ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dvidlemap GIF version

Theorem dvidlemap 13201
Description: Lemma for dvid 13203 and dvconst 13202. (Contributed by Mario Carneiro, 8-Aug-2014.) (Revised by Jim Kingdon, 2-Aug-2023.)
Hypotheses
Ref Expression
dvidlem.1 (𝜑𝐹:ℂ⟶ℂ)
dvidlemap.2 ((𝜑 ∧ (𝑥 ∈ ℂ ∧ 𝑧 ∈ ℂ ∧ 𝑧 # 𝑥)) → (((𝐹𝑧) − (𝐹𝑥)) / (𝑧𝑥)) = 𝐵)
dvidlem.3 𝐵 ∈ ℂ
Assertion
Ref Expression
dvidlemap (𝜑 → (ℂ D 𝐹) = (ℂ × {𝐵}))
Distinct variable groups:   𝑥,𝑧,𝐵   𝑥,𝐹,𝑧   𝜑,𝑥,𝑧

Proof of Theorem dvidlemap
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 dvidlem.1 . . . . . 6 (𝜑𝐹:ℂ⟶ℂ)
2 cnex 7868 . . . . . . 7 ℂ ∈ V
32, 2fpm 6638 . . . . . 6 (𝐹:ℂ⟶ℂ → 𝐹 ∈ (ℂ ↑pm ℂ))
41, 3syl 14 . . . . 5 (𝜑𝐹 ∈ (ℂ ↑pm ℂ))
5 dvfcnpm 13200 . . . . 5 (𝐹 ∈ (ℂ ↑pm ℂ) → (ℂ D 𝐹):dom (ℂ D 𝐹)⟶ℂ)
64, 5syl 14 . . . 4 (𝜑 → (ℂ D 𝐹):dom (ℂ D 𝐹)⟶ℂ)
7 ssidd 3158 . . . . . . 7 (𝜑 → ℂ ⊆ ℂ)
87, 1, 7dvbss 13195 . . . . . 6 (𝜑 → dom (ℂ D 𝐹) ⊆ ℂ)
9 reldvg 13189 . . . . . . . . 9 ((ℂ ⊆ ℂ ∧ 𝐹 ∈ (ℂ ↑pm ℂ)) → Rel (ℂ D 𝐹))
107, 4, 9syl2anc 409 . . . . . . . 8 (𝜑 → Rel (ℂ D 𝐹))
1110adantr 274 . . . . . . 7 ((𝜑𝑥 ∈ ℂ) → Rel (ℂ D 𝐹))
12 simpr 109 . . . . . . . . 9 ((𝜑𝑥 ∈ ℂ) → 𝑥 ∈ ℂ)
13 eqid 2164 . . . . . . . . . . 11 (MetOpen‘(abs ∘ − )) = (MetOpen‘(abs ∘ − ))
1413cntoptop 13074 . . . . . . . . . 10 (MetOpen‘(abs ∘ − )) ∈ Top
1513cntoptopon 13073 . . . . . . . . . . . 12 (MetOpen‘(abs ∘ − )) ∈ (TopOn‘ℂ)
1615toponunii 12556 . . . . . . . . . . 11 ℂ = (MetOpen‘(abs ∘ − ))
1716ntrtop 12669 . . . . . . . . . 10 ((MetOpen‘(abs ∘ − )) ∈ Top → ((int‘(MetOpen‘(abs ∘ − )))‘ℂ) = ℂ)
1814, 17ax-mp 5 . . . . . . . . 9 ((int‘(MetOpen‘(abs ∘ − )))‘ℂ) = ℂ
1912, 18eleqtrrdi 2258 . . . . . . . 8 ((𝜑𝑥 ∈ ℂ) → 𝑥 ∈ ((int‘(MetOpen‘(abs ∘ − )))‘ℂ))
20 limcresi 13176 . . . . . . . . . 10 ((𝑧 ∈ ℂ ↦ 𝐵) lim 𝑥) ⊆ (((𝑧 ∈ ℂ ↦ 𝐵) ↾ {𝑤 ∈ ℂ ∣ 𝑤 # 𝑥}) lim 𝑥)
21 dvidlem.3 . . . . . . . . . . . 12 𝐵 ∈ ℂ
22 ssidd 3158 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ ℂ) → ℂ ⊆ ℂ)
23 cncfmptc 13123 . . . . . . . . . . . 12 ((𝐵 ∈ ℂ ∧ ℂ ⊆ ℂ ∧ ℂ ⊆ ℂ) → (𝑧 ∈ ℂ ↦ 𝐵) ∈ (ℂ–cn→ℂ))
2421, 22, 22, 23mp3an2i 1331 . . . . . . . . . . 11 ((𝜑𝑥 ∈ ℂ) → (𝑧 ∈ ℂ ↦ 𝐵) ∈ (ℂ–cn→ℂ))
25 eqidd 2165 . . . . . . . . . . 11 (𝑧 = 𝑥𝐵 = 𝐵)
2624, 12, 25cnmptlimc 13184 . . . . . . . . . 10 ((𝜑𝑥 ∈ ℂ) → 𝐵 ∈ ((𝑧 ∈ ℂ ↦ 𝐵) lim 𝑥))
