Proof of Theorem tfrcllembxssdm
Step | Hyp | Ref
| Expression |
1 | | tfrcllembacc.5 |
. . . 4
⊢ (𝜑 → ∀𝑧 ∈ 𝐷 ∃𝑔(𝑔:𝑧⟶𝑆 ∧ ∀𝑤 ∈ 𝑧 (𝑔‘𝑤) = (𝐺‘(𝑔 ↾ 𝑤)))) |
2 | | fveq2 5496 |
. . . . . . . . 9
⊢ (𝑤 = 𝑦 → (𝑔‘𝑤) = (𝑔‘𝑦)) |
3 | | reseq2 4886 |
. . . . . . . . . 10
⊢ (𝑤 = 𝑦 → (𝑔 ↾ 𝑤) = (𝑔 ↾ 𝑦)) |
4 | 3 | fveq2d 5500 |
. . . . . . . . 9
⊢ (𝑤 = 𝑦 → (𝐺‘(𝑔 ↾ 𝑤)) = (𝐺‘(𝑔 ↾ 𝑦))) |
5 | 2, 4 | eqeq12d 2185 |
. . . . . . . 8
⊢ (𝑤 = 𝑦 → ((𝑔‘𝑤) = (𝐺‘(𝑔 ↾ 𝑤)) ↔ (𝑔‘𝑦) = (𝐺‘(𝑔 ↾ 𝑦)))) |
6 | 5 | cbvralv 2696 |
. . . . . . 7
⊢
(∀𝑤 ∈
𝑧 (𝑔‘𝑤) = (𝐺‘(𝑔 ↾ 𝑤)) ↔ ∀𝑦 ∈ 𝑧 (𝑔‘𝑦) = (𝐺‘(𝑔 ↾ 𝑦))) |
7 | 6 | anbi2i 454 |
. . . . . 6
⊢ ((𝑔:𝑧⟶𝑆 ∧ ∀𝑤 ∈ 𝑧 (𝑔‘𝑤) = (𝐺‘(𝑔 ↾ 𝑤))) ↔ (𝑔:𝑧⟶𝑆 ∧ ∀𝑦 ∈ 𝑧 (𝑔‘𝑦) = (𝐺‘(𝑔 ↾ 𝑦)))) |
8 | 7 | exbii 1598 |
. . . . 5
⊢
(∃𝑔(𝑔:𝑧⟶𝑆 ∧ ∀𝑤 ∈ 𝑧 (𝑔‘𝑤) = (𝐺‘(𝑔 ↾ 𝑤))) ↔ ∃𝑔(𝑔:𝑧⟶𝑆 ∧ ∀𝑦 ∈ 𝑧 (𝑔‘𝑦) = (𝐺‘(𝑔 ↾ 𝑦)))) |
9 | 8 | ralbii 2476 |
. . . 4
⊢
(∀𝑧 ∈
𝐷 ∃𝑔(𝑔:𝑧⟶𝑆 ∧ ∀𝑤 ∈ 𝑧 (𝑔‘𝑤) = (𝐺‘(𝑔 ↾ 𝑤))) ↔ ∀𝑧 ∈ 𝐷 ∃𝑔(𝑔:𝑧⟶𝑆 ∧ ∀𝑦 ∈ 𝑧 (𝑔‘𝑦) = (𝐺‘(𝑔 ↾ 𝑦)))) |
10 | 1, 9 | sylib 121 |
. . 3
⊢ (𝜑 → ∀𝑧 ∈ 𝐷 ∃𝑔(𝑔:𝑧⟶𝑆 ∧ ∀𝑦 ∈ 𝑧 (𝑔‘𝑦) = (𝐺‘(𝑔 ↾ 𝑦)))) |
11 | | simp1 992 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑧 ∈ 𝐷 ∧ (𝑔:𝑧⟶𝑆 ∧ ∀𝑦 ∈ 𝑧 (𝑔‘𝑦) = (𝐺‘(𝑔 ↾ 𝑦)))) → 𝜑) |
12 | | simp2 993 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑧 ∈ 𝐷 ∧ (𝑔:𝑧⟶𝑆 ∧ ∀𝑦 ∈ 𝑧 (𝑔‘𝑦) = (𝐺‘(𝑔 ↾ 𝑦)))) → 𝑧 ∈ 𝐷) |
13 | | tfrcllembacc.4 |
. . . . . . . . . 10
⊢ (𝜑 → 𝐷 ∈ 𝑋) |
