| Step | Hyp | Ref
| Expression |
| 1 | | dvidlem.1 |
. . . . . 6
⊢ (𝜑 → 𝐹:ℂ⟶ℂ) |
| 2 | | cnex 8020 |
. . . . . . 7
⊢ ℂ
∈ V |
| 3 | 2, 2 | fpm 6749 |
. . . . . 6
⊢ (𝐹:ℂ⟶ℂ →
𝐹 ∈ (ℂ
↑pm ℂ)) |
| 4 | 1, 3 | syl 14 |
. . . . 5
⊢ (𝜑 → 𝐹 ∈ (ℂ ↑pm
ℂ)) |
| 5 | | dvfcnpm 15010 |
. . . . 5
⊢ (𝐹 ∈ (ℂ
↑pm ℂ) → (ℂ D 𝐹):dom (ℂ D 𝐹)⟶ℂ) |
| 6 | 4, 5 | syl 14 |
. . . 4
⊢ (𝜑 → (ℂ D 𝐹):dom (ℂ D 𝐹)⟶ℂ) |
| 7 | | ssidd 3205 |
. . . . . . 7
⊢ (𝜑 → ℂ ⊆
ℂ) |
| 8 | 7, 1, 7 | dvbss 15005 |
. . . . . 6
⊢ (𝜑 → dom (ℂ D 𝐹) ⊆
ℂ) |
| 9 | | reldvg 14999 |
. . . . . . . . 9
⊢ ((ℂ
⊆ ℂ ∧ 𝐹
∈ (ℂ ↑pm ℂ)) → Rel (ℂ D
𝐹)) |
| 10 | 7, 4, 9 | syl2anc 411 |
. . . . . . . 8
⊢ (𝜑 → Rel (ℂ D 𝐹)) |
| 11 | 10 | adantr 276 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ ℂ) → Rel (ℂ D 𝐹)) |
| 12 | | simpr 110 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ ℂ) → 𝑥 ∈ ℂ) |
| 13 | | eqid 2196 |
. . . . . . . . . . 11
⊢
(MetOpen‘(abs ∘ − )) = (MetOpen‘(abs ∘
− )) |
| 14 | 13 | cntoptop 14853 |
. . . . . . . . . 10
⊢
(MetOpen‘(abs ∘ − )) ∈ Top |
| 15 | 13 | cntoptopon 14852 |
. . . . . . . . . . . 12
⊢
(MetOpen‘(abs ∘ − )) ∈
(TopOn‘ℂ) |
| 16 | 15 | toponunii 14337 |
. . . . . . . . . . 11
⊢ ℂ =
∪ (MetOpen‘(abs ∘ −
)) |
| 17 | 16 | ntrtop 14448 |
. . . . . . . . . 10
⊢
((MetOpen‘(abs ∘ − )) ∈ Top →
((int‘(MetOpen‘(abs ∘ − )))‘ℂ) =
ℂ) |
| 18 | 14, 17 | ax-mp 5 |
. . . . . . . . 9
⊢
((int‘(MetOpen‘(abs ∘ − )))‘ℂ) =
ℂ |
| 19 | 12, 18 | eleqtrrdi 2290 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ ℂ) → 𝑥 ∈ ((int‘(MetOpen‘(abs
∘ − )))‘ℂ)) |
| 20 | | limcresi 14986 |
. . . . . . . . . 10
⊢ ((𝑧 ∈ ℂ ↦ 𝐵) limℂ 𝑥) ⊆ (((𝑧 ∈ ℂ ↦ 𝐵) ↾ {𝑤 ∈ ℂ ∣ 𝑤 # 𝑥}) limℂ 𝑥) |
| 21 | | dvidlem.3 |
. . . . . . . . . . . 12
⊢ 𝐵 ∈ ℂ |
| 22 | | ssidd 3205 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑥 ∈ ℂ) → ℂ ⊆
ℂ) |
| 23 | | cncfmptc 14916 |
. . . . . . . . . . . 12
⊢ ((𝐵 ∈ ℂ ∧ ℂ
⊆ ℂ ∧ ℂ ⊆ ℂ) → (𝑧 ∈ ℂ ↦ 𝐵) ∈ (ℂ–cn→ℂ)) |
| 24 | 21, 22, 22, 23 | mp3an2i 1353 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑥 ∈ ℂ) → (𝑧 ∈ ℂ ↦ 𝐵) ∈ (ℂ–cn→ℂ)) |
| 25 | | eqidd 2197 |
. . . . . . . . . . 11
⊢ (𝑧 = 𝑥 → 𝐵 = 𝐵) |
| 26 | 24, 12, 25 | cnmptlimc 14994 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑥 ∈ ℂ) → 𝐵 ∈ ((𝑧 ∈ ℂ ↦ 𝐵) limℂ 𝑥)) |
