ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dvidlemap GIF version

Theorem dvidlemap 13827
Description: Lemma for dvid 13829 and dvconst 13828. (Contributed by Mario Carneiro, 8-Aug-2014.) (Revised by Jim Kingdon, 2-Aug-2023.)
Hypotheses
Ref Expression
dvidlem.1 (𝜑𝐹:ℂ⟶ℂ)
dvidlemap.2 ((𝜑 ∧ (𝑥 ∈ ℂ ∧ 𝑧 ∈ ℂ ∧ 𝑧 # 𝑥)) → (((𝐹𝑧) − (𝐹𝑥)) / (𝑧𝑥)) = 𝐵)
dvidlem.3 𝐵 ∈ ℂ
Assertion
Ref Expression
dvidlemap (𝜑 → (ℂ D 𝐹) = (ℂ × {𝐵}))
Distinct variable groups:   𝑥,𝑧,𝐵   𝑥,𝐹,𝑧   𝜑,𝑥,𝑧

Proof of Theorem dvidlemap
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 dvidlem.1 . . . . . 6 (𝜑𝐹:ℂ⟶ℂ)
2 cnex 7926 . . . . . . 7 ℂ ∈ V
32, 2fpm 6675 . . . . . 6 (𝐹:ℂ⟶ℂ → 𝐹 ∈ (ℂ ↑pm ℂ))
41, 3syl 14 . . . . 5 (𝜑𝐹 ∈ (ℂ ↑pm ℂ))
5 dvfcnpm 13826 . . . . 5 (𝐹 ∈ (ℂ ↑pm ℂ) → (ℂ D 𝐹):dom (ℂ D 𝐹)⟶ℂ)
64, 5syl 14 . . . 4 (𝜑 → (ℂ D 𝐹):dom (ℂ D 𝐹)⟶ℂ)
7 ssidd 3176 . . . . . . 7 (𝜑 → ℂ ⊆ ℂ)
87, 1, 7dvbss 13821 . . . . . 6 (𝜑 → dom (ℂ D 𝐹) ⊆ ℂ)
9 reldvg 13815 . . . . . . . . 9 ((ℂ ⊆ ℂ ∧ 𝐹 ∈ (ℂ ↑pm ℂ)) → Rel (ℂ D 𝐹))
107, 4, 9syl2anc 411 . . . . . . . 8 (𝜑 → Rel (ℂ D 𝐹))
1110adantr 276 . . . . . . 7 ((𝜑𝑥 ∈ ℂ) → Rel (ℂ D 𝐹))
12 simpr 110 . . . . . . . . 9 ((𝜑𝑥 ∈ ℂ) → 𝑥 ∈ ℂ)
13 eqid 2177 . . . . . . . . . . 11 (MetOpen‘(abs ∘ − )) = (MetOpen‘(abs ∘ − ))
1413cntoptop 13700 . . . . . . . . . 10 (MetOpen‘(abs ∘ − )) ∈ Top
1513cntoptopon 13699 . . . . . . . . . . . 12 (MetOpen‘(abs ∘ − )) ∈ (TopOn‘ℂ)
1615toponunii 13182 . . . . . . . . . . 11 ℂ = (MetOpen‘(abs ∘ − ))
1716ntrtop 13295 . . . . . . . . . 10 ((MetOpen‘(abs ∘ − )) ∈ Top → ((int‘(MetOpen‘(abs ∘ − )))‘ℂ) = ℂ)
1814, 17ax-mp 5 . . . . . . . . 9 ((int‘(MetOpen‘(abs ∘ − )))‘ℂ) = ℂ
1912, 18eleqtrrdi 2271 . . . . . . . 8 ((𝜑𝑥 ∈ ℂ) → 𝑥 ∈ ((int‘(MetOpen‘(abs ∘ − )))‘ℂ))
20 limcresi 13802 . . . . . . . . . 10 ((𝑧 ∈ ℂ ↦ 𝐵) lim 𝑥) ⊆ (((𝑧 ∈ ℂ ↦ 𝐵) ↾ {𝑤 ∈ ℂ ∣ 𝑤 # 𝑥}) lim 𝑥)
21 dvidlem.3 . . . . . . . . . . . 12 𝐵 ∈ ℂ
22 ssidd 3176 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ ℂ) → ℂ ⊆ ℂ)
23 cncfmptc 13749 . . . . . . . . . . . 12 ((𝐵 ∈ ℂ ∧ ℂ ⊆ ℂ ∧ ℂ ⊆ ℂ) → (𝑧 ∈ ℂ ↦ 𝐵) ∈ (ℂ–cn→ℂ))
2421, 22, 22, 23mp3an2i 1342 . . . . . . . . . . 11 ((𝜑𝑥 ∈ ℂ) → (𝑧 ∈ ℂ ↦ 𝐵) ∈ (ℂ–cn→ℂ))