14 | 11, 13 | syl 14 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑧 ∈ 𝐷 ∧ (𝑔:𝑧⟶𝑆 ∧ ∀𝑦 ∈ 𝑧 (𝑔‘𝑦) = (𝐺‘(𝑔 ↾ 𝑦)))) → 𝐷 ∈ 𝑋) |
15 | | tfrcl.x |
. . . . . . . . . . 11
⊢ (𝜑 → Ord 𝑋) |
16 | | ordtr1 4373 |
. . . . . . . . . . 11
⊢ (Ord
𝑋 → ((𝑧 ∈ 𝐷 ∧ 𝐷 ∈ 𝑋) → 𝑧 ∈ 𝑋)) |
17 | 15, 16 | syl 14 |
. . . . . . . . . 10
⊢ (𝜑 → ((𝑧 ∈ 𝐷 ∧ 𝐷 ∈ 𝑋) → 𝑧 ∈ 𝑋)) |
18 | 17 | imp 123 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑧 ∈ 𝐷 ∧ 𝐷 ∈ 𝑋)) → 𝑧 ∈ 𝑋) |
19 | 11, 12, 14, 18 | syl12anc 1231 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑧 ∈ 𝐷 ∧ (𝑔:𝑧⟶𝑆 ∧ ∀𝑦 ∈ 𝑧 (𝑔‘𝑦) = (𝐺‘(𝑔 ↾ 𝑦)))) → 𝑧 ∈ 𝑋) |
20 | | simp3l 1020 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑧 ∈ 𝐷 ∧ (𝑔:𝑧⟶𝑆 ∧ ∀𝑦 ∈ 𝑧 (𝑔‘𝑦) = (𝐺‘(𝑔 ↾ 𝑦)))) → 𝑔:𝑧⟶𝑆) |
21 | | feq2 5331 |
. . . . . . . . . . . . 13
⊢ (𝑥 = 𝑧 → (𝑓:𝑥⟶𝑆 ↔ 𝑓:𝑧⟶𝑆)) |
22 | 21 | imbi1d 230 |
. . . . . . . . . . . 12
⊢ (𝑥 = 𝑧 → ((𝑓:𝑥⟶𝑆 → (𝐺‘𝑓) ∈ 𝑆) ↔ (𝑓:𝑧⟶𝑆 → (𝐺‘𝑓) ∈ 𝑆))) |
23 | 22 | albidv 1817 |
. . . . . . . . . . 11
⊢ (𝑥 = 𝑧 → (∀𝑓(𝑓:𝑥⟶𝑆 → (𝐺‘𝑓) ∈ 𝑆) ↔ ∀𝑓(𝑓:𝑧⟶𝑆 → (𝐺‘𝑓) ∈ 𝑆))) |
24 | | tfrcl.ex |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋 ∧ 𝑓:𝑥⟶𝑆) → (𝐺‘𝑓) ∈ 𝑆) |
25 | 24 | 3expia 1200 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → (𝑓:𝑥⟶𝑆 → (𝐺‘𝑓) ∈ 𝑆)) |
26 | 25 | alrimiv 1867 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → ∀𝑓(𝑓:𝑥⟶𝑆 → (𝐺‘𝑓) ∈ 𝑆)) |
27 | 26 | ralrimiva 2543 |
. . . . . . . . . . . 12
⊢ (𝜑 → ∀𝑥 ∈ 𝑋 ∀𝑓(𝑓:𝑥⟶𝑆 → (𝐺‘𝑓) ∈ 𝑆)) |