| 27 | 20, 26 | sselid 3182 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ ℂ) → 𝐵 ∈ (((𝑧 ∈ ℂ ↦ 𝐵) ↾ {𝑤 ∈ ℂ ∣ 𝑤 # 𝑥}) limℂ 𝑥)) |
| 28 | | breq1 4037 |
. . . . . . . . . . . . . 14
⊢ (𝑤 = 𝑧 → (𝑤 # 𝑥 ↔ 𝑧 # 𝑥)) |
| 29 | 28 | elrab 2920 |
. . . . . . . . . . . . 13
⊢ (𝑧 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 𝑥} ↔ (𝑧 ∈ ℂ ∧ 𝑧 # 𝑥)) |
| 30 | | dvidlemap.2 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ (𝑥 ∈ ℂ ∧ 𝑧 ∈ ℂ ∧ 𝑧 # 𝑥)) → (((𝐹‘𝑧) − (𝐹‘𝑥)) / (𝑧 − 𝑥)) = 𝐵) |
| 31 | 30 | 3exp2 1227 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → (𝑥 ∈ ℂ → (𝑧 ∈ ℂ → (𝑧 # 𝑥 → (((𝐹‘𝑧) − (𝐹‘𝑥)) / (𝑧 − 𝑥)) = 𝐵)))) |
| 32 | 31 | imp43 355 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑥 ∈ ℂ) ∧ (𝑧 ∈ ℂ ∧ 𝑧 # 𝑥)) → (((𝐹‘𝑧) − (𝐹‘𝑥)) / (𝑧 − 𝑥)) = 𝐵) |
| 33 | 29, 32 | sylan2b 287 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑥 ∈ ℂ) ∧ 𝑧 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 𝑥}) → (((𝐹‘𝑧) − (𝐹‘𝑥)) / (𝑧 − 𝑥)) = 𝐵) |
| 34 | 33 | mpteq2dva 4124 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑥 ∈ ℂ) → (𝑧 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 𝑥} ↦ (((𝐹‘𝑧) − (𝐹‘𝑥)) / (𝑧 − 𝑥))) = (𝑧 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 𝑥} ↦ 𝐵)) |
| 35 | | ssrab2 3269 |
. . . . . . . . . . . 12
⊢ {𝑤 ∈ ℂ ∣ 𝑤 # 𝑥} ⊆ ℂ |
| 36 | | resmpt 4995 |
. . . . . . . . . . . 12
⊢ ({𝑤 ∈ ℂ ∣ 𝑤 # 𝑥} ⊆ ℂ → ((𝑧 ∈ ℂ ↦ 𝐵) ↾ {𝑤 ∈ ℂ ∣ 𝑤 # 𝑥}) = (𝑧 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 𝑥} ↦ 𝐵)) |
| 37 | 35, 36 | ax-mp 5 |
. . . . . . . . . . 11
⊢ ((𝑧 ∈ ℂ ↦ 𝐵) ↾ {𝑤 ∈ ℂ ∣ 𝑤 # 𝑥}) = (𝑧 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 𝑥} ↦ 𝐵) |
| 38 | 34, 37 | eqtr4di 2247 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑥 ∈ ℂ) → (𝑧 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 𝑥} ↦ (((𝐹‘𝑧) − (𝐹‘𝑥)) / (𝑧 − 𝑥))) = ((𝑧 ∈ ℂ ↦ 𝐵) ↾ {𝑤 ∈ ℂ ∣ 𝑤 # 𝑥})) |
| 39 | 38 | oveq1d 5940 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ ℂ) → ((𝑧 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 𝑥} ↦ (((𝐹‘𝑧) − (𝐹‘𝑥)) / (𝑧 − 𝑥))) limℂ 𝑥) = (((𝑧 ∈ ℂ ↦ 𝐵) ↾ {𝑤 ∈ ℂ ∣ 𝑤 # 𝑥}) limℂ 𝑥)) |
| 40 | 27, 39 | eleqtrrd 2276 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ ℂ) → 𝐵 ∈ ((𝑧 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 𝑥} ↦ (((𝐹‘𝑧) − (𝐹‘𝑥)) / (𝑧 − 𝑥))) limℂ 𝑥)) |