25 eqidd 2178 . . . . . . . . . . 11 (𝑧 = 𝑥𝐵 = 𝐵)
2624, 12, 25cnmptlimc 13810 . . . . . . . . . 10 ((𝜑𝑥 ∈ ℂ) → 𝐵 ∈ ((𝑧 ∈ ℂ ↦ 𝐵) lim 𝑥))
2720, 26sselid 3153 . . . . . . . . 9 ((𝜑𝑥 ∈ ℂ) → 𝐵 ∈ (((𝑧 ∈ ℂ ↦ 𝐵) ↾ {𝑤 ∈ ℂ ∣ 𝑤 # 𝑥}) lim 𝑥))
28 breq1 4003 . . . . . . . . . . . . . 14 (𝑤 = 𝑧 → (𝑤 # 𝑥𝑧 # 𝑥))
2928elrab 2893 . . . . . . . . . . . . 13 (𝑧 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 𝑥} ↔ (𝑧 ∈ ℂ ∧ 𝑧 # 𝑥))
30 dvidlemap.2 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑥 ∈ ℂ ∧ 𝑧 ∈ ℂ ∧ 𝑧 # 𝑥)) → (((𝐹𝑧) − (𝐹𝑥)) / (𝑧𝑥)) = 𝐵)
31303exp2 1225 . . . . . . . . . . . . . 14 (𝜑 → (𝑥 ∈ ℂ → (𝑧 ∈ ℂ → (𝑧 # 𝑥 → (((𝐹𝑧) − (𝐹𝑥)) / (𝑧𝑥)) = 𝐵))))
3231imp43 355 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ ℂ) ∧ (𝑧 ∈ ℂ ∧ 𝑧 # 𝑥)) → (((𝐹𝑧) − (𝐹𝑥)) / (𝑧𝑥)) = 𝐵)
3329, 32sylan2b 287 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ ℂ) ∧ 𝑧 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 𝑥}) → (((𝐹𝑧) − (𝐹𝑥)) / (𝑧𝑥)) = 𝐵)
3433mpteq2dva 4090 . . . . . . . . . . 11 ((𝜑𝑥 ∈ ℂ) → (𝑧 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 𝑥} ↦ (((𝐹𝑧) − (𝐹𝑥)) / (𝑧𝑥))) = (𝑧 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 𝑥} ↦ 𝐵))
35 ssrab2 3240 . . . . . . . . . . . 12 {𝑤 ∈ ℂ ∣ 𝑤 # 𝑥} ⊆ ℂ
36 resmpt 4951 . . . . . . . . . . . 12 ({𝑤 ∈ ℂ ∣ 𝑤 # 𝑥} ⊆ ℂ → ((𝑧 ∈ ℂ ↦ 𝐵) ↾ {𝑤 ∈ ℂ ∣ 𝑤 # 𝑥}) = (𝑧 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 𝑥} ↦ 𝐵))
3735, 36ax-mp 5 . . . . . . . . . . 11 ((𝑧 ∈ ℂ ↦ 𝐵) ↾ {𝑤 ∈ ℂ ∣ 𝑤 # 𝑥}) = (𝑧 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 𝑥} ↦ 𝐵)
3834, 37eqtr4di 2228 . . . . . . . . . 10 ((𝜑𝑥 ∈ ℂ) → (𝑧 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 𝑥} ↦ (((𝐹𝑧) − (𝐹𝑥)) / (𝑧𝑥))) = ((𝑧 ∈ ℂ ↦ 𝐵) ↾ {𝑤 ∈ ℂ ∣ 𝑤 # 𝑥}))
3938oveq1d 5884 . . . . . . . . 9 ((𝜑𝑥 ∈ ℂ) → ((𝑧 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 𝑥} ↦ (((𝐹𝑧) − (𝐹𝑥)) / (𝑧𝑥))) lim 𝑥) = (((𝑧 ∈ ℂ ↦ 𝐵) ↾ {𝑤 ∈ ℂ ∣ 𝑤 # 𝑥}) lim 𝑥))
4027, 39eleqtrrd 2257 . . . . . . . 8 ((𝜑𝑥 ∈ ℂ) → 𝐵 ∈ ((𝑧 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 𝑥} ↦ (((𝐹𝑧) − (𝐹𝑥)) / (𝑧𝑥))) lim 𝑥))
4115toponrestid 13186 . . . . . . . . 9 (MetOpen‘(abs ∘ − )) = ((MetOpen‘(abs ∘ − )) ↾t ℂ)
