ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  tfr1onlembxssdm GIF version

Theorem tfr1onlembxssdm 6428
Description: Lemma for tfr1on 6435. The union of 𝐵 is defined on all elements of 𝑋. (Contributed by Jim Kingdon, 14-Mar-2022.)
Hypotheses
Ref Expression
tfr1on.f 𝐹 = recs(𝐺)
tfr1on.g (𝜑 → Fun 𝐺)
tfr1on.x (𝜑 → Ord 𝑋)
tfr1on.ex ((𝜑𝑥𝑋𝑓 Fn 𝑥) → (𝐺𝑓) ∈ V)
tfr1onlemsucfn.1 𝐴 = {𝑓 ∣ ∃𝑥𝑋 (𝑓 Fn 𝑥 ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐺‘(𝑓𝑦)))}
tfr1onlembacc.3 𝐵 = { ∣ ∃𝑧𝐷𝑔(𝑔 Fn 𝑧𝑔𝐴 = (𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}))}
tfr1onlembacc.u ((𝜑𝑥 𝑋) → suc 𝑥𝑋)
tfr1onlembacc.4 (𝜑𝐷𝑋)
tfr1onlembacc.5 (𝜑 → ∀𝑧𝐷𝑔(𝑔 Fn 𝑧 ∧ ∀𝑤𝑧 (𝑔𝑤) = (𝐺‘(𝑔𝑤))))
Assertion
Ref Expression
tfr1onlembxssdm (𝜑𝐷 ⊆ dom 𝐵)
Distinct variable groups:   𝐴,𝑓,𝑔,,𝑥,𝑧   𝐷,𝑓,𝑔,𝑥   𝑓,𝐺,𝑥,𝑦   𝑓,𝑋,𝑥   𝜑,𝑓,𝑔,,𝑥,𝑧   𝑦,𝑔,𝑧   𝐵,𝑔,,𝑧   𝑤,𝐵,𝑔,𝑧   𝐷,,𝑧   ,𝐺,𝑧   𝑤,𝐺,𝑓,𝑥,𝑦   𝑔,𝑋,𝑧
Allowed substitution hints:   𝜑(𝑦,𝑤)   𝐴(𝑦,𝑤)   𝐵(𝑥,𝑦,𝑓)   𝐷(𝑦,𝑤)   𝐹(𝑥,𝑦,𝑧,𝑤,𝑓,𝑔,)   𝐺(𝑔)   𝑋(𝑦,𝑤,)

Proof of Theorem tfr1onlembxssdm
StepHypRef Expression
1 tfr1onlembacc.5 . . 3 (𝜑 → ∀𝑧𝐷𝑔(𝑔 Fn 𝑧 ∧ ∀𝑤𝑧 (𝑔𝑤) = (𝐺‘(𝑔𝑤))))
2 simp1 999 . . . . . . . 8 ((𝜑𝑧𝐷 ∧ (𝑔 Fn 𝑧 ∧ ∀𝑤𝑧 (𝑔𝑤) = (𝐺‘(𝑔𝑤)))) → 𝜑)
3 simp2 1000 . . . . . . . . 9 ((𝜑𝑧𝐷 ∧ (𝑔 Fn 𝑧 ∧ ∀𝑤𝑧 (𝑔𝑤) = (𝐺‘(𝑔𝑤)))) → 𝑧𝐷)
4 tfr1onlembacc.4 . . . . . . . . . 10 (𝜑𝐷𝑋)
52, 4syl 14 . . . . . . . . 9 ((𝜑𝑧𝐷 ∧ (𝑔 Fn 𝑧 ∧ ∀𝑤𝑧 (𝑔𝑤) = (𝐺‘(𝑔𝑤)))) → 𝐷𝑋)
6 tfr1on.x . . . . . . . . . . 11 (𝜑 → Ord 𝑋)
7 ordtr1 4434 . . . . . . . . . . 11 (Ord 𝑋 → ((𝑧𝐷𝐷𝑋) → 𝑧𝑋))
86, 7syl 14 . . . . . . . . . 10 (𝜑 → ((𝑧𝐷𝐷𝑋) → 𝑧𝑋))
98imp 124 . . . . . . . . 9 ((𝜑 ∧ (𝑧𝐷𝐷𝑋)) → 𝑧𝑋)
102, 3, 5, 9syl12anc 1247 . . . . . . . 8 ((𝜑𝑧𝐷 ∧ (𝑔 Fn 𝑧 ∧ ∀𝑤𝑧 (𝑔𝑤) = (𝐺‘(𝑔𝑤)))) → 𝑧𝑋)
11 simp3l 1027 . . . . . . . 8 ((𝜑𝑧𝐷 ∧ (𝑔 Fn 𝑧 ∧ ∀𝑤𝑧 (𝑔𝑤) = (𝐺‘(𝑔𝑤)))) → 𝑔 Fn 𝑧)
12 fneq2 5362 . . . . . . . . . . . . 13 (𝑥 = 𝑧 → (𝑓 Fn 𝑥𝑓 Fn 𝑧))
1312imbi1d 231 . . . . . . . . . . . 12 (𝑥 = 𝑧 → ((𝑓 Fn 𝑥 → (𝐺𝑓) ∈ V) ↔ (𝑓 Fn 𝑧 → (𝐺𝑓) ∈ V)))