28 | 27 | adantr 274 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑧 ∈ 𝑋) → ∀𝑥 ∈ 𝑋 ∀𝑓(𝑓:𝑥⟶𝑆 → (𝐺‘𝑓) ∈ 𝑆)) |
29 | | simpr 109 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑧 ∈ 𝑋) → 𝑧 ∈ 𝑋) |
30 | 23, 28, 29 | rspcdva 2839 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑧 ∈ 𝑋) → ∀𝑓(𝑓:𝑧⟶𝑆 → (𝐺‘𝑓) ∈ 𝑆)) |
31 | | feq1 5330 |
. . . . . . . . . . . 12
⊢ (𝑓 = 𝑔 → (𝑓:𝑧⟶𝑆 ↔ 𝑔:𝑧⟶𝑆)) |
32 | | fveq2 5496 |
. . . . . . . . . . . . 13
⊢ (𝑓 = 𝑔 → (𝐺‘𝑓) = (𝐺‘𝑔)) |
33 | 32 | eleq1d 2239 |
. . . . . . . . . . . 12
⊢ (𝑓 = 𝑔 → ((𝐺‘𝑓) ∈ 𝑆 ↔ (𝐺‘𝑔) ∈ 𝑆)) |
34 | 31, 33 | imbi12d 233 |
. . . . . . . . . . 11
⊢ (𝑓 = 𝑔 → ((𝑓:𝑧⟶𝑆 → (𝐺‘𝑓) ∈ 𝑆) ↔ (𝑔:𝑧⟶𝑆 → (𝐺‘𝑔) ∈ 𝑆))) |
35 | 34 | spv 1853 |
. . . . . . . . . 10
⊢
(∀𝑓(𝑓:𝑧⟶𝑆 → (𝐺‘𝑓) ∈ 𝑆) → (𝑔:𝑧⟶𝑆 → (𝐺‘𝑔) ∈ 𝑆)) |
36 | 30, 35 | syl 14 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑧 ∈ 𝑋) → (𝑔:𝑧⟶𝑆 → (𝐺‘𝑔) ∈ 𝑆)) |
37 | 36 | imp 123 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑧 ∈ 𝑋) ∧ 𝑔:𝑧⟶𝑆) → (𝐺‘𝑔) ∈ 𝑆) |
38 | 11, 19, 20, 37 | syl21anc 1232 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑧 ∈ 𝐷 ∧ (𝑔:𝑧⟶𝑆 ∧ ∀𝑦 ∈ 𝑧 (𝑔‘𝑦) = (𝐺‘(𝑔 ↾ 𝑦)))) → (𝐺‘𝑔) ∈ 𝑆) |
39 | | vex 2733 |
. . . . . . . . . 10
⊢ 𝑧 ∈ V |
40 | | opexg 4213 |
. . . . . . . . . 10
⊢ ((𝑧 ∈ V ∧ (𝐺‘𝑔) ∈ 𝑆) → 〈𝑧, (𝐺‘𝑔)〉 ∈ V) |
41 | 39, 38, 40 | sylancr 412 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑧 ∈ 𝐷 ∧ (𝑔:𝑧⟶𝑆 ∧ ∀𝑦 ∈ 𝑧 (𝑔‘𝑦) = (𝐺‘(𝑔 ↾ 𝑦)))) → 〈𝑧, (𝐺‘𝑔)〉 ∈ V) |