42 eqid 2177 . . . . . . . . 9 (𝑧 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 𝑥} ↦ (((𝐹𝑧) − (𝐹𝑥)) / (𝑧𝑥))) = (𝑧 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 𝑥} ↦ (((𝐹𝑧) − (𝐹𝑥)) / (𝑧𝑥)))
431adantr 276 . . . . . . . . 9 ((𝜑𝑥 ∈ ℂ) → 𝐹:ℂ⟶ℂ)
4441, 13, 42, 22, 43, 22eldvap 13818 . . . . . . . 8 ((𝜑𝑥 ∈ ℂ) → (𝑥(ℂ D 𝐹)𝐵 ↔ (𝑥 ∈ ((int‘(MetOpen‘(abs ∘ − )))‘ℂ) ∧ 𝐵 ∈ ((𝑧 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 𝑥} ↦ (((𝐹𝑧) − (𝐹𝑥)) / (𝑧𝑥))) lim 𝑥))))
4519, 40, 44mpbir2and 944 . . . . . . 7 ((𝜑𝑥 ∈ ℂ) → 𝑥(ℂ D 𝐹)𝐵)
46 releldm 4858 . . . . . . 7 ((Rel (ℂ D 𝐹) ∧ 𝑥(ℂ D 𝐹)𝐵) → 𝑥 ∈ dom (ℂ D 𝐹))
4711, 45, 46syl2anc 411 . . . . . 6 ((𝜑𝑥 ∈ ℂ) → 𝑥 ∈ dom (ℂ D 𝐹))
488, 47eqelssd 3174 . . . . 5 (𝜑 → dom (ℂ D 𝐹) = ℂ)
4948feq2d 5349 . . . 4 (𝜑 → ((ℂ D 𝐹):dom (ℂ D 𝐹)⟶ℂ ↔ (ℂ D 𝐹):ℂ⟶ℂ))
506, 49mpbid 147 . . 3 (𝜑 → (ℂ D 𝐹):ℂ⟶ℂ)
5150ffnd 5362 . 2 (𝜑 → (ℂ D 𝐹) Fn ℂ)
52 fnconstg 5409 . . 3 (𝐵 ∈ ℂ → (ℂ × {𝐵}) Fn ℂ)
5321, 52mp1i 10 . 2 (𝜑 → (ℂ × {𝐵}) Fn ℂ)
546adantr 276 . . . . . 6 ((𝜑𝑥 ∈ ℂ) → (ℂ D 𝐹):dom (ℂ D 𝐹)⟶ℂ)
5554ffund 5365 . . . . 5 ((𝜑𝑥 ∈ ℂ) → Fun (ℂ D 𝐹))
56 funbrfvb 5554 . . . . 5 ((Fun (ℂ D 𝐹) ∧ 𝑥 ∈ dom (ℂ D 𝐹)) → (((ℂ D 𝐹)‘𝑥) = 𝐵𝑥(ℂ D 𝐹)𝐵))
5755, 47, 56syl2anc 411 . . . 4 ((𝜑𝑥 ∈ ℂ) → (((ℂ D 𝐹)‘𝑥) = 𝐵𝑥(ℂ D 𝐹)𝐵))
5845, 57mpbird 167 . . 3 ((𝜑𝑥 ∈ ℂ) → ((ℂ D 𝐹)‘𝑥) = 𝐵)
5921a1i 9 . . . 4 (𝜑𝐵 ∈ ℂ)
60 fvconst2g 5726 . . . 4 ((𝐵 ∈ ℂ ∧ 𝑥 ∈ ℂ) → ((ℂ × {𝐵})‘𝑥) = 𝐵)
6159, 60sylan 283 . . 3 ((𝜑𝑥 ∈ ℂ) → ((ℂ × {𝐵})‘𝑥) = 𝐵)
6258, 61eqtr4d 2213 . 2 ((𝜑𝑥 ∈ ℂ) → ((ℂ D 𝐹)‘𝑥) = ((ℂ × {𝐵})‘𝑥))
6351, 53, 62eqfnfvd 5612 1 (𝜑 → (ℂ D 𝐹) = (ℂ × {𝐵}))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  w3a 978   = wceq 1353  wcel 2148  {crab 2459  wss 3129  {csn 3591   class class class wbr 4000  cmpt 4061   × cxp 4621  dom cdm 4623  cres 4625  ccom 4627  Rel wrel 4628  Fun wfun 5206   Fn wfn 5207  wf 5208  cfv 5212  (class class class)co 5869  pm cpm 6643  cc 7800  cmin 8118   # cap 8528   / cdiv 8618  abscabs 10990  MetOpencmopn 13152  Topctop 13162  intcnt 13260  cnccncf 13724   lim climc 13790   D cdv 13791
