Step | Hyp | Ref
| Expression |
1 | | dvidlem.1 |
. . . . . 6
⊢ (𝜑 → 𝐹:ℂ⟶ℂ) |
2 | | cnex 7898 |
. . . . . . 7
⊢ ℂ
∈ V |
3 | 2, 2 | fpm 6659 |
. . . . . 6
⊢ (𝐹:ℂ⟶ℂ →
𝐹 ∈ (ℂ
↑pm ℂ)) |
4 | 1, 3 | syl 14 |
. . . . 5
⊢ (𝜑 → 𝐹 ∈ (ℂ ↑pm
ℂ)) |
5 | | dvfcnpm 13453 |
. . . . 5
⊢ (𝐹 ∈ (ℂ
↑pm ℂ) → (ℂ D 𝐹):dom (ℂ D 𝐹)⟶ℂ) |
6 | 4, 5 | syl 14 |
. . . 4
⊢ (𝜑 → (ℂ D 𝐹):dom (ℂ D 𝐹)⟶ℂ) |
7 | | ssidd 3168 |
. . . . . . 7
⊢ (𝜑 → ℂ ⊆
ℂ) |
8 | 7, 1, 7 | dvbss 13448 |
. . . . . 6
⊢ (𝜑 → dom (ℂ D 𝐹) ⊆
ℂ) |
9 | | reldvg 13442 |
. . . . . . . . 9
⊢ ((ℂ
⊆ ℂ ∧ 𝐹
∈ (ℂ ↑pm ℂ)) → Rel (ℂ D
𝐹)) |
10 | 7, 4, 9 | syl2anc 409 |
. . . . . . . 8
⊢ (𝜑 → Rel (ℂ D 𝐹)) |
11 | 10 | adantr 274 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ ℂ) → Rel (ℂ D 𝐹)) |
12 | | simpr 109 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ ℂ) → 𝑥 ∈ ℂ) |
13 | | eqid 2170 |
. . . . . . . . . . 11
⊢
(MetOpen‘(abs ∘ − )) = (MetOpen‘(abs ∘
− )) |
14 | 13 | cntoptop 13327 |
. . . . . . . . . 10
⊢
(MetOpen‘(abs ∘ − )) ∈ Top |
15 | 13 | cntoptopon 13326 |
. . . . . . . . . . . 12
⊢
(MetOpen‘(abs ∘ − )) ∈
(TopOn‘ℂ) |
16 | 15 | toponunii 12809 |
. . . . . . . . . . 11
⊢ ℂ =
∪ (MetOpen‘(abs ∘ −
)) |
17 | 16 | ntrtop 12922 |
. . . . . . . . . 10
⊢
((MetOpen‘(abs ∘ − )) ∈ Top →
((int‘(MetOpen‘(abs ∘ − )))‘ℂ) =
ℂ) |
18 | 14, 17 | ax-mp 5 |
. . . . . . . . 9
⊢
((int‘(MetOpen‘(abs ∘ − )))‘ℂ) =
ℂ |
19 | 12, 18 | eleqtrrdi 2264 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ ℂ) → 𝑥 ∈ ((int‘(MetOpen‘(abs
∘ − )))‘ℂ)) |
20 | | limcresi 13429 |
. . . . . . . . . 10
⊢ ((𝑧 ∈ ℂ ↦ 𝐵) limℂ 𝑥) ⊆ (((𝑧 ∈ ℂ ↦ 𝐵) ↾ {𝑤 ∈ ℂ ∣ 𝑤 # 𝑥}) limℂ 𝑥) |
21 | | dvidlem.3 |
. . . . . . . . . . . 12
⊢ 𝐵 ∈ ℂ |
22 | | ssidd 3168 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑥 ∈ ℂ) → ℂ ⊆
ℂ) |
23 | | cncfmptc 13376 |
. . . . . . . . . . . 12
⊢ ((𝐵 ∈ ℂ ∧ ℂ
⊆ ℂ ∧ ℂ ⊆ ℂ) → (𝑧 ∈ ℂ ↦ 𝐵) ∈ (ℂ–cn→ℂ)) |
24 | 21, 22, 22, 23 | mp3an2i 1337 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑥 ∈ ℂ) → (𝑧 ∈ ℂ ↦ 𝐵) ∈ (ℂ–cn→ℂ)) |
25 | | eqidd 2171 |
. . . . . . . . . . 11
⊢ (𝑧 = 𝑥 → 𝐵 = 𝐵) |
26 | 24, 12, 25 | cnmptlimc 13437 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑥 ∈ ℂ) → 𝐵 ∈ ((𝑧 ∈ ℂ ↦ 𝐵) limℂ 𝑥)) |
