ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  tfrcllembxssdm GIF version

Theorem tfrcllembxssdm 6441
Description: Lemma for tfrcl 6449. The union of 𝐵 is defined on all elements of 𝑋. (Contributed by Jim Kingdon, 25-Mar-2022.)
Hypotheses
Ref Expression
tfrcl.f 𝐹 = recs(𝐺)
tfrcl.g (𝜑 → Fun 𝐺)
tfrcl.x (𝜑 → Ord 𝑋)
tfrcl.ex ((𝜑𝑥𝑋𝑓:𝑥𝑆) → (𝐺𝑓) ∈ 𝑆)
tfrcllemsucfn.1 𝐴 = {𝑓 ∣ ∃𝑥𝑋 (𝑓:𝑥𝑆 ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐺‘(𝑓𝑦)))}
tfrcllembacc.3 𝐵 = { ∣ ∃𝑧𝐷𝑔(𝑔:𝑧𝑆𝑔𝐴 = (𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}))}
tfrcllembacc.u ((𝜑𝑥 𝑋) → suc 𝑥𝑋)
tfrcllembacc.4 (𝜑𝐷𝑋)
tfrcllembacc.5 (𝜑 → ∀𝑧𝐷𝑔(𝑔:𝑧𝑆 ∧ ∀𝑤𝑧 (𝑔𝑤) = (𝐺‘(𝑔𝑤))))
Assertion
Ref Expression
tfrcllembxssdm (𝜑𝐷 ⊆ dom 𝐵)
Distinct variable groups:   𝐴,𝑓,𝑔,,𝑥,𝑦,𝑧   𝐷,𝑓,𝑔,𝑥,𝑦   𝑓,𝐺,𝑥,𝑦   𝑆,𝑓,𝑥,𝑦   𝑓,𝑋,𝑥   𝜑,𝑓,𝑔,,𝑥,𝑦,𝑧   𝐵,𝑔,,𝑧   𝑤,𝐵,𝑔,𝑧   𝐷,,𝑧   ,𝐺,𝑧   𝑤,𝐺,𝑦   𝑆,,𝑧   𝑧,𝑋
Allowed substitution hints:   𝜑(𝑤)   𝐴(𝑤)   𝐵(𝑥,𝑦,𝑓)   𝐷(𝑤)   𝑆(𝑤,𝑔)   𝐹(𝑥,𝑦,𝑧,𝑤,𝑓,𝑔,)   𝐺(𝑔)   𝑋(𝑦,𝑤,𝑔,)

Proof of Theorem tfrcllembxssdm
StepHypRef Expression
1 tfrcllembacc.5 . . . 4 (𝜑 → ∀𝑧𝐷𝑔(𝑔:𝑧𝑆 ∧ ∀𝑤𝑧 (𝑔𝑤) = (𝐺‘(𝑔𝑤))))
2 fveq2 5575 . . . . . . . . 9 (𝑤 = 𝑦 → (𝑔𝑤) = (𝑔𝑦))
3 reseq2 4953 . . . . . . . . . 10 (𝑤 = 𝑦 → (𝑔𝑤) = (𝑔𝑦))
43fveq2d 5579 . . . . . . . . 9 (𝑤 = 𝑦 → (𝐺‘(𝑔𝑤)) = (𝐺‘(𝑔𝑦)))
52, 4eqeq12d 2219 . . . . . . . 8 (𝑤 = 𝑦 → ((𝑔𝑤) = (𝐺‘(𝑔𝑤)) ↔ (𝑔𝑦) = (𝐺‘(𝑔𝑦))))
65cbvralv 2737 . . . . . . 7 (∀𝑤𝑧 (𝑔𝑤) = (𝐺‘(𝑔𝑤)) ↔ ∀𝑦𝑧 (𝑔𝑦) = (𝐺‘(𝑔𝑦)))
76anbi2i 457 . . . . . 6 ((𝑔:𝑧𝑆 ∧ ∀𝑤𝑧 (𝑔𝑤) = (𝐺‘(𝑔𝑤))) ↔ (𝑔:𝑧𝑆 ∧ ∀𝑦𝑧 (𝑔𝑦) = (𝐺‘(𝑔𝑦))))
87exbii 1627 . . . . 5 (∃𝑔(𝑔:𝑧𝑆 ∧ ∀𝑤𝑧 (𝑔𝑤) = (𝐺‘(𝑔𝑤))) ↔ ∃𝑔(𝑔:𝑧𝑆 ∧ ∀𝑦𝑧 (𝑔𝑦) = (𝐺‘(𝑔𝑦))))