1413albidv 1846 . . . . . . . . . . 11 (𝑥 = 𝑧 → (∀𝑓(𝑓 Fn 𝑥 → (𝐺𝑓) ∈ V) ↔ ∀𝑓(𝑓 Fn 𝑧 → (𝐺𝑓) ∈ V)))
15 tfr1on.ex . . . . . . . . . . . . . . 15 ((𝜑𝑥𝑋𝑓 Fn 𝑥) → (𝐺𝑓) ∈ V)
16153expia 1207 . . . . . . . . . . . . . 14 ((𝜑𝑥𝑋) → (𝑓 Fn 𝑥 → (𝐺𝑓) ∈ V))
1716alrimiv 1896 . . . . . . . . . . . . 13 ((𝜑𝑥𝑋) → ∀𝑓(𝑓 Fn 𝑥 → (𝐺𝑓) ∈ V))
1817ralrimiva 2578 . . . . . . . . . . . 12 (𝜑 → ∀𝑥𝑋𝑓(𝑓 Fn 𝑥 → (𝐺𝑓) ∈ V))
1918adantr 276 . . . . . . . . . . 11 ((𝜑𝑧𝑋) → ∀𝑥𝑋𝑓(𝑓 Fn 𝑥 → (𝐺𝑓) ∈ V))
20 simpr 110 . . . . . . . . . . 11 ((𝜑𝑧𝑋) → 𝑧𝑋)
2114, 19, 20rspcdva 2881 . . . . . . . . . 10 ((𝜑𝑧𝑋) → ∀𝑓(𝑓 Fn 𝑧 → (𝐺𝑓) ∈ V))
22 fneq1 5361 . . . . . . . . . . . 12 (𝑓 = 𝑔 → (𝑓 Fn 𝑧𝑔 Fn 𝑧))
23 fveq2 5575 . . . . . . . . . . . . 13 (𝑓 = 𝑔 → (𝐺𝑓) = (𝐺𝑔))
2423eleq1d 2273 . . . . . . . . . . . 12 (𝑓 = 𝑔 → ((𝐺𝑓) ∈ V ↔ (𝐺𝑔) ∈ V))
2522, 24imbi12d 234 . . . . . . . . . . 11 (𝑓 = 𝑔 → ((𝑓 Fn 𝑧 → (𝐺𝑓) ∈ V) ↔ (𝑔 Fn 𝑧 → (𝐺𝑔) ∈ V)))
2625spv 1882 . . . . . . . . . 10 (∀𝑓(𝑓 Fn 𝑧 → (𝐺𝑓) ∈ V) → (𝑔 Fn 𝑧 → (𝐺𝑔) ∈ V))
2721, 26syl 14 . . . . . . . . 9 ((𝜑𝑧𝑋) → (𝑔 Fn 𝑧 → (𝐺𝑔) ∈ V))
2827imp 124 . . . . . . . 8 (((𝜑𝑧𝑋) ∧ 𝑔 Fn 𝑧) → (𝐺𝑔) ∈ V)
292, 10, 11, 28syl21anc 1248 . . . . . . 7 ((𝜑𝑧𝐷 ∧ (𝑔 Fn 𝑧 ∧ ∀𝑤𝑧 (𝑔𝑤) = (𝐺‘(𝑔𝑤)))) → (𝐺𝑔) ∈ V)
30 vex 2774 . . . . . . . . . 10 𝑧 ∈ V
31 opexg 4271 . . . . . . . . . 10 ((𝑧 ∈ V ∧ (𝐺𝑔) ∈ V) → ⟨𝑧, (𝐺𝑔)⟩ ∈ V)
3230, 29, 31sylancr 414 . . . . . . . . 9 ((𝜑𝑧𝐷 ∧ (𝑔 Fn 𝑧 ∧ ∀𝑤𝑧 (𝑔𝑤) = (𝐺‘(𝑔𝑤)))) → ⟨𝑧, (𝐺𝑔)⟩ ∈ V)
33 snidg 3661 . . . . . . . . 9 (⟨𝑧, (𝐺𝑔)⟩ ∈ V → ⟨𝑧, (𝐺𝑔)⟩ ∈ {⟨𝑧, (𝐺𝑔)⟩})
34 elun2 3340 . . . . . . . . 9 (⟨𝑧, (𝐺𝑔)⟩ ∈ {⟨𝑧, (𝐺𝑔)⟩} → ⟨𝑧, (𝐺𝑔)⟩ ∈ (𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}))
3532, 33, 343syl 17 . . . . . . . 8 ((𝜑𝑧𝐷 ∧ (𝑔 Fn 𝑧 ∧ ∀𝑤𝑧 (𝑔𝑤) = (𝐺‘(𝑔𝑤)))) → ⟨𝑧, (𝐺𝑔)⟩ ∈ (𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}))
36 simp3r 1028 . . . . . . . . . . . 12 ((𝜑𝑧𝐷 ∧ (𝑔 Fn 𝑧 ∧ ∀𝑤𝑧 (𝑔𝑤) = (𝐺‘(𝑔𝑤)))) → ∀𝑤𝑧 (𝑔𝑤) = (𝐺‘(𝑔𝑤)))
