Proof of Theorem islssmd
Step | Hyp | Ref
| Expression |
1 | | islssd.u |
. . . 4
⊢ (𝜑 → 𝑈 ⊆ 𝑉) |
2 | | islssd.v |
. . . 4
⊢ (𝜑 → 𝑉 = (Base‘𝑊)) |
3 | 1, 2 | sseqtrd 3205 |
. . 3
⊢ (𝜑 → 𝑈 ⊆ (Base‘𝑊)) |
4 | | islssmd.m |
. . 3
⊢ (𝜑 → ∃𝑗 𝑗 ∈ 𝑈) |
5 | | islssd.c |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑎 ∈ 𝑈 ∧ 𝑏 ∈ 𝑈)) → ((𝑥 · 𝑎) + 𝑏) ∈ 𝑈) |
6 | 5 | 3exp2 1226 |
. . . . . . . 8
⊢ (𝜑 → (𝑥 ∈ 𝐵 → (𝑎 ∈ 𝑈 → (𝑏 ∈ 𝑈 → ((𝑥 · 𝑎) + 𝑏) ∈ 𝑈)))) |
7 | 6 | imp43 355 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑥 ∈ 𝐵) ∧ (𝑎 ∈ 𝑈 ∧ 𝑏 ∈ 𝑈)) → ((𝑥 · 𝑎) + 𝑏) ∈ 𝑈) |
8 | 7 | ralrimivva 2569 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → ∀𝑎 ∈ 𝑈 ∀𝑏 ∈ 𝑈 ((𝑥 · 𝑎) + 𝑏) ∈ 𝑈) |
9 | 8 | ex 115 |
. . . . 5
⊢ (𝜑 → (𝑥 ∈ 𝐵 → ∀𝑎 ∈ 𝑈 ∀𝑏 ∈ 𝑈 ((𝑥 · 𝑎) + 𝑏) ∈ 𝑈)) |
10 | | islssd.b |
. . . . . . 7
⊢ (𝜑 → 𝐵 = (Base‘𝐹)) |
11 | | islssd.f |
. . . . . . . 8
⊢ (𝜑 → 𝐹 = (Scalar‘𝑊)) |
12 | 11 | fveq2d 5531 |
. . . . . . 7
⊢ (𝜑 → (Base‘𝐹) =
(Base‘(Scalar‘𝑊))) |
13 | 10, 12 | eqtrd 2220 |
. . . . . 6
⊢ (𝜑 → 𝐵 = (Base‘(Scalar‘𝑊))) |
14 | 13 | eleq2d 2257 |
. . . . 5
⊢ (𝜑 → (𝑥 ∈ 𝐵 ↔ 𝑥 ∈ (Base‘(Scalar‘𝑊)))) |
15 | | islssd.p |
. . . . . . . . 9
⊢ (𝜑 → + =
(+g‘𝑊)) |
16 | 15 | oveqd 5905 |
. . . . . . . 8
⊢ (𝜑 → ((𝑥 · 𝑎) + 𝑏) = ((𝑥 · 𝑎)(+g‘𝑊)𝑏)) |
17 | | islssd.t |
. . . . . . . . . 10
⊢ (𝜑 → · = (
·𝑠 ‘𝑊)) |
18 | 17 | oveqd 5905 |
. . . . . . . . 9
⊢ (𝜑 → (𝑥 · 𝑎) = (𝑥( ·𝑠
‘𝑊)𝑎)) |
19 | 18 | oveq1d 5903 |
. . . . . . . 8
