, 37 | syl21anc 1248 | 
. . . . . . 7
⊢ ((𝜑 ∧ 𝑧 ∈ 𝐷 ∧ (𝑔:𝑧⟶𝑆 ∧ ∀𝑦 ∈ 𝑧 (𝑔‘𝑦) = (𝐺‘(𝑔 ↾ 𝑦)))) → (𝐺‘𝑔) ∈ 𝑆) | 
| 39 |   | vex 2766 | 
. . . . . . . . . 10
⊢ 𝑧 ∈ V | 
| 40 |   | opexg 4261 | 
. . . . . . . . . 10
⊢ ((𝑧 ∈ V ∧ (𝐺‘𝑔) ∈ 𝑆) → 〈𝑧, (𝐺‘𝑔)〉 ∈ V) | 
| 41 | 39, 38, 40 | sylancr 414 | 
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑧 ∈ 𝐷 ∧ (𝑔:𝑧⟶𝑆 ∧ ∀𝑦 ∈ 𝑧 (𝑔‘𝑦) = (𝐺‘(𝑔 ↾ 𝑦)))) → 〈𝑧, (𝐺‘𝑔)〉 ∈ V) | 
| 42 |   | snidg 3651 | 
. . . . . . . . 9
⊢
(〈𝑧, (𝐺‘𝑔)〉 ∈ V → 〈𝑧, (𝐺‘𝑔)〉 ∈ {〈𝑧, (𝐺‘𝑔)〉}) | 
| 43 |   | elun2 3331 | 
. . . . . . . . 9
⊢
(〈𝑧, (𝐺‘𝑔)〉 ∈ {〈𝑧, (𝐺‘𝑔)〉} → 〈𝑧, (𝐺‘𝑔)〉 ∈ (𝑔 ∪ {〈𝑧, (𝐺‘𝑔)〉})) | 
| 44 | 41, 42, 43 | 3syl 17 | 
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑧 ∈ 𝐷 ∧ (𝑔:𝑧⟶𝑆 ∧ ∀𝑦 ∈ 𝑧 (𝑔‘𝑦) = (𝐺‘(𝑔 ↾ 𝑦)))) → 〈𝑧, (𝐺‘𝑔)〉 ∈ (𝑔 ∪ {〈𝑧, (𝐺‘𝑔)〉})) | 
| 45 |   | simp3r 1028 | 
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑧 ∈ 𝐷 ∧ (𝑔:𝑧⟶𝑆 ∧ ∀𝑦 ∈ 𝑧 (𝑔‘𝑦) = (𝐺‘(𝑔 ↾ 𝑦)))) → ∀𝑦 ∈ 𝑧 (𝑔‘𝑦) = (𝐺‘(𝑔 ↾ 𝑦))) | 
| 46 |   | rspe 2546 | 
. . . . . . . . . . . . 13
⊢ ((𝑧 ∈ 𝑋 ∧ (𝑔:𝑧⟶𝑆 ∧ ∀𝑦 ∈ 𝑧 (𝑔‘𝑦) = (𝐺‘(𝑔 ↾ 𝑦)))) → ∃𝑧 ∈ 𝑋 (𝑔:𝑧⟶𝑆 ∧ ∀𝑦 ∈ 𝑧 (𝑔‘𝑦) = (𝐺‘(𝑔 ↾ 𝑦)))) | 
| 47 | 19, 20, 45, 46 | syl12anc 1247 | 
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑧 ∈ 𝐷 ∧ (𝑔:𝑧⟶𝑆 ∧ ∀𝑦 ∈ 𝑧 (𝑔‘𝑦) = (𝐺‘(𝑔 ↾ 𝑦)))) → ∃𝑧 ∈ 𝑋 (𝑔:𝑧⟶𝑆 ∧ ∀𝑦 ∈ 𝑧 (𝑔‘𝑦) = (𝐺‘(𝑔 ↾ 𝑦)))) | 
| 48 |   | feq2 5391 | 
. . . . . . . . . . . . . 14
⊢ (𝑧 = 𝑥 → (𝑔:𝑧⟶𝑆 ↔ 𝑔:𝑥⟶𝑆)) | 
| 49 |   | raleq 2693 | 
. . . . . . . . . . . . . 14
⊢ (𝑧 = 𝑥 → (∀𝑦 ∈ 𝑧 (𝑔‘𝑦) = (𝐺‘(𝑔 ↾ 𝑦)) ↔ ∀𝑦 ∈ 𝑥 (𝑔‘𝑦) = (𝐺‘(𝑔 ↾ 𝑦)))) | 
