Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  dvidlemap GIF version

Theorem dvidlemap 12861
 Description: Lemma for dvid 12863 and dvconst 12862. (Contributed by Mario Carneiro, 8-Aug-2014.) (Revised by Jim Kingdon, 2-Aug-2023.)
Hypotheses
Ref Expression
dvidlem.1 (𝜑𝐹:ℂ⟶ℂ)
dvidlemap.2 ((𝜑 ∧ (𝑥 ∈ ℂ ∧ 𝑧 ∈ ℂ ∧ 𝑧 # 𝑥)) → (((𝐹𝑧) − (𝐹𝑥)) / (𝑧𝑥)) = 𝐵)
dvidlem.3 𝐵 ∈ ℂ
Assertion
Ref Expression
dvidlemap (𝜑 → (ℂ D 𝐹) = (ℂ × {𝐵}))
Distinct variable groups:   𝑥,𝑧,𝐵   𝑥,𝐹,𝑧   𝜑,𝑥,𝑧

Proof of Theorem dvidlemap
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 dvidlem.1 . . . . . 6 (𝜑𝐹:ℂ⟶ℂ)
2 cnex 7766 . . . . . . 7 ℂ ∈ V
32, 2fpm 6581 . . . . . 6 (𝐹:ℂ⟶ℂ → 𝐹 ∈ (ℂ ↑pm ℂ))
41, 3syl 14 . . . . 5 (𝜑𝐹 ∈ (ℂ ↑pm ℂ))
5 dvfcnpm 12860 . . . . 5 (𝐹 ∈ (ℂ ↑pm ℂ) → (ℂ D 𝐹):dom (ℂ D 𝐹)⟶ℂ)
64, 5syl 14 . . . 4 (𝜑 → (ℂ D 𝐹):dom (ℂ D 𝐹)⟶ℂ)
7 ssidd 3121 . . . . . . 7 (𝜑 → ℂ ⊆ ℂ)
87, 1, 7dvbss 12855 . . . . . 6 (𝜑 → dom (ℂ D 𝐹) ⊆ ℂ)
9 reldvg 12849 . . . . . . . . 9 ((ℂ ⊆ ℂ ∧ 𝐹 ∈ (ℂ ↑pm ℂ)) → Rel (ℂ D 𝐹))
107, 4, 9syl2anc 409 . . . . . . . 8 (𝜑 → Rel (ℂ D 𝐹))
1110adantr 274 . . . . . . 7 ((𝜑𝑥 ∈ ℂ) → Rel (ℂ D 𝐹))
12 simpr 109 . . . . . . . . 9 ((𝜑𝑥 ∈ ℂ) → 𝑥 ∈ ℂ)
13 eqid 2140 . . . . . . . . . . 11 (MetOpen‘(abs ∘ − )) = (MetOpen‘(abs ∘ − ))
1413cntoptop 12734 . . . . . . . . . 10 (MetOpen‘(abs ∘ − )) ∈ Top
1513cntoptopon 12733 . . . . . . . . . . . 12 (MetOpen‘(abs ∘ − )) ∈ (TopOn‘ℂ)
1615toponunii 12216 . . . . . . . . . . 11 ℂ = (MetOpen‘(abs ∘ − ))
1716ntrtop 12329 . . . . . . . . . 10 ((MetOpen‘(abs ∘ − )) ∈ Top → ((int‘(MetOpen‘(abs ∘ − )))‘ℂ) = ℂ)
1814, 17ax-mp 5 . . . . . . . . 9 ((int‘(MetOpen‘(abs ∘ − )))‘ℂ) = ℂ
1912, 18eleqtrrdi 2234 . . . . . . . 8 ((𝜑𝑥 ∈ ℂ) → 𝑥 ∈ ((int‘(MetOpen‘(abs ∘ − )))‘ℂ))
20 limcresi 12836 . . . . . . . . . 10 ((𝑧 ∈ ℂ ↦ 𝐵) lim 𝑥) ⊆ (((𝑧 ∈ ℂ ↦ 𝐵) ↾ {𝑤 ∈ ℂ ∣ 𝑤 # 𝑥}) lim 𝑥)
21 dvidlem.3 . . . . . . . . . . . 12 𝐵 ∈ ℂ
22 ssidd 3121 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ ℂ) → ℂ ⊆ ℂ)
23 cncfmptc 12783 . . . . . . . . . . . 12 ((𝐵 ∈ ℂ ∧ ℂ ⊆ ℂ ∧ ℂ ⊆ ℂ) → (𝑧 ∈ ℂ ↦ 𝐵) ∈ (ℂ–cn→ℂ))
2421, 22, 22, 23mp3an2i 1321 . . . . . . . . . . 11 ((𝜑𝑥 ∈ ℂ) → (𝑧 ∈ ℂ ↦ 𝐵) ∈ (ℂ–cn→ℂ))
25 eqidd 2141 . . . . . . . . . . 11 (𝑧 = 𝑥𝐵 = 𝐵)
