ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dvidlemap GIF version

Theorem dvidlemap 13454
Description: Lemma for dvid 13456 and dvconst 13455. (Contributed by Mario Carneiro, 8-Aug-2014.) (Revised by Jim Kingdon, 2-Aug-2023.)
Hypotheses
Ref Expression
dvidlem.1 (𝜑𝐹:ℂ⟶ℂ)
dvidlemap.2 ((𝜑 ∧ (𝑥 ∈ ℂ ∧ 𝑧 ∈ ℂ ∧ 𝑧 # 𝑥)) → (((𝐹𝑧) − (𝐹𝑥)) / (𝑧𝑥)) = 𝐵)
dvidlem.3 𝐵 ∈ ℂ
Assertion
Ref Expression
dvidlemap (𝜑 → (ℂ D 𝐹) = (ℂ × {𝐵}))
Distinct variable groups:   𝑥,𝑧,𝐵   𝑥,𝐹,𝑧   𝜑,𝑥,𝑧

Proof of Theorem dvidlemap
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 dvidlem.1 . . . . . 6 (𝜑𝐹:ℂ⟶ℂ)
2 cnex 7898 . . . . . . 7 ℂ ∈ V
32, 2fpm 6659 . . . . . 6 (𝐹:ℂ⟶ℂ → 𝐹 ∈ (ℂ ↑pm ℂ))
41, 3syl 14 . . . . 5 (𝜑𝐹 ∈ (ℂ ↑pm ℂ))
5 dvfcnpm 13453 . . . . 5 (𝐹 ∈ (ℂ ↑pm ℂ) → (ℂ D 𝐹):dom (ℂ D 𝐹)⟶ℂ)
64, 5syl 14 . . . 4 (𝜑 → (ℂ D 𝐹):dom (ℂ D 𝐹)⟶ℂ)
7 ssidd 3168 . . . . . . 7 (𝜑 → ℂ ⊆ ℂ)
87, 1, 7dvbss 13448 . . . . . 6 (𝜑 → dom (ℂ D 𝐹) ⊆ ℂ)
9 reldvg 13442 . . . . . . . . 9 ((ℂ ⊆ ℂ ∧ 𝐹 ∈ (ℂ ↑pm ℂ)) → Rel (ℂ D 𝐹))
107, 4, 9syl2anc 409 . . . . . . . 8 (𝜑 → Rel (ℂ D 𝐹))
1110adantr 274 . . . . . . 7 ((𝜑𝑥 ∈ ℂ) → Rel (ℂ D 𝐹))
12 simpr 109 . . . . . . . . 9 ((𝜑𝑥 ∈ ℂ) → 𝑥 ∈ ℂ)
13 eqid 2170 . . . . . . . . . . 11 (MetOpen‘(abs ∘ − )) = (MetOpen‘(abs ∘ − ))
1413cntoptop 13327 . . . . . . . . . 10 (MetOpen‘(abs ∘ − )) ∈ Top
1513cntoptopon 13326 . . . . . . . . . . . 12 (MetOpen‘(abs ∘ − )) ∈ (TopOn‘ℂ)
1615toponunii 12809 . . . . . . . . . . 11 ℂ = (MetOpen‘(abs ∘ − ))
1716ntrtop 12922 . . . . . . . . . 10 ((MetOpen‘(abs ∘ − )) ∈ Top → ((int‘(MetOpen‘(abs ∘ − )))‘ℂ) = ℂ)
1814, 17ax-mp 5 . . . . . . . . 9 ((int‘(MetOpen‘(abs ∘ − )))‘ℂ) = ℂ
1912, 18eleqtrrdi 2264 . . . . . . . 8 ((𝜑𝑥 ∈ ℂ) → 𝑥 ∈ ((int‘(MetOpen‘(abs ∘ − )))‘ℂ))
20 limcresi 13429 . . . . . . . . . 10 ((𝑧 ∈ ℂ ↦ 𝐵) lim 𝑥) ⊆ (((𝑧 ∈ ℂ ↦ 𝐵) ↾ {𝑤 ∈ ℂ ∣ 𝑤 # 𝑥}) lim 𝑥)
21 dvidlem.3 . . . . . . . . . . . 12 𝐵 ∈ ℂ
22 ssidd 3168 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ ℂ) → ℂ ⊆ ℂ)
23 cncfmptc 13376 . . . . . . . . . . . 12 ((𝐵 ∈ ℂ ∧ ℂ ⊆ ℂ ∧ ℂ ⊆ ℂ) → (𝑧 ∈ ℂ ↦ 𝐵) ∈ (ℂ–cn→ℂ))
2421, 22, 22, 23mp3an2i 1337 . . . . . . . . . . 11 ((𝜑𝑥 ∈ ℂ) → (𝑧 ∈ ℂ ↦ 𝐵) ∈ (ℂ–cn→ℂ))