98ralbii 2511 . . . 4 (∀𝑧𝐷𝑔(𝑔:𝑧𝑆 ∧ ∀𝑤𝑧 (𝑔𝑤) = (𝐺‘(𝑔𝑤))) ↔ ∀𝑧𝐷𝑔(𝑔:𝑧𝑆 ∧ ∀𝑦𝑧 (𝑔𝑦) = (𝐺‘(𝑔𝑦))))
101, 9sylib 122 . . 3 (𝜑 → ∀𝑧𝐷𝑔(𝑔:𝑧𝑆 ∧ ∀𝑦𝑧 (𝑔𝑦) = (𝐺‘(𝑔𝑦))))
11 simp1 999 . . . . . . . 8 ((𝜑𝑧𝐷 ∧ (𝑔:𝑧𝑆 ∧ ∀𝑦𝑧 (𝑔𝑦) = (𝐺‘(𝑔𝑦)))) → 𝜑)
12 simp2 1000 . . . . . . . . 9 ((𝜑𝑧𝐷 ∧ (𝑔:𝑧𝑆 ∧ ∀𝑦𝑧 (𝑔𝑦) = (𝐺‘(𝑔𝑦)))) → 𝑧𝐷)
13 tfrcllembacc.4 . . . . . . . . . 10 (𝜑𝐷𝑋)
1411, 13syl 14 . . . . . . . . 9 ((𝜑𝑧𝐷 ∧ (𝑔:𝑧𝑆 ∧ ∀𝑦𝑧 (𝑔𝑦) = (𝐺‘(𝑔𝑦)))) → 𝐷𝑋)
15 tfrcl.x . . . . . . . . . . 11 (𝜑 → Ord 𝑋)
16 ordtr1 4434 . . . . . . . . . . 11 (Ord 𝑋 → ((𝑧𝐷𝐷𝑋) → 𝑧𝑋))
1715, 16syl 14 . . . . . . . . . 10 (𝜑 → ((𝑧𝐷𝐷𝑋) → 𝑧𝑋))
1817imp 124 . . . . . . . . 9 ((𝜑 ∧ (𝑧𝐷𝐷𝑋)) → 𝑧𝑋)
1911, 12, 14, 18syl12anc 1247 . . . . . . . 8 ((𝜑𝑧𝐷 ∧ (𝑔:𝑧𝑆 ∧ ∀𝑦𝑧 (𝑔𝑦) = (𝐺‘(𝑔𝑦)))) → 𝑧𝑋)
20 simp3l 1027 . . . . . . . 8 ((𝜑𝑧𝐷 ∧ (𝑔:𝑧𝑆 ∧ ∀𝑦𝑧 (𝑔𝑦) = (𝐺‘(𝑔𝑦)))) → 𝑔:𝑧𝑆)
21 feq2 5408 . . . . . . . . . . . . 13 (𝑥 = 𝑧 → (𝑓:𝑥𝑆𝑓:𝑧𝑆))
2221imbi1d 231 . . . . . . . . . . . 12 (𝑥 = 𝑧 → ((𝑓:𝑥𝑆 → (𝐺𝑓) ∈ 𝑆) ↔ (𝑓:𝑧𝑆 → (𝐺𝑓) ∈ 𝑆)))
2322albidv 1846 . . . . . . . . . . 11 (𝑥 = 𝑧 → (∀𝑓(𝑓:𝑥𝑆 → (𝐺𝑓) ∈ 𝑆) ↔ ∀𝑓(𝑓:𝑧𝑆 → (𝐺𝑓) ∈ 𝑆)))
24 tfrcl.ex . . . . . . . . . . . . . . 15 ((𝜑𝑥𝑋𝑓:𝑥𝑆) → (𝐺𝑓) ∈ 𝑆)
25243expia 1207 . . . . . . . . . . . . . 14 ((𝜑𝑥𝑋) → (𝑓:𝑥𝑆 → (𝐺𝑓) ∈ 𝑆))
2625alrimiv 1896 . . . . . . . . . . . . 13 ((𝜑𝑥𝑋) → ∀𝑓(𝑓:𝑥𝑆 → (𝐺𝑓) ∈ 𝑆))
2726ralrimiva 2578 . . . . . . . . . . . 12 (𝜑 → ∀𝑥𝑋𝑓(𝑓:𝑥𝑆 → (𝐺𝑓) ∈ 𝑆))
2827adantr 276 . . . . . . . . . . 11 ((𝜑𝑧𝑋) → ∀𝑥𝑋𝑓(𝑓:𝑥𝑆 → (𝐺𝑓) ∈ 𝑆))
29 simpr 110 . . . . . . . . . . 11 ((𝜑𝑧𝑋) → 𝑧𝑋)
3023, 28, 29rspcdva 2881 . . . . . . . . . 10 ((𝜑𝑧𝑋) → ∀𝑓(𝑓:𝑧𝑆 → (𝐺𝑓) ∈ 𝑆))
31 feq1 5407 . . . . . . . . . . . 12 (𝑓 = 𝑔 → (𝑓:𝑧𝑆𝑔:𝑧𝑆))
