ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  grpid GIF version

Theorem grpid 13241
Description: Two ways of saying that an element of a group is the identity element. Provides a convenient way to compute the value of the identity element. (Contributed by NM, 24-Aug-2011.)
Hypotheses
Ref Expression
grpinveu.b 𝐵 = (Base‘𝐺)
grpinveu.p + = (+g𝐺)
grpinveu.o 0 = (0g𝐺)
Assertion
Ref Expression
grpid ((𝐺 ∈ Grp ∧ 𝑋𝐵) → ((𝑋 + 𝑋) = 𝑋0 = 𝑋))

Proof of Theorem grpid
StepHypRef Expression
1 eqcom 2198 . 2 ( 0 = 𝑋𝑋 = 0 )
2 grpinveu.b . . . . . . 7 𝐵 = (Base‘𝐺)
3 grpinveu.o . . . . . . 7 0 = (0g𝐺)
42, 3grpidcl 13231 . . . . . 6 (𝐺 ∈ Grp → 0𝐵)
5 grpinveu.p . . . . . . . 8 + = (+g𝐺)
62, 5grprcan 13239 . . . . . . 7 ((𝐺 ∈ Grp ∧ (𝑋𝐵0𝐵𝑋𝐵)) → ((𝑋 + 𝑋) = ( 0 + 𝑋) ↔ 𝑋 = 0 ))
763exp2 1227 . . . . . 6 (𝐺 ∈ Grp → (𝑋𝐵 → ( 0𝐵 → (𝑋𝐵 → ((𝑋 + 𝑋) = ( 0 + 𝑋) ↔ 𝑋 = 0 )))))
84, 7mpid 42 . . . . 5 (𝐺 ∈ Grp → (𝑋𝐵 → (𝑋𝐵 → ((𝑋 + 𝑋) = ( 0 + 𝑋) ↔ 𝑋 = 0 ))))
98pm2.43d 50 . . . 4 (𝐺 ∈ Grp → (𝑋𝐵 → ((𝑋 + 𝑋) = ( 0 + 𝑋) ↔ 𝑋 = 0 )))
109imp 124 . . 3 ((𝐺 ∈ Grp ∧ 𝑋𝐵) → ((𝑋 + 𝑋) = ( 0 + 𝑋) ↔ 𝑋 = 0 ))
112, 5, 3grplid 13233 . . . 4 ((𝐺 ∈ Grp ∧ 𝑋𝐵) → ( 0 + 𝑋) = 𝑋)
1211eqeq2d 2208 . . 3 ((𝐺 ∈ Grp ∧ 𝑋𝐵) → ((𝑋 + 𝑋) = ( 0 + 𝑋) ↔ (𝑋 + 𝑋) = 𝑋))
1310, 12bitr3d 190 . 2 ((𝐺 ∈ Grp ∧ 𝑋𝐵) → (𝑋 = 0 ↔ (𝑋 + 𝑋) = 𝑋))
141, 13bitr2id 193 1 ((𝐺 ∈ Grp ∧ 𝑋𝐵) → ((𝑋 + 𝑋) = 𝑋0 = 𝑋))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105   = wceq 1364  wcel 2167  cfv 5259  (class class class)co 5925  Basecbs 12703  +gcplusg 12780  0gc0g 12958  Grpcgrp 13202
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-sep 4152  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-cnex 7987  ax-resscn 7988  ax-1re 7990  ax-addrcl 7993
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ral 2480  df-rex 2481  df-reu 2482  df-rmo 2483  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-un 3161  df-in 3163  df-ss 3170  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-int 3876  df-br 4035  df-opab 4096  df-mpt 4097  df-id 4329  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-rn 4675  df-res 4676  df-iota 5220  df-fun 5261  df-fn 5262  df-fv 5267  df-riota 5880  df-ov 5928  df-inn 9008  df-2 9066  df-ndx 12706  df-slot 12707  df-base 12709  df-plusg 12793  df-0g 12960  df-mgm 13058  df-sgrp 13104  df-mnd 13119  df-grp 13205
This theorem is referenced by:  isgrpid2  13242  grpidd2  13243  subg0  13386  qus0  13441  ghmid  13455  lmod0vid  13952  cnfld0  14203  psr0  14314
  Copyright terms: Public domain W3C validator