ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  po2nr GIF version

Theorem po2nr 4345
Description: A partial order relation has no 2-cycle loops. (Contributed by NM, 27-Mar-1997.)
Assertion
Ref Expression
po2nr ((𝑅 Po 𝐴 ∧ (𝐵𝐴𝐶𝐴)) → ¬ (𝐵𝑅𝐶𝐶𝑅𝐵))

Proof of Theorem po2nr
StepHypRef Expression
1 poirr 4343 . . 3 ((𝑅 Po 𝐴𝐵𝐴) → ¬ 𝐵𝑅𝐵)
21adantrr 479 . 2 ((𝑅 Po 𝐴 ∧ (𝐵𝐴𝐶𝐴)) → ¬ 𝐵𝑅𝐵)
3 potr 4344 . . . . . 6 ((𝑅 Po 𝐴 ∧ (𝐵𝐴𝐶𝐴𝐵𝐴)) → ((𝐵𝑅𝐶𝐶𝑅𝐵) → 𝐵𝑅𝐵))
433exp2 1227 . . . . 5 (𝑅 Po 𝐴 → (𝐵𝐴 → (𝐶𝐴 → (𝐵𝐴 → ((𝐵𝑅𝐶𝐶𝑅𝐵) → 𝐵𝑅𝐵)))))
54com34 83 . . . 4 (𝑅 Po 𝐴 → (𝐵𝐴 → (𝐵𝐴 → (𝐶𝐴 → ((𝐵𝑅𝐶𝐶𝑅𝐵) → 𝐵𝑅𝐵)))))
65pm2.43d 50 . . 3 (𝑅 Po 𝐴 → (𝐵𝐴 → (𝐶𝐴 → ((𝐵𝑅𝐶𝐶𝑅𝐵) → 𝐵𝑅𝐵))))
76imp32 257 . 2 ((𝑅 Po 𝐴 ∧ (𝐵𝐴𝐶𝐴)) → ((𝐵𝑅𝐶𝐶𝑅𝐵) → 𝐵𝑅𝐵))
82, 7mtod 664 1 ((𝑅 Po 𝐴 ∧ (𝐵𝐴𝐶𝐴)) → ¬ (𝐵𝑅𝐶𝐶𝑅𝐵))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wcel 2167   class class class wbr 4034   Po wpo 4330
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-ext 2178
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ral 2480  df-v 2765  df-un 3161  df-sn 3629  df-pr 3630  df-op 3632  df-br 4035  df-po 4332
This theorem is referenced by:  po3nr  4346  so2nr  4357  tridc  6969
  Copyright terms: Public domain W3C validator