2624, 12, 25cnmptlimc 12844 . . . . . . . . . 10 ((𝜑𝑥 ∈ ℂ) → 𝐵 ∈ ((𝑧 ∈ ℂ ↦ 𝐵) lim 𝑥))
2720, 26sseldi 3098 . . . . . . . . 9 ((𝜑𝑥 ∈ ℂ) → 𝐵 ∈ (((𝑧 ∈ ℂ ↦ 𝐵) ↾ {𝑤 ∈ ℂ ∣ 𝑤 # 𝑥}) lim 𝑥))
28 breq1 3938 . . . . . . . . . . . . . 14 (𝑤 = 𝑧 → (𝑤 # 𝑥𝑧 # 𝑥))
2928elrab 2843 . . . . . . . . . . . . 13 (𝑧 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 𝑥} ↔ (𝑧 ∈ ℂ ∧ 𝑧 # 𝑥))
30 dvidlemap.2 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑥 ∈ ℂ ∧ 𝑧 ∈ ℂ ∧ 𝑧 # 𝑥)) → (((𝐹𝑧) − (𝐹𝑥)) / (𝑧𝑥)) = 𝐵)
31303exp2 1204 . . . . . . . . . . . . . 14 (𝜑 → (𝑥 ∈ ℂ → (𝑧 ∈ ℂ → (𝑧 # 𝑥 → (((𝐹𝑧) − (𝐹𝑥)) / (𝑧𝑥)) = 𝐵))))
3231imp43 353 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ ℂ) ∧ (𝑧 ∈ ℂ ∧ 𝑧 # 𝑥)) → (((𝐹𝑧) − (𝐹𝑥)) / (𝑧𝑥)) = 𝐵)
3329, 32sylan2b 285 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ ℂ) ∧ 𝑧 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 𝑥}) → (((𝐹𝑧) − (𝐹𝑥)) / (𝑧𝑥)) = 𝐵)
3433mpteq2dva 4024 . . . . . . . . . . 11 ((𝜑𝑥 ∈ ℂ) → (𝑧 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 𝑥} ↦ (((𝐹𝑧) − (𝐹𝑥)) / (𝑧𝑥))) = (𝑧 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 𝑥} ↦ 𝐵))
35 ssrab2 3185 . . . . . . . . . . . 12 {𝑤 ∈ ℂ ∣ 𝑤 # 𝑥} ⊆ ℂ
36 resmpt 4873 . . . . . . . . . . . 12 ({𝑤 ∈ ℂ ∣ 𝑤 # 𝑥} ⊆ ℂ → ((𝑧 ∈ ℂ ↦ 𝐵) ↾ {𝑤 ∈ ℂ ∣ 𝑤 # 𝑥}) = (𝑧 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 𝑥} ↦ 𝐵))
3735, 36ax-mp 5 . . . . . . . . . . 11 ((𝑧 ∈ ℂ ↦ 𝐵) ↾ {𝑤 ∈ ℂ ∣ 𝑤 # 𝑥}) = (𝑧 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 𝑥} ↦ 𝐵)
3834, 37eqtr4di 2191 . . . . . . . . . 10 ((𝜑𝑥 ∈ ℂ) → (𝑧 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 𝑥} ↦ (((𝐹𝑧) − (𝐹𝑥)) / (𝑧𝑥))) = ((𝑧 ∈ ℂ ↦ 𝐵) ↾ {𝑤 ∈ ℂ ∣ 𝑤 # 𝑥}))
3938oveq1d 5795 . . . . . . . . 9 ((𝜑𝑥 ∈ ℂ) → ((𝑧 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 𝑥} ↦ (((𝐹𝑧) − (𝐹𝑥)) / (𝑧𝑥))) lim 𝑥) = (((𝑧 ∈ ℂ ↦ 𝐵) ↾ {𝑤 ∈ ℂ ∣ 𝑤 # 𝑥}) lim 𝑥))
4027, 39eleqtrrd 2220 . . . . . . . 8 ((𝜑𝑥 ∈ ℂ) → 𝐵 ∈ ((𝑧 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 𝑥} ↦ (((𝐹𝑧) − (𝐹𝑥)) / (𝑧𝑥))) lim 𝑥))
4115toponrestid 12220 . . . . . . . . 9 (MetOpen‘(abs ∘ − )) = ((MetOpen‘(abs ∘ − )) ↾t ℂ)
42 eqid 2140 . . . . . . . . 9 (𝑧 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 𝑥} ↦ (((𝐹𝑧) − (𝐹𝑥)) / (𝑧𝑥))) = (𝑧 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 𝑥} ↦ (((𝐹𝑧) − (𝐹𝑥)) / (𝑧𝑥)))