32 fveq2 5575 . . . . . . . . . . . . 13 (𝑓 = 𝑔 → (𝐺𝑓) = (𝐺𝑔))
3332eleq1d 2273 . . . . . . . . . . . 12 (𝑓 = 𝑔 → ((𝐺𝑓) ∈ 𝑆 ↔ (𝐺𝑔) ∈ 𝑆))
3431, 33imbi12d 234 . . . . . . . . . . 11 (𝑓 = 𝑔 → ((𝑓:𝑧𝑆 → (𝐺𝑓) ∈ 𝑆) ↔ (𝑔:𝑧𝑆 → (𝐺𝑔) ∈ 𝑆)))
3534spv 1882 . . . . . . . . . 10 (∀𝑓(𝑓:𝑧𝑆 → (𝐺𝑓) ∈ 𝑆) → (𝑔:𝑧𝑆 → (𝐺𝑔) ∈ 𝑆))
3630, 35syl 14 . . . . . . . . 9 ((𝜑𝑧𝑋) → (𝑔:𝑧𝑆 → (𝐺𝑔) ∈ 𝑆))
3736imp 124 . . . . . . . 8 (((𝜑𝑧𝑋) ∧ 𝑔:𝑧𝑆) → (𝐺𝑔) ∈ 𝑆)
3811, 19, 20, 37syl21anc 1248 . . . . . . 7 ((𝜑𝑧𝐷 ∧ (𝑔:𝑧𝑆 ∧ ∀𝑦𝑧 (𝑔𝑦) = (𝐺‘(𝑔𝑦)))) → (𝐺𝑔) ∈ 𝑆)
39 vex 2774 . . . . . . . . . 10 𝑧 ∈ V
40 opexg 4271 . . . . . . . . . 10 ((𝑧 ∈ V ∧ (𝐺𝑔) ∈ 𝑆) → ⟨𝑧, (𝐺𝑔)⟩ ∈ V)
4139, 38, 40sylancr 414 . . . . . . . . 9 ((𝜑𝑧𝐷 ∧ (𝑔:𝑧𝑆 ∧ ∀𝑦𝑧 (𝑔𝑦) = (𝐺‘(𝑔𝑦)))) → ⟨𝑧, (𝐺𝑔)⟩ ∈ V)
42 snidg 3661 . . . . . . . . 9 (⟨𝑧, (𝐺𝑔)⟩ ∈ V → ⟨𝑧, (𝐺𝑔)⟩ ∈ {⟨𝑧, (𝐺𝑔)⟩})
43 elun2 3340 . . . . . . . . 9 (⟨𝑧, (𝐺𝑔)⟩ ∈ {⟨𝑧, (𝐺𝑔)⟩} → ⟨𝑧, (𝐺𝑔)⟩ ∈ (𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}))
4441, 42, 433syl 17 . . . . . . . 8 ((𝜑𝑧𝐷 ∧ (𝑔:𝑧𝑆 ∧ ∀𝑦𝑧 (𝑔𝑦) = (𝐺‘(𝑔𝑦)))) → ⟨𝑧, (𝐺𝑔)⟩ ∈ (𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}))
45 simp3r 1028 . . . . . . . . . . . . 13 ((𝜑𝑧𝐷 ∧ (𝑔:𝑧𝑆 ∧ ∀𝑦𝑧 (𝑔𝑦) = (𝐺‘(𝑔𝑦)))) → ∀𝑦𝑧 (𝑔𝑦) = (𝐺‘(𝑔𝑦)))
46 rspe 2554 . . . . . . . . . . . . 13 ((𝑧𝑋 ∧ (𝑔:𝑧𝑆 ∧ ∀𝑦𝑧 (𝑔𝑦) = (𝐺‘(𝑔𝑦)))) → ∃𝑧𝑋 (𝑔:𝑧𝑆 ∧ ∀𝑦𝑧 (𝑔𝑦) = (𝐺‘(𝑔𝑦))))
4719, 20, 45, 46syl12anc 1247 . . . . . . . . . . . 12 ((𝜑𝑧𝐷 ∧ (𝑔:𝑧𝑆 ∧ ∀𝑦𝑧 (𝑔𝑦) = (𝐺‘(𝑔𝑦)))) → ∃𝑧𝑋 (𝑔:𝑧𝑆 ∧ ∀𝑦𝑧 (𝑔𝑦) = (𝐺‘(𝑔𝑦))))
48 feq2 5408 . . . . . . . . . . . . . 14 (𝑧 = 𝑥 → (𝑔:𝑧𝑆𝑔:𝑥𝑆))
49 raleq 2701 . . . . . . . . . . . . . 14 (𝑧 = 𝑥 → (∀𝑦𝑧 (𝑔𝑦) = (𝐺‘(𝑔𝑦)) ↔ ∀𝑦𝑥 (𝑔𝑦) = (𝐺‘(𝑔𝑦))))