42 | | snidg 3612 |
. . . . . . . . 9
⊢
(〈𝑧, (𝐺‘𝑔)〉 ∈ V → 〈𝑧, (𝐺‘𝑔)〉 ∈ {〈𝑧, (𝐺‘𝑔)〉}) |
43 | | elun2 3295 |
. . . . . . . . 9
⊢
(〈𝑧, (𝐺‘𝑔)〉 ∈ {〈𝑧, (𝐺‘𝑔)〉} → 〈𝑧, (𝐺‘𝑔)〉 ∈ (𝑔 ∪ {〈𝑧, (𝐺‘𝑔)〉})) |
44 | 41, 42, 43 | 3syl 17 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑧 ∈ 𝐷 ∧ (𝑔:𝑧⟶𝑆 ∧ ∀𝑦 ∈ 𝑧 (𝑔‘𝑦) = (𝐺‘(𝑔 ↾ 𝑦)))) → 〈𝑧, (𝐺‘𝑔)〉 ∈ (𝑔 ∪ {〈𝑧, (𝐺‘𝑔)〉})) |
45 | | simp3r 1021 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑧 ∈ 𝐷 ∧ (𝑔:𝑧⟶𝑆 ∧ ∀𝑦 ∈ 𝑧 (𝑔‘𝑦) = (𝐺‘(𝑔 ↾ 𝑦)))) → ∀𝑦 ∈ 𝑧 (𝑔‘𝑦) = (𝐺‘(𝑔 ↾ 𝑦))) |
46 | | rspe 2519 |
. . . . . . . . . . . . 13
⊢ ((𝑧 ∈ 𝑋 ∧ (𝑔:𝑧⟶𝑆 ∧ ∀𝑦 ∈ 𝑧 (𝑔‘𝑦) = (𝐺‘(𝑔 ↾ 𝑦)))) → ∃𝑧 ∈ 𝑋 (𝑔:𝑧⟶𝑆 ∧ ∀𝑦 ∈ 𝑧 (𝑔‘𝑦) = (𝐺‘(𝑔 ↾ 𝑦)))) |
47 | 19, 20, 45, 46 | syl12anc 1231 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑧 ∈ 𝐷 ∧ (𝑔:𝑧⟶𝑆 ∧ ∀𝑦 ∈ 𝑧 (𝑔‘𝑦) = (𝐺‘(𝑔 ↾ 𝑦)))) → ∃𝑧 ∈ 𝑋 (𝑔:𝑧⟶𝑆 ∧ ∀𝑦 ∈ 𝑧 (𝑔‘𝑦) = (𝐺‘(𝑔 ↾ 𝑦)))) |
48 | | feq2 5331 |
. . . . . . . . . . . . . 14
⊢ (𝑧 = 𝑥 → (𝑔:𝑧⟶𝑆 ↔ 𝑔:𝑥⟶𝑆)) |
49 | | raleq 2665 |
. . . . . . . . . . . . . 14
⊢ (𝑧 = 𝑥 → (∀𝑦 ∈ 𝑧 (𝑔‘𝑦) = (𝐺‘(𝑔 ↾ 𝑦)) ↔ ∀𝑦 ∈ 𝑥 (𝑔‘𝑦) = (𝐺‘(𝑔 ↾ 𝑦)))) |
50 | 48, 49 | anbi12d 470 |
. . . . . . . . . . . . 13
⊢ (𝑧 = 𝑥 → ((𝑔:𝑧⟶𝑆 ∧ ∀𝑦 ∈ 𝑧 (𝑔‘𝑦) = (𝐺‘(𝑔 ↾ 𝑦))) ↔ (𝑔:𝑥⟶𝑆 ∧ ∀𝑦 ∈ 𝑥 (𝑔‘𝑦) = (𝐺‘(𝑔 ↾ 𝑦))))) |
51 | 50 | cbvrexv 2697 |
. . . . . . . . . . . 12
⊢
(∃𝑧 ∈
𝑋 (𝑔:𝑧⟶𝑆 ∧ ∀𝑦 ∈ 𝑧 (𝑔‘𝑦) = (𝐺‘(𝑔 ↾ 𝑦))) ↔ ∃𝑥 ∈ 𝑋 (𝑔:𝑥⟶𝑆 ∧ ∀𝑦 ∈ 𝑥 (𝑔‘𝑦) = (𝐺‘(𝑔 ↾ 𝑦)))) |