2720, 26sseldi 3135 . . . . . . . . 9 ((𝜑𝑥 ∈ ℂ) → 𝐵 ∈ (((𝑧 ∈ ℂ ↦ 𝐵) ↾ {𝑤 ∈ ℂ ∣ 𝑤 # 𝑥}) lim 𝑥))
28 breq1 3979 . . . . . . . . . . . . . 14 (𝑤 = 𝑧 → (𝑤 # 𝑥𝑧 # 𝑥))
2928elrab 2877 . . . . . . . . . . . . 13 (𝑧 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 𝑥} ↔ (𝑧 ∈ ℂ ∧ 𝑧 # 𝑥))
30 dvidlemap.2 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑥 ∈ ℂ ∧ 𝑧 ∈ ℂ ∧ 𝑧 # 𝑥)) → (((𝐹𝑧) − (𝐹𝑥)) / (𝑧𝑥)) = 𝐵)
31303exp2 1214 . . . . . . . . . . . . . 14 (𝜑 → (𝑥 ∈ ℂ → (𝑧 ∈ ℂ → (𝑧 # 𝑥 → (((𝐹𝑧) − (𝐹𝑥)) / (𝑧𝑥)) = 𝐵))))
3231imp43 353 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ ℂ) ∧ (𝑧 ∈ ℂ ∧ 𝑧 # 𝑥)) → (((𝐹𝑧) − (𝐹𝑥)) / (𝑧𝑥)) = 𝐵)
3329, 32sylan2b 285 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ ℂ) ∧ 𝑧 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 𝑥}) → (((𝐹𝑧) − (𝐹𝑥)) / (𝑧𝑥)) = 𝐵)
3433mpteq2dva 4066 . . . . . . . . . . 11 ((𝜑𝑥 ∈ ℂ) → (𝑧 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 𝑥} ↦ (((𝐹𝑧) − (𝐹𝑥)) / (𝑧𝑥))) = (𝑧 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 𝑥} ↦ 𝐵))
35 ssrab2 3222 . . . . . . . . . . . 12 {𝑤 ∈ ℂ ∣ 𝑤 # 𝑥} ⊆ ℂ
36 resmpt 4926 . . . . . . . . . . . 12 ({𝑤 ∈ ℂ ∣ 𝑤 # 𝑥} ⊆ ℂ → ((𝑧 ∈ ℂ ↦ 𝐵) ↾ {𝑤 ∈ ℂ ∣ 𝑤 # 𝑥}) = (𝑧 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 𝑥} ↦ 𝐵))
3735, 36ax-mp 5 . . . . . . . . . . 11 ((𝑧 ∈ ℂ ↦ 𝐵) ↾ {𝑤 ∈ ℂ ∣ 𝑤 # 𝑥}) = (𝑧 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 𝑥} ↦ 𝐵)
3834, 37eqtr4di 2215 . . . . . . . . . 10 ((𝜑𝑥 ∈ ℂ) → (𝑧 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 𝑥} ↦ (((𝐹𝑧) − (𝐹𝑥)) / (𝑧𝑥))) = ((𝑧 ∈ ℂ ↦ 𝐵) ↾ {𝑤 ∈ ℂ ∣ 𝑤 # 𝑥}))
3938oveq1d 5851 . . . . . . . . 9 ((𝜑𝑥 ∈ ℂ) → ((𝑧 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 𝑥} ↦ (((𝐹𝑧) − (𝐹𝑥)) / (𝑧𝑥))) lim 𝑥) = (((𝑧 ∈ ℂ ↦ 𝐵) ↾ {𝑤 ∈ ℂ ∣ 𝑤 # 𝑥}) lim 𝑥))
4027, 39eleqtrrd 2244 . . . . . . . 8 ((𝜑𝑥 ∈ ℂ) → 𝐵 ∈ ((𝑧 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 𝑥} ↦ (((𝐹𝑧) − (𝐹𝑥)) / (𝑧𝑥))) lim 𝑥))
4115toponrestid 12560 . . . . . . . . 9 (MetOpen‘(abs ∘ − )) = ((MetOpen‘(abs ∘ − )) ↾t ℂ)
42 eqid 2164 . . . . . . . . 9 (𝑧 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 𝑥} ↦ (((𝐹𝑧) − (𝐹𝑥)) / (𝑧𝑥))) = (𝑧 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 𝑥} ↦ (((𝐹𝑧) − (𝐹𝑥)) / (𝑧𝑥)))
