| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > grpid | GIF version | ||
| Description: Two ways of saying that an element of a group is the identity element. Provides a convenient way to compute the value of the identity element. (Contributed by NM, 24-Aug-2011.) |
| Ref | Expression |
|---|---|
| grpinveu.b | ⊢ 𝐵 = (Base‘𝐺) |
| grpinveu.p | ⊢ + = (+g‘𝐺) |
| grpinveu.o | ⊢ 0 = (0g‘𝐺) |
| Ref | Expression |
|---|---|
| grpid | ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵) → ((𝑋 + 𝑋) = 𝑋 ↔ 0 = 𝑋)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqcom 2211 | . 2 ⊢ ( 0 = 𝑋 ↔ 𝑋 = 0 ) | |
| 2 | grpinveu.b | . . . . . . 7 ⊢ 𝐵 = (Base‘𝐺) | |
| 3 | grpinveu.o | . . . . . . 7 ⊢ 0 = (0g‘𝐺) | |
| 4 | 2, 3 | grpidcl 13528 | . . . . . 6 ⊢ (𝐺 ∈ Grp → 0 ∈ 𝐵) |
| 5 | grpinveu.p | . . . . . . . 8 ⊢ + = (+g‘𝐺) | |
| 6 | 2, 5 | grprcan 13536 | . . . . . . 7 ⊢ ((𝐺 ∈ Grp ∧ (𝑋 ∈ 𝐵 ∧ 0 ∈ 𝐵 ∧ 𝑋 ∈ 𝐵)) → ((𝑋 + 𝑋) = ( 0 + 𝑋) ↔ 𝑋 = 0 )) |
| 7 | 6 | 3exp2 1230 | . . . . . 6 ⊢ (𝐺 ∈ Grp → (𝑋 ∈ 𝐵 → ( 0 ∈ 𝐵 → (𝑋 ∈ 𝐵 → ((𝑋 + 𝑋) = ( 0 + 𝑋) ↔ 𝑋 = 0 ))))) |
| 8 | 4, 7 | mpid 42 | . . . . 5 ⊢ (𝐺 ∈ Grp → (𝑋 ∈ 𝐵 → (𝑋 ∈ 𝐵 → ((𝑋 + 𝑋) = ( 0 + 𝑋) ↔ 𝑋 = 0 )))) |
| 9 | 8 | pm2.43d 50 | . . . 4 ⊢ (𝐺 ∈ Grp → (𝑋 ∈ 𝐵 → ((𝑋 + 𝑋) = ( 0 + 𝑋) ↔ 𝑋 = 0 ))) |
| 10 | 9 | imp 124 | . . 3 ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵) → ((𝑋 + 𝑋) = ( 0 + 𝑋) ↔ 𝑋 = 0 )) |
| 11 | 2, 5, 3 | grplid 13530 | . . . 4 ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵) → ( 0 + 𝑋) = 𝑋) |
| 12 | 11 | eqeq2d 2221 | . . 3 ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵) → ((𝑋 + 𝑋) = ( 0 + 𝑋) ↔ (𝑋 + 𝑋) = 𝑋)) |
| 13 | 10, 12 | bitr3d 190 | . 2 ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵) → (𝑋 = 0 ↔ (𝑋 + 𝑋) = 𝑋)) |
| 14 | 1, 13 | bitr2id 193 | 1 ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵) → ((𝑋 + 𝑋) = 𝑋 ↔ 0 = 𝑋)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 = wceq 1375 ∈ wcel 2180 ‘cfv 5294 (class class class)co 5974 Basecbs 12998 +gcplusg 13076 0gc0g 13255 Grpcgrp 13499 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 713 ax-5 1473 ax-7 1474 ax-gen 1475 ax-ie1 1519 ax-ie2 1520 ax-8 1530 ax-10 1531 ax-11 1532 ax-i12 1533 ax-bndl 1535 ax-4 1536 ax-17 1552 ax-i9 1556 ax-ial 1560 ax-i5r 1561 ax-13 2182 ax-14 2183 ax-ext 2191 ax-sep 4181 ax-pow 4237 ax-pr 4272 ax-un 4501 ax-cnex 8058 ax-resscn 8059 ax-1re 8061 ax-addrcl 8064 |
| This theorem depends on definitions: df-bi 117 df-3an 985 df-tru 1378 df-nf 1487 df-sb 1789 df-eu 2060 df-mo 2061 df-clab 2196 df-cleq 2202 df-clel 2205 df-nfc 2341 df-ral 2493 df-rex 2494 df-reu 2495 df-rmo 2496 df-rab 2497 df-v 2781 df-sbc 3009 df-csb 3105 df-un 3181 df-in 3183 df-ss 3190 df-pw 3631 df-sn 3652 df-pr 3653 df-op 3655 df-uni 3868 df-int 3903 df-br 4063 df-opab 4125 df-mpt 4126 df-id 4361 df-xp 4702 df-rel 4703 df-cnv 4704 df-co 4705 df-dm 4706 df-rn 4707 df-res 4708 df-iota 5254 df-fun 5296 df-fn 5297 df-fv 5302 df-riota 5927 df-ov 5977 df-inn 9079 df-2 9137 df-ndx 13001 df-slot 13002 df-base 13004 df-plusg 13089 df-0g 13257 df-mgm 13355 df-sgrp 13401 df-mnd 13416 df-grp 13502 |
| This theorem is referenced by: isgrpid2 13539 grpidd2 13540 subg0 13683 qus0 13738 ghmid 13752 lmod0vid 14249 cnfld0 14500 psr0 14615 |
| Copyright terms: Public domain | W3C validator |