431adantr 274 . . . . . . . . 9 ((𝜑𝑥 ∈ ℂ) → 𝐹:ℂ⟶ℂ)
4441, 13, 42, 22, 43, 22eldvap 12852 . . . . . . . 8 ((𝜑𝑥 ∈ ℂ) → (𝑥(ℂ D 𝐹)𝐵 ↔ (𝑥 ∈ ((int‘(MetOpen‘(abs ∘ − )))‘ℂ) ∧ 𝐵 ∈ ((𝑧 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 𝑥} ↦ (((𝐹𝑧) − (𝐹𝑥)) / (𝑧𝑥))) lim 𝑥))))
4519, 40, 44mpbir2and 929 . . . . . . 7 ((𝜑𝑥 ∈ ℂ) → 𝑥(ℂ D 𝐹)𝐵)
46 releldm 4780 . . . . . . 7 ((Rel (ℂ D 𝐹) ∧ 𝑥(ℂ D 𝐹)𝐵) → 𝑥 ∈ dom (ℂ D 𝐹))
4711, 45, 46syl2anc 409 . . . . . 6 ((𝜑𝑥 ∈ ℂ) → 𝑥 ∈ dom (ℂ D 𝐹))
488, 47eqelssd 3119 . . . . 5 (𝜑 → dom (ℂ D 𝐹) = ℂ)
4948feq2d 5266 . . . 4 (𝜑 → ((ℂ D 𝐹):dom (ℂ D 𝐹)⟶ℂ ↔ (ℂ D 𝐹):ℂ⟶ℂ))
506, 49mpbid 146 . . 3 (𝜑 → (ℂ D 𝐹):ℂ⟶ℂ)
5150ffnd 5279 . 2 (𝜑 → (ℂ D 𝐹) Fn ℂ)
52 fnconstg 5326 . . 3 (𝐵 ∈ ℂ → (ℂ × {𝐵}) Fn ℂ)
5321, 52mp1i 10 . 2 (𝜑 → (ℂ × {𝐵}) Fn ℂ)
546adantr 274 . . . . . 6 ((𝜑𝑥 ∈ ℂ) → (ℂ D 𝐹):dom (ℂ D 𝐹)⟶ℂ)
5554ffund 5282 . . . . 5 ((𝜑𝑥 ∈ ℂ) → Fun (ℂ D 𝐹))
56 funbrfvb 5470 . . . . 5 ((Fun (ℂ D 𝐹) ∧ 𝑥 ∈ dom (ℂ D 𝐹)) → (((ℂ D 𝐹)‘𝑥) = 𝐵𝑥(ℂ D 𝐹)𝐵))
5755, 47, 56syl2anc 409 . . . 4 ((𝜑𝑥 ∈ ℂ) → (((ℂ D 𝐹)‘𝑥) = 𝐵𝑥(ℂ D 𝐹)𝐵))
5845, 57mpbird 166 . . 3 ((𝜑𝑥 ∈ ℂ) → ((ℂ D 𝐹)‘𝑥) = 𝐵)
5921a1i 9 . . . 4 (𝜑𝐵 ∈ ℂ)
60 fvconst2g 5640 . . . 4 ((𝐵 ∈ ℂ ∧ 𝑥 ∈ ℂ) → ((ℂ × {𝐵})‘𝑥) = 𝐵)
6159, 60sylan 281 . . 3 ((𝜑𝑥 ∈ ℂ) → ((ℂ × {𝐵})‘𝑥) = 𝐵)
6258, 61eqtr4d 2176 . 2 ((𝜑𝑥 ∈ ℂ) → ((ℂ D 𝐹)‘𝑥) = ((ℂ × {𝐵})‘𝑥))
6351, 53, 62eqfnfvd 5527 1 (𝜑 → (ℂ D 𝐹) = (ℂ × {𝐵}))
 Colors of variables: wff set class Syntax hints:   → wi 4   ∧ wa 103   ↔ wb 104   ∧ w3a 963   = wceq 1332   ∈ wcel 1481  {crab 2421   ⊆ wss 3074  {csn 3530   class class class wbr 3935   ↦ cmpt 3995   × cxp 4543  dom cdm 4545   ↾ cres 4547   ∘ ccom 4549  Rel wrel 4550  Fun wfun 5123   Fn wfn 5124  ⟶wf 5125  ‘cfv 5129  (class class class)co 5780   ↑pm cpm 6549  ℂcc 7640   − cmin 7955   # cap 8365   / cdiv 8454  abscabs 10799  MetOpencmopn 12186  Topctop 12196  intcnt 12294  –cn→ccncf 12758   limℂ climc 12824   D cdv 12825 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1483  ax-10 1484  ax-11 1485  ax-i12 1486  ax-bndl 1487  ax-4 1488  ax-13 1492  ax-14 1493  ax-17 1507  ax-i9 1511  ax-ial 1515  ax-i5r 1516  ax-ext 2122  ax-coll 4049  ax-sep 4052  ax-nul 4060  ax-pow 4104  ax-pr 4137  ax-un 4361  ax-setind 4458  ax-iinf 4508  ax-cnex 