| 41 | 15 | toponrestid 14341 |
. . . . . . . . 9
⊢
(MetOpen‘(abs ∘ − )) = ((MetOpen‘(abs ∘
− )) ↾t ℂ) |
| 42 | | eqid 2196 |
. . . . . . . . 9
⊢ (𝑧 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 𝑥} ↦ (((𝐹‘𝑧) − (𝐹‘𝑥)) / (𝑧 − 𝑥))) = (𝑧 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 𝑥} ↦ (((𝐹‘𝑧) − (𝐹‘𝑥)) / (𝑧 − 𝑥))) |
| 43 | 1 | adantr 276 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ ℂ) → 𝐹:ℂ⟶ℂ) |
| 44 | 41, 13, 42, 22, 43, 22 | eldvap 15002 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ ℂ) → (𝑥(ℂ D 𝐹)𝐵 ↔ (𝑥 ∈ ((int‘(MetOpen‘(abs
∘ − )))‘ℂ) ∧ 𝐵 ∈ ((𝑧 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 𝑥} ↦ (((𝐹‘𝑧) − (𝐹‘𝑥)) / (𝑧 − 𝑥))) limℂ 𝑥)))) |
| 45 | 19, 40, 44 | mpbir2and 946 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ ℂ) → 𝑥(ℂ D 𝐹)𝐵) |
| 46 | | releldm 4902 |
. . . . . . 7
⊢ ((Rel
(ℂ D 𝐹) ∧ 𝑥(ℂ D 𝐹)𝐵) → 𝑥 ∈ dom (ℂ D 𝐹)) |
| 47 | 11, 45, 46 | syl2anc 411 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ ℂ) → 𝑥 ∈ dom (ℂ D 𝐹)) |
| 48 | 8, 47 | eqelssd 3203 |
. . . . 5
⊢ (𝜑 → dom (ℂ D 𝐹) = ℂ) |
| 49 | 48 | feq2d 5398 |
. . . 4
⊢ (𝜑 → ((ℂ D 𝐹):dom (ℂ D 𝐹)⟶ℂ ↔ (ℂ
D 𝐹):ℂ⟶ℂ)) |
| 50 | 6, 49 | mpbid 147 |
. . 3
⊢ (𝜑 → (ℂ D 𝐹):ℂ⟶ℂ) |
| 51 | 50 | ffnd 5411 |
. 2
⊢ (𝜑 → (ℂ D 𝐹) Fn ℂ) |
| 52 | | fnconstg 5458 |
. . 3
⊢ (𝐵 ∈ ℂ → (ℂ
× {𝐵}) Fn
ℂ) |
| 53 | 21, 52 | mp1i 10 |
. 2
⊢ (𝜑 → (ℂ × {𝐵}) Fn ℂ) |
| 54 | 6 | adantr 276 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ ℂ) → (ℂ D 𝐹):dom (ℂ D 𝐹)⟶ℂ) |
| 55 | 54 | ffund 5414 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ ℂ) → Fun (ℂ D 𝐹)) |
| 56 | | funbrfvb 5606 |
. . . . 5
⊢ ((Fun
(ℂ D 𝐹) ∧ 𝑥 ∈ dom (ℂ D 𝐹)) → (((ℂ D 𝐹)‘𝑥) = 𝐵 ↔ 𝑥(ℂ D 𝐹)𝐵)) |
| 57 | 55, 47, 56 | syl2anc 411 |
. . . 4
⊢ ((𝜑 ∧ 𝑥 ∈ ℂ) → (((ℂ D 𝐹)‘𝑥) = 𝐵 ↔ 𝑥(ℂ D 𝐹)𝐵)) |
| 58 | 45, 57 | mpbird 167 |
. . 3
⊢ ((𝜑 ∧ 𝑥 ∈ ℂ) → ((ℂ D 𝐹)‘𝑥) = 𝐵) |
| 59 | 21 | a1i 9 |
. . . 4
⊢ (𝜑 → 𝐵 ∈ ℂ) |
| 60 | | fvconst2g 5779 |
. . . 4
⊢ ((𝐵 ∈ ℂ ∧ 𝑥 ∈ ℂ) →
((ℂ × {𝐵})‘𝑥) = 𝐵) |
| 61 | 59, 60 | sylan 283 |
. . 3
⊢ ((𝜑 ∧ 𝑥 ∈ ℂ) → ((ℂ ×
{𝐵})‘𝑥) = 𝐵) |
| 62 | 58, 61 | eqtr4d 2232 |
. 2
⊢ ((𝜑 ∧ 𝑥 ∈ ℂ) → ((ℂ D 𝐹)‘𝑥) = ((ℂ × {𝐵})‘𝑥)) |
| 63 | 51, 53, 62 | eqfnfvd 5665 |
1
⊢ (𝜑 → (ℂ D 𝐹) = (ℂ × {𝐵})) |