52 | 47, 51 | sylib 121 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑧 ∈ 𝐷 ∧ (𝑔:𝑧⟶𝑆 ∧ ∀𝑦 ∈ 𝑧 (𝑔‘𝑦) = (𝐺‘(𝑔 ↾ 𝑦)))) → ∃𝑥 ∈ 𝑋 (𝑔:𝑥⟶𝑆 ∧ ∀𝑦 ∈ 𝑥 (𝑔‘𝑦) = (𝐺‘(𝑔 ↾ 𝑦)))) |
53 | | vex 2733 |
. . . . . . . . . . . 12
⊢ 𝑔 ∈ V |
54 | | feq1 5330 |
. . . . . . . . . . . . . 14
⊢ (𝑓 = 𝑔 → (𝑓:𝑥⟶𝑆 ↔ 𝑔:𝑥⟶𝑆)) |
55 | | fveq1 5495 |
. . . . . . . . . . . . . . . 16
⊢ (𝑓 = 𝑔 → (𝑓‘𝑦) = (𝑔‘𝑦)) |
56 | | reseq1 4885 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑓 = 𝑔 → (𝑓 ↾ 𝑦) = (𝑔 ↾ 𝑦)) |
57 | 56 | fveq2d 5500 |
. . . . . . . . . . . . . . . 16
⊢ (𝑓 = 𝑔 → (𝐺‘(𝑓 ↾ 𝑦)) = (𝐺‘(𝑔 ↾ 𝑦))) |
58 | 55, 57 | eqeq12d 2185 |
. . . . . . . . . . . . . . 15
⊢ (𝑓 = 𝑔 → ((𝑓‘𝑦) = (𝐺‘(𝑓 ↾ 𝑦)) ↔ (𝑔‘𝑦) = (𝐺‘(𝑔 ↾ 𝑦)))) |
59 | 58 | ralbidv 2470 |
. . . . . . . . . . . . . 14
⊢ (𝑓 = 𝑔 → (∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝐺‘(𝑓 ↾ 𝑦)) ↔ ∀𝑦 ∈ 𝑥 (𝑔‘𝑦) = (𝐺‘(𝑔 ↾ 𝑦)))) |
60 | 54, 59 | anbi12d 470 |
. . . . . . . . . . . . 13
⊢ (𝑓 = 𝑔 → ((𝑓:𝑥⟶𝑆 ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝐺‘(𝑓 ↾ 𝑦))) ↔ (𝑔:𝑥⟶𝑆 ∧ ∀𝑦 ∈ 𝑥 (𝑔‘𝑦) = (𝐺‘(𝑔 ↾ 𝑦))))) |
61 | 60 | rexbidv 2471 |
. . . . . . . . . . . 12
⊢ (𝑓 = 𝑔 → (∃𝑥 ∈ 𝑋 (𝑓:𝑥⟶𝑆 ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝐺‘(𝑓 ↾ 𝑦))) ↔ ∃𝑥 ∈ 𝑋 (𝑔:𝑥⟶𝑆 ∧ ∀𝑦 ∈ 𝑥 (𝑔‘𝑦) = (𝐺‘(𝑔 ↾ 𝑦))))) |
62 | | tfrcllemsucfn.1 |
. . . . . . . . . . . 12