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-coll 4115  ax-sep 4118  ax-nul 4126  ax-pow 4171  ax-pr 4206  ax-un 4430  ax-setind 4533  ax-iinf 4584  ax-cnex 7893  ax-resscn 7894  ax-1cn 7895  ax-1re 7896  ax-icn 7897  ax-addcl 7898  ax-addrcl 7899  ax-mulcl 7900  ax-mulrcl 7901  ax-addcom 7902  ax-mulcom 7903  ax-addass 7904  ax-mulass 7905  ax-distr 7906  ax-i2m1 7907  ax-0lt1 7908  ax-1rid 7909  ax-0id 7910  ax-rnegex 7911  ax-precex 7912  ax-cnre 7913  ax-pre-ltirr 7914  ax-pre-ltwlin 7915  ax-pre-lttrn 7916  ax-pre-apti 7917  ax-pre-ltadd 7918  ax-pre-mulgt0 7919  ax-pre-mulext 7920  ax-arch 7921  ax-caucvg 7922
This theorem depends on definitions:  df-bi 117  df-stab 831  df-dc 835  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-nel 2443  df-ral 2460  df-rex 2461  df-reu 2462  df-rmo 2463  df-rab 2464  df-v 2739  df-sbc 2963  df-csb 3058  df-dif 3131  df-un 3133  df-in 3135  df-ss 3142  df-nul 3423  df-if 3535  df-pw 3576  df-sn 3597  df-pr 3598  df-op 3600  df-uni 3808  df-int 3843  df-iun 3886  df-br 4001  df-opab 4062  df-mpt 4063  df-tr 4099  df-id 4290  df-po 4293  df-iso 4294  df-iord 4363  df-on 4365  df-ilim 4366  df-suc 4368  df-iom 4587  df-xp 4629  df-rel 4630  df-cnv 4631  df-co 4632  df-dm 4633  df-rn 4634  df-res 4635  df-ima 4636  df-iota 5174  df-fun 5214  df-fn 5215  df-f 5216  df-f1 5217  df-fo 5218  df-f1o 5219  df-fv 5220  df-isom 5221  df-riota 5825  df-ov 5872  df-oprab 5873  df-mpo 5874  df-1st 6135  df-2nd 6136  df-recs 6300  df-frec 6386  df-map 6644  df-pm 6645  df-sup 6977  df-inf 6978  df-pnf 7984  df-mnf 7985  df-xr 7986  df-ltxr 7987  df-le 7988  df-sub 8120  df-neg 8121  df-reap 8522  df-ap 8529  df-div 8619  df-inn 8909  df-2 8967  df-3 8968  df-4 8969  df-n0 9166  df-z 9243  df-uz 9518  df-q 9609  df-rp 9641  df-xneg 9759  df-xadd 9760  df-seqfrec 10432  df-exp 10506  df-cj 10835  df-re 10836  df-im 10837  df-rsqrt 10991  df-abs 10992  df-rest 12638  df-topgen 12657  df-psmet 13154  df-xmet 13155  df-met 13156  df-bl 13157  df-mopn 13158  df-top 13163  df-topon 13176  df-bases 13208  df-ntr 13263  df-cn 13355  df-cnp 13356  df-cncf 13725  df-limced 13792  df-dvap 13793
This theorem is referenced by:  dvconst  13828  dvid  13829
  Copyright terms: Public domain W3C validator