⊢ (𝜑 → ((𝑥 · 𝑎)(+g‘𝑊)𝑏) = ((𝑥( ·𝑠
‘𝑊)𝑎)(+g‘𝑊)𝑏)) |
20 | 16, 19 | eqtrd 2220 |
. . . . . . 7
⊢ (𝜑 → ((𝑥 · 𝑎) + 𝑏) = ((𝑥( ·𝑠
‘𝑊)𝑎)(+g‘𝑊)𝑏)) |
21 | 20 | eleq1d 2256 |
. . . . . 6
⊢ (𝜑 → (((𝑥 · 𝑎) + 𝑏) ∈ 𝑈 ↔ ((𝑥( ·𝑠
‘𝑊)𝑎)(+g‘𝑊)𝑏) ∈ 𝑈)) |
22 | 21 | 2ralbidv 2511 |
. . . . 5
⊢ (𝜑 → (∀𝑎 ∈ 𝑈 ∀𝑏 ∈ 𝑈 ((𝑥 · 𝑎) + 𝑏) ∈ 𝑈 ↔ ∀𝑎 ∈ 𝑈 ∀𝑏 ∈ 𝑈 ((𝑥( ·𝑠
‘𝑊)𝑎)(+g‘𝑊)𝑏) ∈ 𝑈)) |
23 | 9, 14, 22 | 3imtr3d 202 |
. . . 4
⊢ (𝜑 → (𝑥 ∈ (Base‘(Scalar‘𝑊)) → ∀𝑎 ∈ 𝑈 ∀𝑏 ∈ 𝑈 ((𝑥( ·𝑠
‘𝑊)𝑎)(+g‘𝑊)𝑏) ∈ 𝑈)) |
24 | 23 | ralrimiv 2559 |
. . 3
⊢ (𝜑 → ∀𝑥 ∈ (Base‘(Scalar‘𝑊))∀𝑎 ∈ 𝑈 ∀𝑏 ∈ 𝑈 ((𝑥( ·𝑠
‘𝑊)𝑎)(+g‘𝑊)𝑏) ∈ 𝑈) |
25 | | islssmd.w |
. . . 4
⊢ (𝜑 → 𝑊 ∈ 𝑋) |
26 | | eqid 2187 |
. . . . 5
⊢
(Scalar‘𝑊) =
(Scalar‘𝑊) |
27 | | eqid 2187 |
. . . . 5
⊢
(Base‘(Scalar‘𝑊)) = (Base‘(Scalar‘𝑊)) |
28 | | eqid 2187 |
. . . . 5
⊢
(Base‘𝑊) =
(Base‘𝑊) |
29 | | eqid 2187 |
. . . . 5
⊢
(+g‘𝑊) = (+g‘𝑊) |
30 | | eqid 2187 |
. . . . 5
⊢ (
·𝑠 ‘𝑊) = ( ·𝑠
‘𝑊) |
31 | | eqid 2187 |
. . . . 5
⊢
(LSubSp‘𝑊) =
(LSubSp‘𝑊) |
32 | 26, 27, 28, 29, 30, 31 | islssmg 13542 |
. . . 4
⊢ (𝑊 ∈ 𝑋 → (𝑈 ∈ (LSubSp‘𝑊) ↔ (𝑈 ⊆ (Base‘𝑊) ∧ ∃𝑗 𝑗 ∈ 𝑈 ∧ ∀𝑥 ∈ (Base‘(Scalar‘𝑊))∀𝑎 ∈ 𝑈 ∀𝑏 ∈ 𝑈 ((𝑥( ·𝑠
‘𝑊)𝑎)(+g‘𝑊)𝑏) ∈ 𝑈))) |
33 | 25, 32 | syl 14 |
. . 3
⊢ (𝜑 → (𝑈 ∈ (LSubSp‘𝑊) ↔ (𝑈 ⊆ (Base‘𝑊) ∧ ∃𝑗 𝑗 ∈ 𝑈 ∧ ∀𝑥 ∈ (Base‘(Scalar‘𝑊))∀𝑎 ∈ 𝑈 ∀𝑏 ∈ 𝑈 ((𝑥( ·𝑠
‘𝑊)𝑎)(+g‘𝑊)𝑏) ∈ 𝑈))) |
34 | 3, 4, 24, 33 | mpbir3and 1181 |
. 2
⊢ (𝜑 → 𝑈 ∈ (LSubSp‘𝑊)) |
35 | | islssd.s |
. 2
⊢ (𝜑 → 𝑆 = (LSubSp‘𝑊)) |
36 | 34, 35 | eleqtrrd 2267 |
1
⊢ (𝜑 → 𝑈 ∈ 𝑆) |