25 eqidd 2171 . . . . . . . . . . 11 (𝑧 = 𝑥𝐵 = 𝐵)
2624, 12, 25cnmptlimc 13437 . . . . . . . . . 10 ((𝜑𝑥 ∈ ℂ) → 𝐵 ∈ ((𝑧 ∈ ℂ ↦ 𝐵) lim 𝑥))
2720, 26sselid 3145 . . . . . . . . 9 ((𝜑𝑥 ∈ ℂ) → 𝐵 ∈ (((𝑧 ∈ ℂ ↦ 𝐵) ↾ {𝑤 ∈ ℂ ∣ 𝑤 # 𝑥}) lim 𝑥))
28 breq1 3992 . . . . . . . . . . . . . 14 (𝑤 = 𝑧 → (𝑤 # 𝑥𝑧 # 𝑥))
2928elrab 2886 . . . . . . . . . . . . 13 (𝑧 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 𝑥} ↔ (𝑧 ∈ ℂ ∧ 𝑧 # 𝑥))
30 dvidlemap.2 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑥 ∈ ℂ ∧ 𝑧 ∈ ℂ ∧ 𝑧 # 𝑥)) → (((𝐹𝑧) − (𝐹𝑥)) / (𝑧𝑥)) = 𝐵)
31303exp2 1220 . . . . . . . . . . . . . 14 (𝜑 → (𝑥 ∈ ℂ → (𝑧 ∈ ℂ → (𝑧 # 𝑥 → (((𝐹𝑧) − (𝐹𝑥)) / (𝑧𝑥)) = 𝐵))))
3231imp43 353 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ ℂ) ∧ (𝑧 ∈ ℂ ∧ 𝑧 # 𝑥)) → (((𝐹𝑧) − (𝐹𝑥)) / (𝑧𝑥)) = 𝐵)
3329, 32sylan2b 285 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ ℂ) ∧ 𝑧 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 𝑥}) → (((𝐹𝑧) − (𝐹𝑥)) / (𝑧𝑥)) = 𝐵)
3433mpteq2dva 4079 . . . . . . . . . . 11 ((𝜑𝑥 ∈ ℂ) → (𝑧 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 𝑥} ↦ (((𝐹𝑧) − (𝐹𝑥)) / (𝑧𝑥))) = (𝑧 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 𝑥} ↦ 𝐵))
35 ssrab2 3232 . . . . . . . . . . . 12 {𝑤 ∈ ℂ ∣ 𝑤 # 𝑥} ⊆ ℂ
36 resmpt 4939 . . . . . . . . . . . 12 ({𝑤 ∈ ℂ ∣ 𝑤 # 𝑥} ⊆ ℂ → ((𝑧 ∈ ℂ ↦ 𝐵) ↾ {𝑤 ∈ ℂ ∣ 𝑤 # 𝑥}) = (𝑧 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 𝑥} ↦ 𝐵))
3735, 36ax-mp 5 . . . . . . . . . . 11 ((𝑧 ∈ ℂ ↦ 𝐵) ↾ {𝑤 ∈ ℂ ∣ 𝑤 # 𝑥}) = (𝑧 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 𝑥} ↦ 𝐵)
3834, 37eqtr4di 2221 . . . . . . . . . 10 ((𝜑𝑥 ∈ ℂ) → (𝑧 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 𝑥} ↦ (((𝐹𝑧) − (𝐹𝑥)) / (𝑧𝑥))) = ((𝑧 ∈ ℂ ↦ 𝐵) ↾ {𝑤 ∈ ℂ ∣ 𝑤 # 𝑥}))
3938oveq1d 5868 . . . . . . . . 9 ((𝜑𝑥 ∈ ℂ) → ((𝑧 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 𝑥} ↦ (((𝐹𝑧) − (𝐹𝑥)) / (𝑧𝑥))) lim 𝑥) = (((𝑧 ∈ ℂ ↦ 𝐵) ↾ {𝑤 ∈ ℂ ∣ 𝑤 # 𝑥}) lim 𝑥))
4027, 39eleqtrrd 2250 . . . . . . . 8 ((𝜑𝑥 ∈ ℂ) → 𝐵 ∈ ((𝑧 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 𝑥} ↦ (((𝐹𝑧) − (𝐹𝑥)) / (𝑧𝑥))) lim 𝑥))
4115toponrestid 12813 . . . . . . . . 9 (MetOpen‘(abs ∘ − )) = ((MetOpen‘(abs ∘ − )) ↾t ℂ)