5048, 49anbi12d 473 . . . . . . . . . . . . 13 (𝑧 = 𝑥 → ((𝑔:𝑧𝑆 ∧ ∀𝑦𝑧 (𝑔𝑦) = (𝐺‘(𝑔𝑦))) ↔ (𝑔:𝑥𝑆 ∧ ∀𝑦𝑥 (𝑔𝑦) = (𝐺‘(𝑔𝑦)))))
5150cbvrexv 2738 . . . . . . . . . . . 12 (∃𝑧𝑋 (𝑔:𝑧𝑆 ∧ ∀𝑦𝑧 (𝑔𝑦) = (𝐺‘(𝑔𝑦))) ↔ ∃𝑥𝑋 (𝑔:𝑥𝑆 ∧ ∀𝑦𝑥 (𝑔𝑦) = (𝐺‘(𝑔𝑦))))
5247, 51sylib 122 . . . . . . . . . . 11 ((𝜑𝑧𝐷 ∧ (𝑔:𝑧𝑆 ∧ ∀𝑦𝑧 (𝑔𝑦) = (𝐺‘(𝑔𝑦)))) → ∃𝑥𝑋 (𝑔:𝑥𝑆 ∧ ∀𝑦𝑥 (𝑔𝑦) = (𝐺‘(𝑔𝑦))))
53 vex 2774 . . . . . . . . . . . 12 𝑔 ∈ V
54 feq1 5407 . . . . . . . . . . . . . 14 (𝑓 = 𝑔 → (𝑓:𝑥𝑆𝑔:𝑥𝑆))
55 fveq1 5574 . . . . . . . . . . . . . . . 16 (𝑓 = 𝑔 → (𝑓𝑦) = (𝑔𝑦))
56 reseq1 4952 . . . . . . . . . . . . . . . . 17 (𝑓 = 𝑔 → (𝑓𝑦) = (𝑔𝑦))
5756fveq2d 5579 . . . . . . . . . . . . . . . 16 (𝑓 = 𝑔 → (𝐺‘(𝑓𝑦)) = (𝐺‘(𝑔𝑦)))
5855, 57eqeq12d 2219 . . . . . . . . . . . . . . 15 (𝑓 = 𝑔 → ((𝑓𝑦) = (𝐺‘(𝑓𝑦)) ↔ (𝑔𝑦) = (𝐺‘(𝑔𝑦))))
5958ralbidv 2505 . . . . . . . . . . . . . 14 (𝑓 = 𝑔 → (∀𝑦𝑥 (𝑓𝑦) = (𝐺‘(𝑓𝑦)) ↔ ∀𝑦𝑥 (𝑔𝑦) = (𝐺‘(𝑔𝑦))))
6054, 59anbi12d 473 . . . . . . . . . . . . 13 (𝑓 = 𝑔 → ((𝑓:𝑥𝑆 ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐺‘(𝑓𝑦))) ↔ (𝑔:𝑥𝑆 ∧ ∀𝑦𝑥 (𝑔𝑦) = (𝐺‘(𝑔𝑦)))))
6160rexbidv 2506 . . . . . . . . . . . 12 (𝑓 = 𝑔 → (∃𝑥𝑋 (𝑓:𝑥𝑆 ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐺‘(𝑓𝑦))) ↔ ∃𝑥𝑋 (𝑔:𝑥𝑆 ∧ ∀𝑦𝑥 (𝑔𝑦) = (𝐺‘(𝑔𝑦)))))
62 tfrcllemsucfn.1 . . . . . . . . . . . 12 𝐴 = {𝑓 ∣ ∃𝑥𝑋 (𝑓:𝑥𝑆 ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐺‘(𝑓𝑦)))}
6353, 61, 62elab2 2920 . . . . . . . . . . 11 (𝑔𝐴 ↔ ∃𝑥𝑋 (𝑔:𝑥𝑆 ∧ ∀𝑦𝑥 (𝑔𝑦) = (𝐺‘(𝑔𝑦))))
6452, 63sylibr 134 . . . . . . . . . 10 ((𝜑𝑧𝐷 ∧ (𝑔:𝑧𝑆 ∧ ∀𝑦𝑧 (𝑔𝑦) = (𝐺‘(𝑔𝑦)))) → 𝑔𝐴)
6512, 20, 643jca 1179 . . . . . . . . 9 ((𝜑𝑧𝐷 ∧ (𝑔:𝑧𝑆 ∧ ∀𝑦𝑧 (𝑔𝑦) = (𝐺‘(𝑔𝑦)))) → (𝑧𝐷𝑔:𝑧𝑆𝑔𝐴))