⊢ 𝐴 = {𝑓 ∣ ∃𝑥 ∈ 𝑋 (𝑓:𝑥⟶𝑆 ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝐺‘(𝑓 ↾ 𝑦)))} |
63 | 53, 61, 62 | elab2 2878 |
. . . . . . . . . . 11
⊢ (𝑔 ∈ 𝐴 ↔ ∃𝑥 ∈ 𝑋 (𝑔:𝑥⟶𝑆 ∧ ∀𝑦 ∈ 𝑥 (𝑔‘𝑦) = (𝐺‘(𝑔 ↾ 𝑦)))) |
64 | 52, 63 | sylibr 133 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑧 ∈ 𝐷 ∧ (𝑔:𝑧⟶𝑆 ∧ ∀𝑦 ∈ 𝑧 (𝑔‘𝑦) = (𝐺‘(𝑔 ↾ 𝑦)))) → 𝑔 ∈ 𝐴) |
65 | 12, 20, 64 | 3jca 1172 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑧 ∈ 𝐷 ∧ (𝑔:𝑧⟶𝑆 ∧ ∀𝑦 ∈ 𝑧 (𝑔‘𝑦) = (𝐺‘(𝑔 ↾ 𝑦)))) → (𝑧 ∈ 𝐷 ∧ 𝑔:𝑧⟶𝑆 ∧ 𝑔 ∈ 𝐴)) |
66 | | snexg 4170 |
. . . . . . . . . . 11
⊢
(〈𝑧, (𝐺‘𝑔)〉 ∈ V → {〈𝑧, (𝐺‘𝑔)〉} ∈ V) |
67 | | unexg 4428 |
. . . . . . . . . . . 12
⊢ ((𝑔 ∈ V ∧ {〈𝑧, (𝐺‘𝑔)〉} ∈ V) → (𝑔 ∪ {〈𝑧, (𝐺‘𝑔)〉}) ∈ V) |
68 | 53, 67 | mpan 422 |
. . . . . . . . . . 11
⊢
({〈𝑧, (𝐺‘𝑔)〉} ∈ V → (𝑔 ∪ {〈𝑧, (𝐺‘𝑔)〉}) ∈ V) |
69 | 41, 66, 68 | 3syl 17 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑧 ∈ 𝐷 ∧ (𝑔:𝑧⟶𝑆 ∧ ∀𝑦 ∈ 𝑧 (𝑔‘𝑦) = (𝐺‘(𝑔 ↾ 𝑦)))) → (𝑔 ∪ {〈𝑧, (𝐺‘𝑔)〉}) ∈ V) |
70 | | isset 2736 |
. . . . . . . . . 10
⊢ ((𝑔 ∪ {〈𝑧, (𝐺‘𝑔)〉}) ∈ V ↔ ∃ℎ ℎ = (𝑔 ∪ {〈𝑧, (𝐺‘𝑔)〉})) |
71 | 69, 70 | sylib 121 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑧 ∈ 𝐷 ∧ (𝑔:𝑧⟶𝑆 ∧ ∀𝑦 ∈ 𝑧 (𝑔‘𝑦) = (𝐺‘(𝑔 ↾ 𝑦)))) → ∃ℎ ℎ = (𝑔 ∪ {〈𝑧, (𝐺‘𝑔)〉})) |
72 | | simpr3 1000 |
. . . . . . . . . . . . 13
⊢ ((𝑧 ∈ 𝐷 ∧ (𝑔:𝑧⟶𝑆 ∧ 𝑔 ∈ 𝐴 ∧ ℎ = (𝑔 ∪ {〈𝑧, (𝐺‘𝑔)〉}))) → ℎ = (𝑔 ∪ {〈𝑧, (𝐺‘𝑔)〉})) |
73 | | 19.8a 1583 |
. . . . . . . . . . . . . 14
