![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > po2nr | GIF version |
Description: A partial order relation has no 2-cycle loops. (Contributed by NM, 27-Mar-1997.) |
Ref | Expression |
---|---|
po2nr | ⊢ ((𝑅 Po 𝐴 ∧ (𝐵 ∈ 𝐴 ∧ 𝐶 ∈ 𝐴)) → ¬ (𝐵𝑅𝐶 ∧ 𝐶𝑅𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | poirr 4307 | . . 3 ⊢ ((𝑅 Po 𝐴 ∧ 𝐵 ∈ 𝐴) → ¬ 𝐵𝑅𝐵) | |
2 | 1 | adantrr 479 | . 2 ⊢ ((𝑅 Po 𝐴 ∧ (𝐵 ∈ 𝐴 ∧ 𝐶 ∈ 𝐴)) → ¬ 𝐵𝑅𝐵) |
3 | potr 4308 | . . . . . 6 ⊢ ((𝑅 Po 𝐴 ∧ (𝐵 ∈ 𝐴 ∧ 𝐶 ∈ 𝐴 ∧ 𝐵 ∈ 𝐴)) → ((𝐵𝑅𝐶 ∧ 𝐶𝑅𝐵) → 𝐵𝑅𝐵)) | |
4 | 3 | 3exp2 1225 | . . . . 5 ⊢ (𝑅 Po 𝐴 → (𝐵 ∈ 𝐴 → (𝐶 ∈ 𝐴 → (𝐵 ∈ 𝐴 → ((𝐵𝑅𝐶 ∧ 𝐶𝑅𝐵) → 𝐵𝑅𝐵))))) |
5 | 4 | com34 83 | . . . 4 ⊢ (𝑅 Po 𝐴 → (𝐵 ∈ 𝐴 → (𝐵 ∈ 𝐴 → (𝐶 ∈ 𝐴 → ((𝐵𝑅𝐶 ∧ 𝐶𝑅𝐵) → 𝐵𝑅𝐵))))) |
6 | 5 | pm2.43d 50 | . . 3 ⊢ (𝑅 Po 𝐴 → (𝐵 ∈ 𝐴 → (𝐶 ∈ 𝐴 → ((𝐵𝑅𝐶 ∧ 𝐶𝑅𝐵) → 𝐵𝑅𝐵)))) |
7 | 6 | imp32 257 | . 2 ⊢ ((𝑅 Po 𝐴 ∧ (𝐵 ∈ 𝐴 ∧ 𝐶 ∈ 𝐴)) → ((𝐵𝑅𝐶 ∧ 𝐶𝑅𝐵) → 𝐵𝑅𝐵)) |
8 | 2, 7 | mtod 663 | 1 ⊢ ((𝑅 Po 𝐴 ∧ (𝐵 ∈ 𝐴 ∧ 𝐶 ∈ 𝐴)) → ¬ (𝐵𝑅𝐶 ∧ 𝐶𝑅𝐵)) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 104 ∈ wcel 2148 class class class wbr 4003 Po wpo 4294 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 614 ax-in2 615 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-ext 2159 |
This theorem depends on definitions: df-bi 117 df-3an 980 df-tru 1356 df-nf 1461 df-sb 1763 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-ral 2460 df-v 2739 df-un 3133 df-sn 3598 df-pr 3599 df-op 3601 df-br 4004 df-po 4296 |
This theorem is referenced by: po3nr 4310 so2nr 4321 tridc 6898 |
Copyright terms: Public domain | W3C validator |