37 rspe 2554 . . . . . . . . . . . 12 ((𝑧𝑋 ∧ (𝑔 Fn 𝑧 ∧ ∀𝑤𝑧 (𝑔𝑤) = (𝐺‘(𝑔𝑤)))) → ∃𝑧𝑋 (𝑔 Fn 𝑧 ∧ ∀𝑤𝑧 (𝑔𝑤) = (𝐺‘(𝑔𝑤))))
3810, 11, 36, 37syl12anc 1247 . . . . . . . . . . 11 ((𝜑𝑧𝐷 ∧ (𝑔 Fn 𝑧 ∧ ∀𝑤𝑧 (𝑔𝑤) = (𝐺‘(𝑔𝑤)))) → ∃𝑧𝑋 (𝑔 Fn 𝑧 ∧ ∀𝑤𝑧 (𝑔𝑤) = (𝐺‘(𝑔𝑤))))
39 vex 2774 . . . . . . . . . . . 12 𝑔 ∈ V
40 tfr1onlemsucfn.1 . . . . . . . . . . . . 13 𝐴 = {𝑓 ∣ ∃𝑥𝑋 (𝑓 Fn 𝑥 ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐺‘(𝑓𝑦)))}
4140tfr1onlem3ag 6422 . . . . . . . . . . . 12 (𝑔 ∈ V → (𝑔𝐴 ↔ ∃𝑧𝑋 (𝑔 Fn 𝑧 ∧ ∀𝑤𝑧 (𝑔𝑤) = (𝐺‘(𝑔𝑤)))))
4239, 41ax-mp 5 . . . . . . . . . . 11 (𝑔𝐴 ↔ ∃𝑧𝑋 (𝑔 Fn 𝑧 ∧ ∀𝑤𝑧 (𝑔𝑤) = (𝐺‘(𝑔𝑤))))
4338, 42sylibr 134 . . . . . . . . . 10 ((𝜑𝑧𝐷 ∧ (𝑔 Fn 𝑧 ∧ ∀𝑤𝑧 (𝑔𝑤) = (𝐺‘(𝑔𝑤)))) → 𝑔𝐴)
443, 11, 433jca 1179 . . . . . . . . 9 ((𝜑𝑧𝐷 ∧ (𝑔 Fn 𝑧 ∧ ∀𝑤𝑧 (𝑔𝑤) = (𝐺‘(𝑔𝑤)))) → (𝑧𝐷𝑔 Fn 𝑧𝑔𝐴))
45 snexg 4227 . . . . . . . . . . 11 (⟨𝑧, (𝐺𝑔)⟩ ∈ V → {⟨𝑧, (𝐺𝑔)⟩} ∈ V)
46 unexg 4489 . . . . . . . . . . . 12 ((𝑔 ∈ V ∧ {⟨𝑧, (𝐺𝑔)⟩} ∈ V) → (𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}) ∈ V)
4739, 46mpan 424 . . . . . . . . . . 11 ({⟨𝑧, (𝐺𝑔)⟩} ∈ V → (𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}) ∈ V)
4832, 45, 473syl 17 . . . . . . . . . 10 ((𝜑𝑧𝐷 ∧ (𝑔 Fn 𝑧 ∧ ∀𝑤𝑧 (𝑔𝑤) = (𝐺‘(𝑔𝑤)))) → (𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}) ∈ V)
49 isset 2777 . . . . . . . . . 10 ((𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}) ∈ V ↔ ∃ = (𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}))
5048, 49sylib 122 . . . . . . . . 9 ((𝜑𝑧𝐷 ∧ (𝑔 Fn 𝑧 ∧ ∀𝑤𝑧 (𝑔𝑤) = (𝐺‘(𝑔𝑤)))) → ∃ = (𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}))
51 simpr3 1007 . . . . . . . . . . . . 13 ((𝑧𝐷 ∧ (𝑔 Fn 𝑧𝑔𝐴 = (𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}))) → = (𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}))
52 19.8a 1612 . . . . . . . . . . . . . 14 ((𝑔 Fn 𝑧𝑔𝐴 = (𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩})) → ∃𝑔(𝑔 Fn 𝑧𝑔𝐴 = (𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩})))