| 50 | 48, 49 | anbi12d 473 | 
. . . . . . . . . . . . 13
⊢ (𝑧 = 𝑥 → ((𝑔:𝑧⟶𝑆 ∧ ∀𝑦 ∈ 𝑧 (𝑔‘𝑦) = (𝐺‘(𝑔 ↾ 𝑦))) ↔ (𝑔:𝑥⟶𝑆 ∧ ∀𝑦 ∈ 𝑥 (𝑔‘𝑦) = (𝐺‘(𝑔 ↾ 𝑦))))) | 
| 51 | 50 | cbvrexv 2730 | 
. . . . . . . . . . . 12
⊢
(∃𝑧 ∈
𝑋 (𝑔:𝑧⟶𝑆 ∧ ∀𝑦 ∈ 𝑧 (𝑔‘𝑦) = (𝐺‘(𝑔 ↾ 𝑦))) ↔ ∃𝑥 ∈ 𝑋 (𝑔:𝑥⟶𝑆 ∧ ∀𝑦 ∈ 𝑥 (𝑔‘𝑦) = (𝐺‘(𝑔 ↾ 𝑦)))) | 
| 52 | 47, 51 | sylib 122 | 
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑧 ∈ 𝐷 ∧ (𝑔:𝑧⟶𝑆 ∧ ∀𝑦 ∈ 𝑧 (𝑔‘𝑦) = (𝐺‘(𝑔 ↾ 𝑦)))) → ∃𝑥 ∈ 𝑋 (𝑔:𝑥⟶𝑆 ∧ ∀𝑦 ∈ 𝑥 (𝑔‘𝑦) = (𝐺‘(𝑔 ↾ 𝑦)))) | 
| 53 |   | vex 2766 | 
. . . . . . . . . . . 12
⊢ 𝑔 ∈ V | 
| 54 |   | feq1 5390 | 
. . . . . . . . . . . . . 14
⊢ (𝑓 = 𝑔 → (𝑓:𝑥⟶𝑆 ↔ 𝑔:𝑥⟶𝑆)) | 
| 55 |   | fveq1 5557 | 
. . . . . . . . . . . . . . . 16
⊢ (𝑓 = 𝑔 → (𝑓‘𝑦) = (𝑔‘𝑦)) | 
| 56 |   | reseq1 4940 | 
. . . . . . . . . . . . . . . . 17
⊢ (𝑓 = 𝑔 → (𝑓 ↾ 𝑦) = (𝑔 ↾ 𝑦)) | 
| 57 | 56 | fveq2d 5562 | 
. . . . . . . . . . . . . . . 16
⊢ (𝑓 = 𝑔 → (𝐺‘(𝑓 ↾ 𝑦)) = (𝐺‘(𝑔 ↾ 𝑦))) | 
| 58 | 55, 57 | eqeq12d 2211 | 
. . . . . . . . . . . . . . 15
⊢ (𝑓 = 𝑔 → ((𝑓‘𝑦) = (𝐺‘(𝑓 ↾ 𝑦)) ↔ (𝑔‘𝑦) = (𝐺‘(𝑔 ↾ 𝑦)))) | 
| 59 | 58 | ralbidv 2497 | 
. . . . . . . . . . . . . 14
⊢ (𝑓 = 𝑔 → (∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝐺‘(𝑓 ↾ 𝑦)) ↔ ∀𝑦 ∈ 𝑥 (𝑔‘𝑦) = (𝐺‘(𝑔 ↾ 𝑦)))) | 
| 60 | 54, 59 | anbi12d 473 | 
. . . . . . . . . . . . 13
⊢ (𝑓 = 𝑔 → ((𝑓:𝑥⟶𝑆 ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝐺‘(𝑓 ↾ 𝑦))) ↔ (𝑔:𝑥⟶𝑆 ∧ ∀𝑦 ∈ 𝑥 (𝑔‘𝑦) = (𝐺‘(𝑔 ↾ 𝑦))))) | 
| 61 | 60 | rexbidv 2498 | 
. . . . . . . . . . . 12