7733  ax-resscn 7734  ax-1cn 7735  ax-1re 7736  ax-icn 7737  ax-addcl 7738  ax-addrcl 7739  ax-mulcl 7740  ax-mulrcl 7741  ax-addcom 7742  ax-mulcom 7743  ax-addass 7744  ax-mulass 7745  ax-distr 7746  ax-i2m1 7747  ax-0lt1 7748  ax-1rid 7749  ax-0id 7750  ax-rnegex 7751  ax-precex 7752  ax-cnre 7753  ax-pre-ltirr 7754  ax-pre-ltwlin 7755  ax-pre-lttrn 7756  ax-pre-apti 7757  ax-pre-ltadd 7758  ax-pre-mulgt0 7759  ax-pre-mulext 7760  ax-arch 7761  ax-caucvg 7762 This theorem depends on definitions:  df-bi 116  df-stab 817  df-dc 821  df-3or 964  df-3an 965  df-tru 1335  df-fal 1338  df-nf 1438  df-sb 1737  df-eu 2003  df-mo 2004  df-clab 2127  df-cleq 2133  df-clel 2136  df-nfc 2271  df-ne 2310  df-nel 2405  df-ral 2422  df-rex 2423  df-reu 2424  df-rmo 2425  df-rab 2426  df-v 2691  df-sbc 2913  df-csb 3007  df-dif 3076  df-un 3078  df-in 3080  df-ss 3087  df-nul 3367  df-if 3478  df-pw 3515  df-sn 3536  df-pr 3537  df-op 3539  df-uni 3743  df-int 3778  df-iun 3821  df-br 3936  df-opab 3996  df-mpt 3997  df-tr 4033  df-id 4221  df-po 4224  df-iso 4225  df-iord 4294  df-on 4296  df-ilim 4297  df-suc 4299  df-iom 4511  df-xp 4551  df-rel 4552  df-cnv 4553  df-co 4554  df-dm 4555  df-rn 4556  df-res 4557  df-ima 4558  df-iota 5094  df-fun 5131  df-fn 5132  df-f 5133  df-f1 5134  df-fo 5135  df-f1o 5136  df-fv 5137  df-isom 5138  df-riota 5736  df-ov 5783  df-oprab 5784  df-mpo 5785  df-1st 6044  df-2nd 6045  df-recs 6208  df-frec 6294  df-map 6550  df-pm 6551  df-sup 6877  df-inf 6878  df-pnf 7824  df-mnf 7825  df-xr 7826  df-ltxr 7827  df-le 7828  df-sub 7957  df-neg 7958  df-reap 8359  df-ap 8366  df-div 8455  df-inn 8743  df-2 8801  df-3 8802  df-4 8803  df-n0 9000  df-z 9077  df-uz 9349  df-q 9437  df-rp 9469  df-xneg 9587  df-xadd 9588  df-seqfrec 10248  df-exp 10322  df-cj 10644  df-re 10645  df-im 10646  df-rsqrt 10800  df-abs 10801  df-rest 12154  df-topgen 12173  df-psmet 12188  df-xmet 12189  df-met 12190  df-bl 12191  df-mopn 12192  df-top 12197  df-topon 12210  df-bases 12242  df-ntr 12297  df-cn 12389  df-cnp 12390  df-cncf 12759  df-limced 12826  df-dvap 12827 This theorem is referenced by:  dvconst  12862  dvid  12863
 Copyright terms: Public domain W3C validator