42 eqid 2170 . . . . . . . . 9 (𝑧 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 𝑥} ↦ (((𝐹𝑧) − (𝐹𝑥)) / (𝑧𝑥))) = (𝑧 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 𝑥} ↦ (((𝐹𝑧) − (𝐹𝑥)) / (𝑧𝑥)))
431adantr 274 . . . . . . . . 9 ((𝜑𝑥 ∈ ℂ) → 𝐹:ℂ⟶ℂ)
4441, 13, 42, 22, 43, 22eldvap 13445 . . . . . . . 8 ((𝜑𝑥 ∈ ℂ) → (𝑥(ℂ D 𝐹)𝐵 ↔ (𝑥 ∈ ((int‘(MetOpen‘(abs ∘ − )))‘ℂ) ∧ 𝐵 ∈ ((𝑧 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 𝑥} ↦ (((𝐹𝑧) − (𝐹𝑥)) / (𝑧𝑥))) lim 𝑥))))
4519, 40, 44mpbir2and 939 . . . . . . 7 ((𝜑𝑥 ∈ ℂ) → 𝑥(ℂ D 𝐹)𝐵)
46 releldm 4846 . . . . . . 7 ((Rel (ℂ D 𝐹) ∧ 𝑥(ℂ D 𝐹)𝐵) → 𝑥 ∈ dom (ℂ D 𝐹))
4711, 45, 46syl2anc 409 . . . . . 6 ((𝜑𝑥 ∈ ℂ) → 𝑥 ∈ dom (ℂ D 𝐹))
488, 47eqelssd 3166 . . . . 5 (𝜑 → dom (ℂ D 𝐹) = ℂ)
4948feq2d 5335 . . . 4 (𝜑 → ((ℂ D 𝐹):dom (ℂ D 𝐹)⟶ℂ ↔ (ℂ D 𝐹):ℂ⟶ℂ))
506, 49mpbid 146 . . 3 (𝜑 → (ℂ D 𝐹):ℂ⟶ℂ)
5150ffnd 5348 . 2 (𝜑 → (ℂ D 𝐹) Fn ℂ)
52 fnconstg 5395 . . 3 (𝐵 ∈ ℂ → (ℂ × {𝐵}) Fn ℂ)
5321, 52mp1i 10 . 2 (𝜑 → (ℂ × {𝐵}) Fn ℂ)
546adantr 274 . . . . . 6 ((𝜑𝑥 ∈ ℂ) → (ℂ D 𝐹):dom (ℂ D 𝐹)⟶ℂ)
5554ffund 5351 . . . . 5 ((𝜑𝑥 ∈ ℂ) → Fun (ℂ D 𝐹))
56 funbrfvb 5539 . . . . 5 ((Fun (ℂ D 𝐹) ∧ 𝑥 ∈ dom (ℂ D 𝐹)) → (((ℂ D 𝐹)‘𝑥) = 𝐵𝑥(ℂ D 𝐹)𝐵))
5755, 47, 56syl2anc 409 . . . 4 ((𝜑𝑥 ∈ ℂ) → (((ℂ D 𝐹)‘𝑥) = 𝐵𝑥(ℂ D 𝐹)𝐵))
5845, 57mpbird 166 . . 3 ((𝜑𝑥 ∈ ℂ) → ((ℂ D 𝐹)‘𝑥) = 𝐵)
5921a1i 9 . . . 4 (𝜑𝐵 ∈ ℂ)
60 fvconst2g 5710 . . . 4 ((𝐵 ∈ ℂ ∧ 𝑥 ∈ ℂ) → ((ℂ × {𝐵})‘𝑥) = 𝐵)
6159, 60sylan 281 . . 3 ((𝜑𝑥 ∈ ℂ) → ((ℂ × {𝐵})‘𝑥) = 𝐵)
6258, 61eqtr4d 2206 . 2 ((𝜑𝑥 ∈ ℂ) → ((ℂ D 𝐹)‘𝑥) = ((ℂ × {𝐵})‘𝑥))
6351, 53, 62eqfnfvd 5596 1 (𝜑 → (ℂ D 𝐹) = (ℂ × {𝐵}))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104  w3a 973   = wceq 1348  wcel 2141  {crab 2452  wss 3121  {csn 3583   class class class wbr 3989  cmpt 4050   × cxp 4609  dom cdm 4611  cres 4613  ccom 4615  Rel wrel 4616  Fun wfun 5192   Fn wfn 5193  wf 5194  cfv 5198  (class class class)co 5853  pm cpm 6627  cc 7772  cmin 8090   # cap 8500   / cdiv 8589  abscabs 10961  MetOpencmopn 12779  Topctop 12789  intcnt 12887  cnccncf 13351   lim climc 13417   D cdv 13418
