| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > po2nr | GIF version | ||
| Description: A partial order relation has no 2-cycle loops. (Contributed by NM, 27-Mar-1997.) |
| Ref | Expression |
|---|---|
| po2nr | ⊢ ((𝑅 Po 𝐴 ∧ (𝐵 ∈ 𝐴 ∧ 𝐶 ∈ 𝐴)) → ¬ (𝐵𝑅𝐶 ∧ 𝐶𝑅𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | poirr 4398 | . . 3 ⊢ ((𝑅 Po 𝐴 ∧ 𝐵 ∈ 𝐴) → ¬ 𝐵𝑅𝐵) | |
| 2 | 1 | adantrr 479 | . 2 ⊢ ((𝑅 Po 𝐴 ∧ (𝐵 ∈ 𝐴 ∧ 𝐶 ∈ 𝐴)) → ¬ 𝐵𝑅𝐵) |
| 3 | potr 4399 | . . . . . 6 ⊢ ((𝑅 Po 𝐴 ∧ (𝐵 ∈ 𝐴 ∧ 𝐶 ∈ 𝐴 ∧ 𝐵 ∈ 𝐴)) → ((𝐵𝑅𝐶 ∧ 𝐶𝑅𝐵) → 𝐵𝑅𝐵)) | |
| 4 | 3 | 3exp2 1249 | . . . . 5 ⊢ (𝑅 Po 𝐴 → (𝐵 ∈ 𝐴 → (𝐶 ∈ 𝐴 → (𝐵 ∈ 𝐴 → ((𝐵𝑅𝐶 ∧ 𝐶𝑅𝐵) → 𝐵𝑅𝐵))))) |
| 5 | 4 | com34 83 | . . . 4 ⊢ (𝑅 Po 𝐴 → (𝐵 ∈ 𝐴 → (𝐵 ∈ 𝐴 → (𝐶 ∈ 𝐴 → ((𝐵𝑅𝐶 ∧ 𝐶𝑅𝐵) → 𝐵𝑅𝐵))))) |
| 6 | 5 | pm2.43d 50 | . . 3 ⊢ (𝑅 Po 𝐴 → (𝐵 ∈ 𝐴 → (𝐶 ∈ 𝐴 → ((𝐵𝑅𝐶 ∧ 𝐶𝑅𝐵) → 𝐵𝑅𝐵)))) |
| 7 | 6 | imp32 257 | . 2 ⊢ ((𝑅 Po 𝐴 ∧ (𝐵 ∈ 𝐴 ∧ 𝐶 ∈ 𝐴)) → ((𝐵𝑅𝐶 ∧ 𝐶𝑅𝐵) → 𝐵𝑅𝐵)) |
| 8 | 2, 7 | mtod 667 | 1 ⊢ ((𝑅 Po 𝐴 ∧ (𝐵 ∈ 𝐴 ∧ 𝐶 ∈ 𝐴)) → ¬ (𝐵𝑅𝐶 ∧ 𝐶𝑅𝐵)) |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 104 ∈ wcel 2200 class class class wbr 4083 Po wpo 4385 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-v 2801 df-un 3201 df-sn 3672 df-pr 3673 df-op 3675 df-br 4084 df-po 4387 |
| This theorem is referenced by: po3nr 4401 so2nr 4412 tridc 7061 |
| Copyright terms: Public domain | W3C validator |