⊢ (𝑓 = 𝑔 → (∃𝑥 ∈ 𝑋 (𝑓:𝑥⟶𝑆 ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝐺‘(𝑓 ↾ 𝑦))) ↔ ∃𝑥 ∈ 𝑋 (𝑔:𝑥⟶𝑆 ∧ ∀𝑦 ∈ 𝑥 (𝑔‘𝑦) = (𝐺‘(𝑔 ↾ 𝑦))))) | 
| 62 |   | tfrcllemsucfn.1 | 
. . . . . . . . . . . 12
⊢ 𝐴 = {𝑓 ∣ ∃𝑥 ∈ 𝑋 (𝑓:𝑥⟶𝑆 ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝐺‘(𝑓 ↾ 𝑦)))} | 
| 63 | 53, 61, 62 | elab2 2912 | 
. . . . . . . . . . 11
⊢ (𝑔 ∈ 𝐴 ↔ ∃𝑥 ∈ 𝑋 (𝑔:𝑥⟶𝑆 ∧ ∀𝑦 ∈ 𝑥 (𝑔‘𝑦) = (𝐺‘(𝑔 ↾ 𝑦)))) | 
| 64 | 52, 63 | sylibr 134 | 
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑧 ∈ 𝐷 ∧ (𝑔:𝑧⟶𝑆 ∧ ∀𝑦 ∈ 𝑧 (𝑔‘𝑦) = (𝐺‘(𝑔 ↾ 𝑦)))) → 𝑔 ∈ 𝐴) | 
| 65 | 12, 20, 64 | 3jca 1179 | 
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑧 ∈ 𝐷 ∧ (𝑔:𝑧⟶𝑆 ∧ ∀𝑦 ∈ 𝑧 (𝑔‘𝑦) = (𝐺‘(𝑔 ↾ 𝑦)))) → (𝑧 ∈ 𝐷 ∧ 𝑔:𝑧⟶𝑆 ∧ 𝑔 ∈ 𝐴)) | 
| 66 |   | snexg 4217 | 
. . . . . . . . . . 11
⊢
(〈𝑧, (𝐺‘𝑔)〉 ∈ V → {〈𝑧, (𝐺‘𝑔)〉} ∈ V) | 
| 67 |   | unexg 4478 | 
. . . . . . . . . . . 12
⊢ ((𝑔 ∈ V ∧ {〈𝑧, (𝐺‘𝑔)〉} ∈ V) → (𝑔 ∪ {〈𝑧, (𝐺‘𝑔)〉}) ∈ V) | 
| 68 | 53, 67 | mpan 424 | 
. . . . . . . . . . 11
⊢
({〈𝑧, (𝐺‘𝑔)〉} ∈ V → (𝑔 ∪ {〈𝑧, (𝐺‘𝑔)〉}) ∈ V) | 
| 69 | 41, 66, 68 | 3syl 17 | 
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑧 ∈ 𝐷 ∧ (𝑔:𝑧⟶𝑆 ∧ ∀𝑦 ∈ 𝑧 (𝑔‘𝑦) = (𝐺‘(𝑔 ↾ 𝑦)))) → (𝑔 ∪ {〈𝑧, (𝐺‘𝑔)〉}) ∈ V) | 
| 70 |   | isset 2769 | 
. . . . . . . . . 10
⊢ ((𝑔 ∪ {〈𝑧, (𝐺‘𝑔)〉}) ∈ V ↔ ∃ℎ ℎ = (𝑔 ∪ {〈𝑧, (𝐺‘𝑔)〉})) | 
| 71 | 69, 70 | sylib 122 | 
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑧 ∈ 𝐷 ∧ (𝑔:𝑧⟶𝑆 ∧ ∀𝑦 ∈ 𝑧 (𝑔‘𝑦) = (𝐺‘(𝑔 ↾ 𝑦)))) → ∃ℎ ℎ = (𝑔 ∪ {〈𝑧, (𝐺‘𝑔)〉})) | 
| 72 |   | simpr3 1007 | 
. . . . . . . . . . . . 13