53 rspe 2554 . . . . . . . . . . . . . . 15 ((𝑧𝐷 ∧ ∃𝑔(𝑔 Fn 𝑧𝑔𝐴 = (𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}))) → ∃𝑧𝐷𝑔(𝑔 Fn 𝑧𝑔𝐴 = (𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩})))
54 tfr1onlembacc.3 . . . . . . . . . . . . . . . 16 𝐵 = { ∣ ∃𝑧𝐷𝑔(𝑔 Fn 𝑧𝑔𝐴 = (𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}))}
5554abeq2i 2315 . . . . . . . . . . . . . . 15 (𝐵 ↔ ∃𝑧𝐷𝑔(𝑔 Fn 𝑧𝑔𝐴 = (𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩})))
5653, 55sylibr 134 . . . . . . . . . . . . . 14 ((𝑧𝐷 ∧ ∃𝑔(𝑔 Fn 𝑧𝑔𝐴 = (𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}))) → 𝐵)
5752, 56sylan2 286 . . . . . . . . . . . . 13 ((𝑧𝐷 ∧ (𝑔 Fn 𝑧𝑔𝐴 = (𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}))) → 𝐵)
5851, 57eqeltrrd 2282 . . . . . . . . . . . 12 ((𝑧𝐷 ∧ (𝑔 Fn 𝑧𝑔𝐴 = (𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}))) → (𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}) ∈ 𝐵)
59583exp2 1227 . . . . . . . . . . 11 (𝑧𝐷 → (𝑔 Fn 𝑧 → (𝑔𝐴 → ( = (𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}) → (𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}) ∈ 𝐵))))
60593imp 1195 . . . . . . . . . 10 ((𝑧𝐷𝑔 Fn 𝑧𝑔𝐴) → ( = (𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}) → (𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}) ∈ 𝐵))
6160exlimdv 1841 . . . . . . . . 9 ((𝑧𝐷𝑔 Fn 𝑧𝑔𝐴) → (∃ = (𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}) → (𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}) ∈ 𝐵))
6244, 50, 61sylc 62 . . . . . . . 8 ((𝜑𝑧𝐷 ∧ (𝑔 Fn 𝑧 ∧ ∀𝑤𝑧 (𝑔𝑤) = (𝐺‘(𝑔𝑤)))) → (𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}) ∈ 𝐵)
63 elunii 3854 . . . . . . . 8 ((⟨𝑧, (𝐺𝑔)⟩ ∈ (𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}) ∧ (𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}) ∈ 𝐵) → ⟨𝑧, (𝐺𝑔)⟩ ∈ 𝐵)