66 snexg 4227 . . . . . . . . . . 11 (⟨𝑧, (𝐺𝑔)⟩ ∈ V → {⟨𝑧, (𝐺𝑔)⟩} ∈ V)
67 unexg 4489 . . . . . . . . . . . 12 ((𝑔 ∈ V ∧ {⟨𝑧, (𝐺𝑔)⟩} ∈ V) → (𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}) ∈ V)
6853, 67mpan 424 . . . . . . . . . . 11 ({⟨𝑧, (𝐺𝑔)⟩} ∈ V → (𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}) ∈ V)
6941, 66, 683syl 17 . . . . . . . . . 10 ((𝜑𝑧𝐷 ∧ (𝑔:𝑧𝑆 ∧ ∀𝑦𝑧 (𝑔𝑦) = (𝐺‘(𝑔𝑦)))) → (𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}) ∈ V)
70 isset 2777 . . . . . . . . . 10 ((𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}) ∈ V ↔ ∃ = (𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}))
7169, 70sylib 122 . . . . . . . . 9 ((𝜑𝑧𝐷 ∧ (𝑔:𝑧𝑆 ∧ ∀𝑦𝑧 (𝑔𝑦) = (𝐺‘(𝑔𝑦)))) → ∃ = (𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}))
72 simpr3 1007 . . . . . . . . . . . . 13 ((𝑧𝐷 ∧ (𝑔:𝑧𝑆𝑔𝐴 = (𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}))) → = (𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}))
73 19.8a 1612 . . . . . . . . . . . . . 14 ((𝑔:𝑧𝑆𝑔𝐴 = (𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩})) → ∃𝑔(𝑔:𝑧𝑆𝑔𝐴 = (𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩})))
74 rspe 2554 . . . . . . . . . . . . . . 15 ((𝑧𝐷 ∧ ∃𝑔(𝑔:𝑧𝑆𝑔𝐴 = (𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}))) → ∃𝑧𝐷𝑔(𝑔:𝑧𝑆𝑔𝐴 = (𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩})))
75 tfrcllembacc.3 . . . . . . . . . . . . . . . 16 𝐵 = { ∣ ∃𝑧𝐷𝑔(𝑔:𝑧𝑆𝑔𝐴 = (𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}))}
7675abeq2i 2315 . . . . . . . . . . . . . . 15 (𝐵 ↔ ∃𝑧𝐷𝑔(𝑔:𝑧𝑆𝑔𝐴 = (𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩})))