⊢ ((𝑧 ∈ 𝐷 ∧ (𝑔:𝑧⟶𝑆 ∧ 𝑔 ∈ 𝐴 ∧ ℎ = (𝑔 ∪ {〈𝑧, (𝐺‘𝑔)〉}))) → ℎ = (𝑔 ∪ {〈𝑧, (𝐺‘𝑔)〉})) | 
| 73 |   | 19.8a 1604 | 
. . . . . . . . . . . . . 14
⊢ ((𝑔:𝑧⟶𝑆 ∧ 𝑔 ∈ 𝐴 ∧ ℎ = (𝑔 ∪ {〈𝑧, (𝐺‘𝑔)〉})) → ∃𝑔(𝑔:𝑧⟶𝑆 ∧ 𝑔 ∈ 𝐴 ∧ ℎ = (𝑔 ∪ {〈𝑧, (𝐺‘𝑔)〉}))) | 
| 74 |   | rspe 2546 | 
. . . . . . . . . . . . . . 15
⊢ ((𝑧 ∈ 𝐷 ∧ ∃𝑔(𝑔:𝑧⟶𝑆 ∧ 𝑔 ∈ 𝐴 ∧ ℎ = (𝑔 ∪ {〈𝑧, (𝐺‘𝑔)〉}))) → ∃𝑧 ∈ 𝐷 ∃𝑔(𝑔:𝑧⟶𝑆 ∧ 𝑔 ∈ 𝐴 ∧ ℎ = (𝑔 ∪ {〈𝑧, (𝐺‘𝑔)〉}))) | 
| 75 |   | tfrcllembacc.3 | 
. . . . . . . . . . . . . . . 16
⊢ 𝐵 = {ℎ ∣ ∃𝑧 ∈ 𝐷 ∃𝑔(𝑔:𝑧⟶𝑆 ∧ 𝑔 ∈ 𝐴 ∧ ℎ = (𝑔 ∪ {〈𝑧, (𝐺‘𝑔)〉}))} | 
| 76 | 75 | abeq2i 2307 | 
. . . . . . . . . . . . . . 15
⊢ (ℎ ∈ 𝐵 ↔ ∃𝑧 ∈ 𝐷 ∃𝑔(𝑔:𝑧⟶𝑆 ∧ 𝑔 ∈ 𝐴 ∧ ℎ = (𝑔 ∪ {〈𝑧, (𝐺‘𝑔)〉}))) | 
| 77 | 74, 76 | sylibr 134 | 
. . . . . . . . . . . . . 14
⊢ ((𝑧 ∈ 𝐷 ∧ ∃𝑔(𝑔:𝑧⟶𝑆 ∧ 𝑔 ∈ 𝐴 ∧ ℎ = (𝑔 ∪ {〈𝑧, (𝐺‘𝑔)〉}))) → ℎ ∈ 𝐵) | 
| 78 | 73, 77 | sylan2 286 | 
. . . . . . . . . . . . 13
⊢ ((𝑧 ∈ 𝐷 ∧ (𝑔:𝑧⟶𝑆 ∧ 𝑔 ∈ 𝐴 ∧ ℎ = (𝑔 ∪ {〈𝑧, (𝐺‘𝑔)〉}))) → ℎ ∈ 𝐵) | 
| 79 | 72, 78 | eqeltrrd 2274 | 
. . . . . . . . . . . 12
⊢ ((𝑧 ∈ 𝐷 ∧ (𝑔:𝑧⟶𝑆 ∧ 𝑔 ∈ 𝐴 ∧ ℎ = (𝑔 ∪ {〈𝑧, (𝐺‘𝑔)〉}))) → (𝑔 ∪ {〈𝑧, (𝐺‘𝑔)〉}) ∈ 𝐵) | 
| 80 | 79 | 3exp2 1227 | 
. . . . . . . . . . 11
⊢ (𝑧 ∈ 𝐷 → (𝑔:𝑧⟶𝑆 → (𝑔 ∈ 𝐴 → (ℎ = (𝑔 ∪ {〈𝑧, (𝐺‘𝑔)〉}) → (𝑔 ∪ {〈𝑧, (𝐺‘𝑔)〉}) ∈ 𝐵)))) | 
| 81 | 80 | 3imp 1195 | 
. . . . . . . . . 10
⊢ ((𝑧 ∈ 𝐷 ∧ 𝑔:𝑧⟶𝑆 ∧ 𝑔 ∈ 𝐴) → (ℎ = (𝑔 ∪ {〈𝑧, (𝐺‘𝑔)〉}) → (𝑔 ∪ {〈𝑧, (𝐺‘𝑔)〉}) ∈ 𝐵)) | 
| 82 | 81 | exlimdv 1833 | 
. . . . . . . . 9
⊢ ((𝑧 ∈ 𝐷 ∧ 𝑔:𝑧⟶𝑆 ∧ 𝑔 ∈ 𝐴) → (∃ℎ ℎ = (𝑔 ∪ {〈𝑧, (𝐺‘𝑔)〉}) → (𝑔 ∪ {〈𝑧, (𝐺‘𝑔)〉}) ∈ 𝐵)) | 
| 83 | 65, 71, 82 | sylc 62 | 