27 | 20, 26 | sselid 3145 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ ℂ) → 𝐵 ∈ (((𝑧 ∈ ℂ ↦ 𝐵) ↾ {𝑤 ∈ ℂ ∣ 𝑤 # 𝑥}) limℂ 𝑥)) |
28 | | breq1 3992 |
. . . . . . . . . . . . . 14
⊢ (𝑤 = 𝑧 → (𝑤 # 𝑥 ↔ 𝑧 # 𝑥)) |
29 | 28 | elrab 2886 |
. . . . . . . . . . . . 13
⊢ (𝑧 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 𝑥} ↔ (𝑧 ∈ ℂ ∧ 𝑧 # 𝑥)) |
30 | | dvidlemap.2 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ (𝑥 ∈ ℂ ∧ 𝑧 ∈ ℂ ∧ 𝑧 # 𝑥)) → (((𝐹‘𝑧) − (𝐹‘𝑥)) / (𝑧 − 𝑥)) = 𝐵) |
31 | 30 | 3exp2 1220 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → (𝑥 ∈ ℂ → (𝑧 ∈ ℂ → (𝑧 # 𝑥 → (((𝐹‘𝑧) − (𝐹‘𝑥)) / (𝑧 − 𝑥)) = 𝐵)))) |
32 | 31 | imp43 353 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑥 ∈ ℂ) ∧ (𝑧 ∈ ℂ ∧ 𝑧 # 𝑥)) → (((𝐹‘𝑧) − (𝐹‘𝑥)) / (𝑧 − 𝑥)) = 𝐵) |
33 | 29, 32 | sylan2b 285 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑥 ∈ ℂ) ∧ 𝑧 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 𝑥}) → (((𝐹‘𝑧) − (𝐹‘𝑥)) / (𝑧 − 𝑥)) = 𝐵) |
34 | 33 | mpteq2dva 4079 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑥 ∈ ℂ) → (𝑧 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 𝑥} ↦ (((𝐹‘𝑧) − (𝐹‘𝑥)) / (𝑧 − 𝑥))) = (𝑧 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 𝑥} ↦ 𝐵)) |
35 | | ssrab2 3232 |
. . . . . . . . . . . 12
⊢ {𝑤 ∈ ℂ ∣ 𝑤 # 𝑥} ⊆ ℂ |
36 | | resmpt 4939 |
. . . . . . . . . . . 12
⊢ ({𝑤 ∈ ℂ ∣ 𝑤 # 𝑥} ⊆ ℂ → ((𝑧 ∈ ℂ ↦ 𝐵) ↾ {𝑤 ∈ ℂ ∣ 𝑤 # 𝑥}) = (𝑧 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 𝑥} ↦ 𝐵)) |
37 | 35, 36 | ax-mp 5 |
. . . . . . . . . . 11
⊢ ((𝑧 ∈ ℂ ↦ 𝐵) ↾ {𝑤 ∈ ℂ ∣ 𝑤 # 𝑥}) = (𝑧 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 𝑥} ↦ 𝐵) |
38 | 34, 37 | eqtr4di 2221 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑥 ∈ ℂ) → (𝑧 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 𝑥} ↦ (((𝐹‘𝑧) − (𝐹‘𝑥)) / (𝑧 − 𝑥))) = ((𝑧 ∈ ℂ ↦ 𝐵) ↾ {𝑤 ∈ ℂ ∣ 𝑤 # 𝑥})) |
39 | 38 | oveq1d 5868 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ ℂ) → ((𝑧 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 𝑥} ↦ (((𝐹‘𝑧) − (𝐹‘𝑥)) / (𝑧 − 𝑥))) limℂ 𝑥) = (((𝑧 ∈ ℂ ↦ 𝐵) ↾ {𝑤 ∈ ℂ ∣ 𝑤 # 𝑥}) limℂ 𝑥)) |
40 | 27, 39 | eleqtrrd 2250 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ ℂ) → 𝐵 ∈ ((𝑧 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 𝑥} ↦ (((𝐹‘𝑧) − (𝐹‘𝑥)) / (𝑧 − 𝑥))) limℂ 𝑥)) |