7774, 76sylibr 134 . . . . . . . . . . . . . 14 ((𝑧𝐷 ∧ ∃𝑔(𝑔:𝑧𝑆𝑔𝐴 = (𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}))) → 𝐵)
7873, 77sylan2 286 . . . . . . . . . . . . 13 ((𝑧𝐷 ∧ (𝑔:𝑧𝑆𝑔𝐴 = (𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}))) → 𝐵)
7972, 78eqeltrrd 2282 . . . . . . . . . . . 12 ((𝑧𝐷 ∧ (𝑔:𝑧𝑆𝑔𝐴 = (𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}))) → (𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}) ∈ 𝐵)
80793exp2 1227 . . . . . . . . . . 11 (𝑧𝐷 → (𝑔:𝑧𝑆 → (𝑔𝐴 → ( = (𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}) → (𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}) ∈ 𝐵))))
81803imp 1195 . . . . . . . . . 10 ((𝑧𝐷𝑔:𝑧𝑆𝑔𝐴) → ( = (𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}) → (𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}) ∈ 𝐵))
8281exlimdv 1841 . . . . . . . . 9 ((𝑧𝐷𝑔:𝑧𝑆𝑔𝐴) → (∃ = (𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}) → (𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}) ∈ 𝐵))
8365, 71, 82sylc 62 . . . . . . . 8 ((𝜑𝑧𝐷 ∧ (𝑔:𝑧𝑆 ∧ ∀𝑦𝑧 (𝑔𝑦) = (𝐺‘(𝑔𝑦)))) → (𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}) ∈ 𝐵)
84 elunii 3854 . . . . . . . 8 ((⟨𝑧, (𝐺𝑔)⟩ ∈ (𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}) ∧ (𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}) ∈ 𝐵) → ⟨𝑧, (𝐺𝑔)⟩ ∈ 𝐵)
8544, 83, 84syl2anc 411 . . . . . . 7 ((𝜑𝑧𝐷 ∧ (𝑔:𝑧𝑆 ∧ ∀𝑦𝑧 (𝑔𝑦) = (𝐺‘(𝑔𝑦)))) → ⟨𝑧, (𝐺𝑔)⟩ ∈ 𝐵)
86 opeq2 3819 . . . . . . . . . 10 (𝑤 = (𝐺𝑔) → ⟨𝑧, 𝑤⟩ = ⟨𝑧, (𝐺𝑔)⟩)
8786eleq1d 2273 . . . . . . . . 9 (𝑤 = (𝐺𝑔) → (⟨𝑧, 𝑤⟩ ∈ 𝐵 ↔ ⟨𝑧, (𝐺𝑔)⟩ ∈ 𝐵))
8887spcegv 2860 . . . . . . . 8 ((𝐺𝑔) ∈ 𝑆 → (⟨𝑧, (𝐺𝑔)⟩ ∈ 𝐵 → ∃𝑤𝑧, 𝑤⟩ ∈ 𝐵))