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑧 ∈ 𝐷 ∧ (𝑔:𝑧⟶𝑆 ∧ ∀𝑦 ∈ 𝑧 (𝑔‘𝑦) = (𝐺‘(𝑔 ↾ 𝑦)))) → (𝑔 ∪ {〈𝑧, (𝐺‘𝑔)〉}) ∈ 𝐵) | 
| 84 |   | elunii 3844 | 
. . . . . . . 8
⊢
((〈𝑧, (𝐺‘𝑔)〉 ∈ (𝑔 ∪ {〈𝑧, (𝐺‘𝑔)〉}) ∧ (𝑔 ∪ {〈𝑧, (𝐺‘𝑔)〉}) ∈ 𝐵) → 〈𝑧, (𝐺‘𝑔)〉 ∈ ∪
𝐵) | 
| 85 | 44, 83, 84 | syl2anc 411 | 
. . . . . . 7
⊢ ((𝜑 ∧ 𝑧 ∈ 𝐷 ∧ (𝑔:𝑧⟶𝑆 ∧ ∀𝑦 ∈ 𝑧 (𝑔‘𝑦) = (𝐺‘(𝑔 ↾ 𝑦)))) → 〈𝑧, (𝐺‘𝑔)〉 ∈ ∪
𝐵) | 
| 86 |   | opeq2 3809 | 
. . . . . . . . . 10
⊢ (𝑤 = (𝐺‘𝑔) → 〈𝑧, 𝑤〉 = 〈𝑧, (𝐺‘𝑔)〉) | 
| 87 | 86 | eleq1d 2265 | 
. . . . . . . . 9
⊢ (𝑤 = (𝐺‘𝑔) → (〈𝑧, 𝑤〉 ∈ ∪
𝐵 ↔ 〈𝑧, (𝐺‘𝑔)〉 ∈ ∪
𝐵)) | 
| 88 | 87 | spcegv 2852 | 
. . . . . . . 8
⊢ ((𝐺‘𝑔) ∈ 𝑆 → (〈𝑧, (𝐺‘𝑔)〉 ∈ ∪
𝐵 → ∃𝑤〈𝑧, 𝑤〉 ∈ ∪
𝐵)) | 
| 89 | 39 | eldm2 4864 | 
. . . . . . . 8
⊢ (𝑧 ∈ dom ∪ 𝐵
↔ ∃𝑤〈𝑧, 𝑤〉 ∈ ∪
𝐵) | 
| 90 | 88, 89 | imbitrrdi 162 | 
. . . . . . 7
⊢ ((𝐺‘𝑔) ∈ 𝑆 → (〈𝑧, (𝐺‘𝑔)〉 ∈ ∪
𝐵 → 𝑧 ∈ dom ∪
𝐵)) | 
| 91 | 38, 85, 90 | sylc 62 | 
. . . . . 6
⊢ ((𝜑 ∧ 𝑧 ∈ 𝐷 ∧ (𝑔:𝑧⟶𝑆 ∧ ∀𝑦 ∈ 𝑧 (𝑔‘𝑦) = (𝐺‘(𝑔 ↾ 𝑦)))) → 𝑧 ∈ dom ∪
𝐵) | 
| 92 | 91 | 3expia 1207 | 
. . . . 5
⊢ ((𝜑 ∧ 𝑧 ∈ 𝐷) → ((𝑔:𝑧⟶𝑆 ∧ ∀𝑦 ∈ 𝑧 (𝑔‘𝑦) = (𝐺‘(𝑔 ↾ 𝑦))) → 𝑧 ∈ dom ∪
𝐵)) | 
| 93 | 92 | exlimdv 1833 | 
. . . 4
⊢ ((𝜑 ∧ 𝑧 ∈ 𝐷) → (∃𝑔(𝑔:𝑧⟶𝑆 ∧ ∀𝑦 ∈ 𝑧 (𝑔‘𝑦) = (𝐺‘(𝑔 ↾ 𝑦))) → 𝑧 ∈ dom ∪
𝐵)) | 
| 94 | 93 | ralimdva 2564 | 
. . 3
⊢ (𝜑 → (∀𝑧 ∈ 𝐷 ∃𝑔(𝑔:𝑧⟶𝑆 ∧ ∀𝑦 ∈ 𝑧 (𝑔‘𝑦) = (𝐺‘(𝑔 ↾ 𝑦))) → ∀𝑧 ∈ 𝐷 𝑧 ∈ dom ∪
𝐵)) | 
| 95 | 10, 94 | mpd 13 | 
. 2
⊢ (𝜑 → ∀𝑧 ∈ 𝐷 𝑧 ∈ dom ∪
𝐵) | 
| 96 |   | dfss3 3173 | 
. 2
⊢ (𝐷 ⊆ dom ∪ 𝐵
↔ ∀𝑧 ∈
𝐷 𝑧 ∈ dom ∪
𝐵) | 
| 97 | 95, 96 | sylibr 134 | 
1
⊢ (𝜑 → 𝐷 ⊆ dom ∪
𝐵) |