6435, 62, 63syl2anc 411 . . . . . . 7 ((𝜑𝑧𝐷 ∧ (𝑔 Fn 𝑧 ∧ ∀𝑤𝑧 (𝑔𝑤) = (𝐺‘(𝑔𝑤)))) → ⟨𝑧, (𝐺𝑔)⟩ ∈ 𝐵)
65 opeq2 3819 . . . . . . . . . 10 (𝑤 = (𝐺𝑔) → ⟨𝑧, 𝑤⟩ = ⟨𝑧, (𝐺𝑔)⟩)
6665eleq1d 2273 . . . . . . . . 9 (𝑤 = (𝐺𝑔) → (⟨𝑧, 𝑤⟩ ∈ 𝐵 ↔ ⟨𝑧, (𝐺𝑔)⟩ ∈ 𝐵))
6766spcegv 2860 . . . . . . . 8 ((𝐺𝑔) ∈ V → (⟨𝑧, (𝐺𝑔)⟩ ∈ 𝐵 → ∃𝑤𝑧, 𝑤⟩ ∈ 𝐵))
6830eldm2 4875 . . . . . . . 8 (𝑧 ∈ dom 𝐵 ↔ ∃𝑤𝑧, 𝑤⟩ ∈ 𝐵)
6967, 68imbitrrdi 162 . . . . . . 7 ((𝐺𝑔) ∈ V → (⟨𝑧, (𝐺𝑔)⟩ ∈ 𝐵𝑧 ∈ dom 𝐵))
7029, 64, 69sylc 62 . . . . . 6 ((𝜑𝑧𝐷 ∧ (𝑔 Fn 𝑧 ∧ ∀𝑤𝑧 (𝑔𝑤) = (𝐺‘(𝑔𝑤)))) → 𝑧 ∈ dom 𝐵)
71703expia 1207 . . . . 5 ((𝜑𝑧𝐷) → ((𝑔 Fn 𝑧 ∧ ∀𝑤𝑧 (𝑔𝑤) = (𝐺‘(𝑔𝑤))) → 𝑧 ∈ dom 𝐵))
7271exlimdv 1841 . . . 4 ((𝜑𝑧𝐷) → (∃𝑔(𝑔 Fn 𝑧 ∧ ∀𝑤𝑧 (𝑔𝑤) = (𝐺‘(𝑔𝑤))) → 𝑧 ∈ dom 𝐵))
7372ralimdva 2572 . . 3 (𝜑 → (∀𝑧𝐷𝑔(𝑔 Fn 𝑧 ∧ ∀𝑤𝑧 (𝑔𝑤) = (𝐺‘(𝑔𝑤))) → ∀𝑧𝐷 𝑧 ∈ dom 𝐵))
741, 73mpd 13 . 2 (𝜑 → ∀𝑧𝐷 𝑧 ∈ dom 𝐵)
75 dfss3 3181 . 2 (𝐷 ⊆ dom 𝐵 ↔ ∀𝑧𝐷 𝑧 ∈ dom 𝐵)
7674, 75sylibr 134 1 (𝜑𝐷 ⊆ dom 𝐵)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  w3a 980  wal 1370   = wceq 1372  wex 1514  wcel 2175  {cab 2190  wral 2483  wrex 2484  Vcvv 2771  cun 3163  wss 3165  {csn 3632  cop 3635   cuni 3849  Ord word 4408  suc csuc 4411  dom cdm 4674  cres 4676  Fun wfun 5264   Fn wfn 5265  cfv 5270  recscrecs 6389
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-13 2177  ax-14 2178  ax-ext 2186  ax-sep 4161  ax-pow 4217  ax-pr 4252  ax-un 4479
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1375  df-nf 1483  df-sb 1785  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-ral 2488  df-rex 2489  df-v 2773  df-un 3169  df-in 3171  df-ss 3178  df-pw 3617  df-sn 3638  df-pr 3639  df-op 3641  df-uni 3850  df-br 4044  df-opab 4105  df-tr 4142  df-iord 4412  df-xp 4680  df-rel 4681  df-cnv 4682  df-co 4683  df-dm 4684  df-res 4686  df-iota 5231  df-fun 5272  df-fn 5273  df-fv 5278
This theorem is referenced by:  tfr1onlembfn  6429
  Copyright terms: Public domain W3C validator