⊢ ((𝑔:𝑧⟶𝑆 ∧ 𝑔 ∈ 𝐴 ∧ ℎ = (𝑔 ∪ {〈𝑧, (𝐺‘𝑔)〉})) → ∃𝑔(𝑔:𝑧⟶𝑆 ∧ 𝑔 ∈ 𝐴 ∧ ℎ = (𝑔 ∪ {〈𝑧, (𝐺‘𝑔)〉}))) |
74 | | rspe 2519 |
. . . . . . . . . . . . . . 15
⊢ ((𝑧 ∈ 𝐷 ∧ ∃𝑔(𝑔:𝑧⟶𝑆 ∧ 𝑔 ∈ 𝐴 ∧ ℎ = (𝑔 ∪ {〈𝑧, (𝐺‘𝑔)〉}))) → ∃𝑧 ∈ 𝐷 ∃𝑔(𝑔:𝑧⟶𝑆 ∧ 𝑔 ∈ 𝐴 ∧ ℎ = (𝑔 ∪ {〈𝑧, (𝐺‘𝑔)〉}))) |
75 | | tfrcllembacc.3 |
. . . . . . . . . . . . . . . 16
⊢ 𝐵 = {ℎ ∣ ∃𝑧 ∈ 𝐷 ∃𝑔(𝑔:𝑧⟶𝑆 ∧ 𝑔 ∈ 𝐴 ∧ ℎ = (𝑔 ∪ {〈𝑧, (𝐺‘𝑔)〉}))} |
76 | 75 | abeq2i 2281 |
. . . . . . . . . . . . . . 15
⊢ (ℎ ∈ 𝐵 ↔ ∃𝑧 ∈ 𝐷 ∃𝑔(𝑔:𝑧⟶𝑆 ∧ 𝑔 ∈ 𝐴 ∧ ℎ = (𝑔 ∪ {〈𝑧, (𝐺‘𝑔)〉}))) |
77 | 74, 76 | sylibr 133 |
. . . . . . . . . . . . . 14
⊢ ((𝑧 ∈ 𝐷 ∧ ∃𝑔(𝑔:𝑧⟶𝑆 ∧ 𝑔 ∈ 𝐴 ∧ ℎ = (𝑔 ∪ {〈𝑧, (𝐺‘𝑔)〉}))) → ℎ ∈ 𝐵) |
78 | 73, 77 | sylan2 284 |
. . . . . . . . . . . . 13
⊢ ((𝑧 ∈ 𝐷 ∧ (𝑔:𝑧⟶𝑆 ∧ 𝑔 ∈ 𝐴 ∧ ℎ = (𝑔 ∪ {〈𝑧, (𝐺‘𝑔)〉}))) → ℎ ∈ 𝐵) |
79 | 72, 78 | eqeltrrd 2248 |
. . . . . . . . . . . 12
⊢ ((𝑧 ∈ 𝐷 ∧ (𝑔:𝑧⟶𝑆 ∧ 𝑔 ∈ 𝐴 ∧ ℎ = (𝑔 ∪ {〈𝑧, (𝐺‘𝑔)〉}))) → (𝑔 ∪ {〈𝑧, (𝐺‘𝑔)〉}) ∈ 𝐵) |
80 | 79 | 3exp2 1220 |
. . . . . . . . . . 11
⊢ (𝑧 ∈ 𝐷 → (𝑔:𝑧⟶𝑆 → (𝑔 ∈ 𝐴 → (ℎ = (𝑔 ∪ {〈𝑧, (𝐺‘𝑔)〉}) → (𝑔 ∪ {〈𝑧, (𝐺‘𝑔)〉}) ∈ 𝐵)))) |
81 | 80 | 3imp 1188 |
. . . . . . . . . 10
⊢ ((𝑧 ∈ 𝐷 ∧ 𝑔:𝑧⟶𝑆 ∧ 𝑔 ∈ 𝐴) → (ℎ = (𝑔 ∪ {〈𝑧, (𝐺‘𝑔)〉}) → (𝑔 ∪ {〈𝑧, (𝐺‘𝑔)〉}) ∈ 𝐵)) |
82 | 81 | exlimdv 1812 |
. . . . . . . . 9
⊢ ((𝑧 ∈ 𝐷 ∧ 𝑔:𝑧⟶𝑆 ∧ 𝑔 ∈ 𝐴) → (∃ℎ ℎ = (𝑔 ∪ {〈𝑧, (𝐺‘𝑔)〉}) → (𝑔 ∪ {〈𝑧, (𝐺‘𝑔)〉}) ∈ 𝐵)) |
83 | 65, 71, 82 | sylc 62 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑧 ∈ 𝐷 ∧ (𝑔:𝑧⟶𝑆 ∧ ∀𝑦 ∈ 𝑧 (𝑔‘𝑦) = (𝐺‘(𝑔 ↾ 𝑦)))) → (𝑔 ∪ {〈𝑧, (𝐺‘𝑔)〉}) ∈ 𝐵) |