431adantr 274 . . . . . . . . 9 ((𝜑𝑥 ∈ ℂ) → 𝐹:ℂ⟶ℂ)
4441, 13, 42, 22, 43, 22eldvap 13192 . . . . . . . 8 ((𝜑𝑥 ∈ ℂ) → (𝑥(ℂ D 𝐹)𝐵 ↔ (𝑥 ∈ ((int‘(MetOpen‘(abs ∘ − )))‘ℂ) ∧ 𝐵 ∈ ((𝑧 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 𝑥} ↦ (((𝐹𝑧) − (𝐹𝑥)) / (𝑧𝑥))) lim 𝑥))))
4519, 40, 44mpbir2and 933 . . . . . . 7 ((𝜑𝑥 ∈ ℂ) → 𝑥(ℂ D 𝐹)𝐵)
46 releldm 4833 . . . . . . 7 ((Rel (ℂ D 𝐹) ∧ 𝑥(ℂ D 𝐹)𝐵) → 𝑥 ∈ dom (ℂ D 𝐹))
4711, 45, 46syl2anc 409 . . . . . 6 ((𝜑𝑥 ∈ ℂ) → 𝑥 ∈ dom (ℂ D 𝐹))
488, 47eqelssd 3156 . . . . 5 (𝜑 → dom (ℂ D 𝐹) = ℂ)
4948feq2d 5319 . . . 4 (𝜑 → ((ℂ D 𝐹):dom (ℂ D 𝐹)⟶ℂ ↔ (ℂ D 𝐹):ℂ⟶ℂ))
506, 49mpbid 146 . . 3 (𝜑 → (ℂ D 𝐹):ℂ⟶ℂ)
5150ffnd 5332 . 2 (𝜑 → (ℂ D 𝐹) Fn ℂ)
52 fnconstg 5379 . . 3 (𝐵 ∈ ℂ → (ℂ × {𝐵}) Fn ℂ)
5321, 52mp1i 10 . 2 (𝜑 → (ℂ × {𝐵}) Fn ℂ)
546adantr 274 . . . . . 6 ((𝜑𝑥 ∈ ℂ) → (ℂ D 𝐹):dom (ℂ D 𝐹)⟶ℂ)
5554ffund 5335 . . . . 5 ((𝜑𝑥 ∈ ℂ) → Fun (ℂ D 𝐹))
56 funbrfvb 5523 . . . . 5 ((Fun (ℂ D 𝐹) ∧ 𝑥 ∈ dom (ℂ D 𝐹)) → (((ℂ D 𝐹)‘𝑥) = 𝐵𝑥(ℂ D 𝐹)𝐵))
5755, 47, 56syl2anc 409 . . . 4 ((𝜑𝑥 ∈ ℂ) → (((ℂ D 𝐹)‘𝑥) = 𝐵𝑥(ℂ D 𝐹)𝐵))
5845, 57mpbird 166 . . 3 ((𝜑𝑥 ∈ ℂ) → ((ℂ D 𝐹)‘𝑥) = 𝐵)
5921a1i 9 . . . 4 (𝜑𝐵 ∈ ℂ)
60 fvconst2g 5693 . . . 4 ((𝐵 ∈ ℂ ∧ 𝑥 ∈ ℂ) → ((ℂ × {𝐵})‘𝑥) = 𝐵)
6159, 60sylan 281 . . 3 ((𝜑𝑥 ∈ ℂ) → ((ℂ × {𝐵})‘𝑥) = 𝐵)
6258, 61eqtr4d 2200 . 2 ((𝜑𝑥 ∈ ℂ) → ((ℂ D 𝐹)‘𝑥) = ((ℂ × {𝐵})‘𝑥))
6351, 53, 62eqfnfvd 5580 1 (𝜑 → (ℂ D 𝐹) = (ℂ × {𝐵}))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104  w3a 967   = wceq 1342  wcel 2135  {crab 2446  wss 3111  {csn 3570   class class class wbr 3976  cmpt 4037   × cxp 4596  dom cdm 4598  cres 4600  ccom 4602  Rel wrel 4603  Fun wfun 5176   Fn wfn 5177  wf 5178  cfv 5182  (class class class)co 5836  pm cpm 6606  cc 7742  cmin 8060   # cap 8470   / cdiv 8559  abscabs 10925  MetOpencmopn 12526  Topctop 12536  intcnt 12634  cnccncf 13098   lim climc 13164   D cdv 13165
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1434  ax-7 1435  ax-gen 1436  ax-ie1 1480  ax-ie2 1481  ax-8 1491  ax-10 1492  ax-11 1493  ax-i12 1494  ax-bndl 1496  ax-4 1497  ax-17 1513  ax-i9 1517  ax-ial 1521  ax-i5r 1522  ax-13 2137  ax-14 2138  ax-ext 2146  ax-coll 4091  ax-sep 4094  ax-nul 4102  ax-pow 4147  ax-pr 4181  ax-un 4405  ax-setind 4508  ax-iinf 4559  ax-cnex 