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-coll 4104  ax-sep 4107  ax-nul 4115  ax-pow 4160  ax-pr 4194  ax-un 4418  ax-setind 4521  ax-iinf 4572  ax-cnex 7865  ax-resscn 7866  ax-1cn 7867  ax-1re 7868  ax-icn 7869  ax-addcl 7870  ax-addrcl 7871  ax-mulcl 7872  ax-mulrcl 7873  ax-addcom 7874  ax-mulcom 7875  ax-addass 7876  ax-mulass 7877  ax-distr 7878  ax-i2m1 7879  ax-0lt1 7880  ax-1rid 7881  ax-0id 7882  ax-rnegex 7883  ax-precex 7884  ax-cnre 7885  ax-pre-ltirr 7886  ax-pre-ltwlin 7887  ax-pre-lttrn 7888  ax-pre-apti 7889  ax-pre-ltadd 7890  ax-pre-mulgt0 7891  ax-pre-mulext 7892  ax-arch 7893  ax-caucvg 7894
This theorem depends on definitions:  df-bi 116  df-stab 826  df-dc 830  df-3or 974  df-3an 975  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ne 2341  df-nel 2436  df-ral 2453  df-rex 2454  df-reu 2455  df-rmo 2456  df-rab 2457  df-v 2732  df-sbc 2956  df-csb 3050  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-nul 3415  df-if 3527  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-int 3832  df-iun 3875  df-br 3990  df-opab 4051  df-mpt 4052  df-tr 4088  df-id 4278  df-po 4281  df-iso 4282  df-iord 4351  df-on 4353  df-ilim 4354  df-suc 4356  df-iom 4575  df-xp 4617  df-rel 4618  df-cnv 4619  df-co 4620  df-dm 4621  df-rn 4622  df-res 4623  df-ima 4624  df-iota 5160  df-fun 5200  df-fn 5201  df-f 5202  df-f1 5203  df-fo 5204  df-f1o 5205  df-fv 5206  df-isom 5207  df-riota 5809  df-ov 5856  df-oprab 5857  df-mpo 5858  df-1st 6119  df-2nd 6120  df-recs 6284  df-frec 6370  df-map 6628  df-pm 6629  df-sup 6961  df-inf 6962  df-pnf 7956  df-mnf 7957  df-xr 7958  df-ltxr 7959  df-le 7960  df-sub 8092  df-neg 8093  df-reap 8494  df-ap 8501  df-div 8590  df-inn 8879  df-2 8937  df-3 8938  df-4 8939  df-n0 9136  df-z 9213  df-uz 9488  df-q 9579  df-rp 9611  df-xneg 9729  df-xadd 9730  df-seqfrec 10402  df-exp 10476  df-cj 10806  df-re 10807  df-im 10808  df-rsqrt 10962  df-abs 10963  df-rest 12581  df-topgen 12600  df-psmet 12781  df-xmet 12782  df-met 12783  df-bl 12784  df-mopn 12785  df-top 12790  df-topon 12803  df-bases 12835  df-ntr 12890  df-cn 12982  df-cnp 12983  df-cncf 13352  df-limced 13419  df-dvap 13420
This theorem is referenced by:  dvconst  13455  dvid  13456
  Copyright terms: Public domain W3C validator