8939eldm2 4875 . . . . . . . 8 (𝑧 ∈ dom 𝐵 ↔ ∃𝑤𝑧, 𝑤⟩ ∈ 𝐵)
9088, 89imbitrrdi 162 . . . . . . 7 ((𝐺𝑔) ∈ 𝑆 → (⟨𝑧, (𝐺𝑔)⟩ ∈ 𝐵𝑧 ∈ dom 𝐵))
9138, 85, 90sylc 62 . . . . . 6 ((𝜑𝑧𝐷 ∧ (𝑔:𝑧𝑆 ∧ ∀𝑦𝑧 (𝑔𝑦) = (𝐺‘(𝑔𝑦)))) → 𝑧 ∈ dom 𝐵)
92913expia 1207 . . . . 5 ((𝜑𝑧𝐷) → ((𝑔:𝑧𝑆 ∧ ∀𝑦𝑧 (𝑔𝑦) = (𝐺‘(𝑔𝑦))) → 𝑧 ∈ dom 𝐵))
9392exlimdv 1841 . . . 4 ((𝜑𝑧𝐷) → (∃𝑔(𝑔:𝑧𝑆 ∧ ∀𝑦𝑧 (𝑔𝑦) = (𝐺‘(𝑔𝑦))) → 𝑧 ∈ dom 𝐵))
9493ralimdva 2572 . . 3 (𝜑 → (∀𝑧𝐷𝑔(𝑔:𝑧𝑆 ∧ ∀𝑦𝑧 (𝑔𝑦) = (𝐺‘(𝑔𝑦))) → ∀𝑧𝐷 𝑧 ∈ dom 𝐵))
9510, 94mpd 13 . 2 (𝜑 → ∀𝑧𝐷 𝑧 ∈ dom 𝐵)
96 dfss3 3181 . 2 (𝐷 ⊆ dom 𝐵 ↔ ∀𝑧𝐷 𝑧 ∈ dom 𝐵)
9795, 96sylibr 134 1 (𝜑𝐷 ⊆ dom 𝐵)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  w3a 980  wal 1370   = wceq 1372  wex 1514  wcel 2175  {cab 2190  wral 2483  wrex 2484  Vcvv 2771  cun 3163  wss 3165  {csn 3632  cop 3635   cuni 3849  Ord word 4408  suc csuc 4411  dom cdm 4674  cres 4676  Fun wfun 5264  wf 5266  cfv 5270  recscrecs 6389
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-13 2177  ax-14 2178  ax-ext 2186  ax-sep 4161  ax-pow 4217  ax-pr 4252  ax-un 4479
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1375  df-nf 1483  df-sb 1785  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-ral 2488  df-rex 2489  df-v 2773  df-un 3169  df-in 3171  df-ss 3178  df-pw 3617  df-sn 3638  df-pr 3639  df-op 3641  df-uni 3850  df-br 4044  df-opab 4105  df-tr 4142  df-iord 4412  df-xp 4680  df-rel 4681  df-cnv 4682  df-co 4683  df-dm 4684  df-rn 4685  df-res 4686  df-iota 5231  df-fun 5272  df-fn 5273  df-f 5274  df-fv 5278
This theorem is referenced by:  tfrcllembfn  6442
  Copyright terms: Public domain W3C validator