7835  ax-resscn 7836  ax-1cn 7837  ax-1re 7838  ax-icn 7839  ax-addcl 7840  ax-addrcl 7841  ax-mulcl 7842  ax-mulrcl 7843  ax-addcom 7844  ax-mulcom 7845  ax-addass 7846  ax-mulass 7847  ax-distr 7848  ax-i2m1 7849  ax-0lt1 7850  ax-1rid 7851  ax-0id 7852  ax-rnegex 7853  ax-precex 7854  ax-cnre 7855  ax-pre-ltirr 7856  ax-pre-ltwlin 7857  ax-pre-lttrn 7858  ax-pre-apti 7859  ax-pre-ltadd 7860  ax-pre-mulgt0 7861  ax-pre-mulext 7862  ax-arch 7863  ax-caucvg 7864
This theorem depends on definitions:  df-bi 116  df-stab 821  df-dc 825  df-3or 968  df-3an 969  df-tru 1345  df-fal 1348  df-nf 1448  df-sb 1750  df-eu 2016  df-mo 2017  df-clab 2151  df-cleq 2157  df-clel 2160  df-nfc 2295  df-ne 2335  df-nel 2430  df-ral 2447  df-rex 2448  df-reu 2449  df-rmo 2450  df-rab 2451  df-v 2723  df-sbc 2947  df-csb 3041  df-dif 3113  df-un 3115  df-in 3117  df-ss 3124  df-nul 3405  df-if 3516  df-pw 3555  df-sn 3576  df-pr 3577  df-op 3579  df-uni 3784  df-int 3819  df-iun 3862  df-br 3977  df-opab 4038  df-mpt 4039  df-tr 4075  df-id 4265  df-po 4268  df-iso 4269  df-iord 4338  df-on 4340  df-ilim 4341  df-suc 4343  df-iom 4562  df-xp 4604  df-rel 4605  df-cnv 4606  df-co 4607  df-dm 4608  df-rn 4609  df-res 4610  df-ima 4611  df-iota 5147  df-fun 5184  df-fn 5185  df-f 5186  df-f1 5187  df-fo 5188  df-f1o 5189  df-fv 5190  df-isom 5191  df-riota 5792  df-ov 5839  df-oprab 5840  df-mpo 5841  df-1st 6100  df-2nd 6101  df-recs 6264  df-frec 6350  df-map 6607  df-pm 6608  df-sup 6940  df-inf 6941  df-pnf 7926  df-mnf 7927  df-xr 7928  df-ltxr 7929  df-le 7930  df-sub 8062  df-neg 8063  df-reap 8464  df-ap 8471  df-div 8560  df-inn 8849  df-2 8907  df-3 8908  df-4 8909  df-n0 9106  df-z 9183  df-uz 9458  df-q 9549  df-rp 9581  df-xneg 9699  df-xadd 9700  df-seqfrec 10371  df-exp 10445  df-cj 10770  df-re 10771  df-im 10772  df-rsqrt 10926  df-abs 10927  df-rest 12494  df-topgen 12513  df-psmet 12528  df-xmet 12529  df-met 12530  df-bl 12531  df-mopn 12532  df-top 12537  df-topon 12550  df-bases 12582  df-ntr 12637  df-cn 12729  df-cnp 12730  df-cncf 13099  df-limced 13166  df-dvap 13167
This theorem is referenced by:  dvconst  13202  dvid  13203
  Copyright terms: Public domain W3C validator