84 | | elunii 3801 |
. . . . . . . 8
⊢
((〈𝑧, (𝐺‘𝑔)〉 ∈ (𝑔 ∪ {〈𝑧, (𝐺‘𝑔)〉}) ∧ (𝑔 ∪ {〈𝑧, (𝐺‘𝑔)〉}) ∈ 𝐵) → 〈𝑧, (𝐺‘𝑔)〉 ∈ ∪
𝐵) |
85 | 44, 83, 84 | syl2anc 409 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑧 ∈ 𝐷 ∧ (𝑔:𝑧⟶𝑆 ∧ ∀𝑦 ∈ 𝑧 (𝑔‘𝑦) = (𝐺‘(𝑔 ↾ 𝑦)))) → 〈𝑧, (𝐺‘𝑔)〉 ∈ ∪
𝐵) |
86 | | opeq2 3766 |
. . . . . . . . . 10
⊢ (𝑤 = (𝐺‘𝑔) → 〈𝑧, 𝑤〉 = 〈𝑧, (𝐺‘𝑔)〉) |
87 | 86 | eleq1d 2239 |
. . . . . . . . 9
⊢ (𝑤 = (𝐺‘𝑔) → (〈𝑧, 𝑤〉 ∈ ∪
𝐵 ↔ 〈𝑧, (𝐺‘𝑔)〉 ∈ ∪
𝐵)) |
88 | 87 | spcegv 2818 |
. . . . . . . 8
⊢ ((𝐺‘𝑔) ∈ 𝑆 → (〈𝑧, (𝐺‘𝑔)〉 ∈ ∪
𝐵 → ∃𝑤〈𝑧, 𝑤〉 ∈ ∪
𝐵)) |
89 | 39 | eldm2 4809 |
. . . . . . . 8
⊢ (𝑧 ∈ dom ∪ 𝐵
↔ ∃𝑤〈𝑧, 𝑤〉 ∈ ∪
𝐵) |
90 | 88, 89 | syl6ibr 161 |
. . . . . . 7
⊢ ((𝐺‘𝑔) ∈ 𝑆 → (〈𝑧, (𝐺‘𝑔)〉 ∈ ∪
𝐵 → 𝑧 ∈ dom ∪
𝐵)) |
91 | 38, 85, 90 | sylc 62 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑧 ∈ 𝐷 ∧ (𝑔:𝑧⟶𝑆 ∧ ∀𝑦 ∈ 𝑧 (𝑔‘𝑦) = (𝐺‘(𝑔 ↾ 𝑦)))) → 𝑧 ∈ dom ∪
𝐵) |
92 | 91 | 3expia 1200 |
. . . . 5
⊢ ((𝜑 ∧ 𝑧 ∈ 𝐷) → ((𝑔:𝑧⟶𝑆 ∧ ∀𝑦 ∈ 𝑧 (𝑔‘𝑦) = (𝐺‘(𝑔 ↾ 𝑦))) → 𝑧 ∈ dom ∪
𝐵)) |
93 | 92 | exlimdv 1812 |
. . . 4
⊢ ((𝜑 ∧ 𝑧 ∈ 𝐷) → (∃𝑔(𝑔:𝑧⟶𝑆 ∧ ∀𝑦 ∈ 𝑧 (𝑔‘𝑦) = (𝐺‘(𝑔 ↾ 𝑦))) → 𝑧 ∈ dom ∪
𝐵)) |
94 | 93 | ralimdva 2537 |
. . 3
⊢ (𝜑 → (∀𝑧 ∈ 𝐷 ∃𝑔(𝑔:𝑧⟶𝑆 ∧ ∀𝑦 ∈ 𝑧 (𝑔‘𝑦) = (𝐺‘(𝑔 ↾ 𝑦))) → ∀𝑧 ∈ 𝐷 𝑧 ∈ dom ∪
𝐵)) |
95 | 10, 94 | mpd 13 |
. 2
⊢ (𝜑 → ∀𝑧 ∈ 𝐷 𝑧 ∈ dom ∪
𝐵) |
96 | | dfss3 3137 |
. 2
⊢ (𝐷 ⊆ dom ∪ 𝐵
↔ ∀𝑧 ∈
𝐷 𝑧 ∈ dom ∪
𝐵) |
97 | 95, 96 | sylibr 133 |
1
⊢ (𝜑 → 𝐷 ⊆ dom ∪
𝐵) |