41 | 15 | toponrestid 12813 |
. . . . . . . . 9
⊢
(MetOpen‘(abs ∘ − )) = ((MetOpen‘(abs ∘
− )) ↾t ℂ) |
42 | | eqid 2170 |
. . . . . . . . 9
⊢ (𝑧 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 𝑥} ↦ (((𝐹‘𝑧) − (𝐹‘𝑥)) / (𝑧 − 𝑥))) = (𝑧 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 𝑥} ↦ (((𝐹‘𝑧) − (𝐹‘𝑥)) / (𝑧 − 𝑥))) |
43 | 1 | adantr 274 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ ℂ) → 𝐹:ℂ⟶ℂ) |
44 | 41, 13, 42, 22, 43, 22 | eldvap 13445 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ ℂ) → (𝑥(ℂ D 𝐹)𝐵 ↔ (𝑥 ∈ ((int‘(MetOpen‘(abs
∘ − )))‘ℂ) ∧ 𝐵 ∈ ((𝑧 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 𝑥} ↦ (((𝐹‘𝑧) − (𝐹‘𝑥)) / (𝑧 − 𝑥))) limℂ 𝑥)))) |
45 | 19, 40, 44 | mpbir2and 939 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ ℂ) → 𝑥(ℂ D 𝐹)𝐵) |
46 | | releldm 4846 |
. . . . . . 7
⊢ ((Rel
(ℂ D 𝐹) ∧ 𝑥(ℂ D 𝐹)𝐵) → 𝑥 ∈ dom (ℂ D 𝐹)) |
47 | 11, 45, 46 | syl2anc 409 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ ℂ) → 𝑥 ∈ dom (ℂ D 𝐹)) |
48 | 8, 47 | eqelssd 3166 |
. . . . 5
⊢ (𝜑 → dom (ℂ D 𝐹) = ℂ) |
49 | 48 | feq2d 5335 |
. . . 4
⊢ (𝜑 → ((ℂ D 𝐹):dom (ℂ D 𝐹)⟶ℂ ↔ (ℂ
D 𝐹):ℂ⟶ℂ)) |
50 | 6, 49 | mpbid 146 |
. . 3
⊢ (𝜑 → (ℂ D 𝐹):ℂ⟶ℂ) |
51 | 50 | ffnd 5348 |
. 2
⊢ (𝜑 → (ℂ D 𝐹) Fn ℂ) |
52 | | fnconstg 5395 |
. . 3
⊢ (𝐵 ∈ ℂ → (ℂ
× {𝐵}) Fn
ℂ) |
53 | 21, 52 | mp1i 10 |
. 2
⊢ (𝜑 → (ℂ × {𝐵}) Fn ℂ) |
54 | 6 | adantr 274 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ ℂ) → (ℂ D 𝐹):dom (ℂ D 𝐹)⟶ℂ) |
55 | 54 | ffund 5351 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ ℂ) → Fun (ℂ D 𝐹)) |
56 | | funbrfvb 5539 |
. . . . 5
⊢ ((Fun
(ℂ D 𝐹) ∧ 𝑥 ∈ dom (ℂ D 𝐹)) → (((ℂ D 𝐹)‘𝑥) = 𝐵 ↔ 𝑥(ℂ D 𝐹)𝐵)) |
57 | 55, 47, 56 | syl2anc 409 |
. . . 4
⊢ ((𝜑 ∧ 𝑥 ∈ ℂ) → (((ℂ D 𝐹)‘𝑥) = 𝐵 ↔ 𝑥(ℂ D 𝐹)𝐵)) |
58 | 45, 57 | mpbird 166 |
. . 3
⊢ ((𝜑 ∧ 𝑥 ∈ ℂ) → ((ℂ D 𝐹)‘𝑥) = 𝐵) |
59 | 21 | a1i 9 |
. . . 4
⊢ (𝜑 → 𝐵 ∈ ℂ) |
60 | | fvconst2g 5710 |
. . . 4
⊢ ((𝐵 ∈ ℂ ∧ 𝑥 ∈ ℂ) →
((ℂ × {𝐵})‘𝑥) = 𝐵) |
61 | 59, 60 | sylan 281 |
. . 3
⊢ ((𝜑 ∧ 𝑥 ∈ ℂ) → ((ℂ ×
{𝐵})‘𝑥) = 𝐵) |
62 | 58, 61 | eqtr4d 2206 |
. 2
⊢ ((𝜑 ∧ 𝑥 ∈ ℂ) → ((ℂ D 𝐹)‘𝑥) = ((ℂ × {𝐵})‘𝑥)) |
63 | 51, 53, 62 | eqfnfvd 5596 |
1
⊢ (𝜑 → (ℂ D 𝐹) = (ℂ × {𝐵})) |