ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  tfr1onlembxssdm GIF version

Theorem tfr1onlembxssdm 6401
Description: Lemma for tfr1on 6408. The union of 𝐵 is defined on all elements of 𝑋. (Contributed by Jim Kingdon, 14-Mar-2022.)
Hypotheses
Ref Expression
tfr1on.f 𝐹 = recs(𝐺)
tfr1on.g (𝜑 → Fun 𝐺)
tfr1on.x (𝜑 → Ord 𝑋)
tfr1on.ex ((𝜑𝑥𝑋𝑓 Fn 𝑥) → (𝐺𝑓) ∈ V)
tfr1onlemsucfn.1 𝐴 = {𝑓 ∣ ∃𝑥𝑋 (𝑓 Fn 𝑥 ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐺‘(𝑓𝑦)))}
tfr1onlembacc.3 𝐵 = { ∣ ∃𝑧𝐷𝑔(𝑔 Fn 𝑧𝑔𝐴 = (𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}))}
tfr1onlembacc.u ((𝜑𝑥 𝑋) → suc 𝑥𝑋)
tfr1onlembacc.4 (𝜑𝐷𝑋)
tfr1onlembacc.5 (𝜑 → ∀𝑧𝐷𝑔(𝑔 Fn 𝑧 ∧ ∀𝑤𝑧 (𝑔𝑤) = (𝐺‘(𝑔𝑤))))
Assertion
Ref Expression
tfr1onlembxssdm (𝜑𝐷 ⊆ dom 𝐵)
Distinct variable groups:   𝐴,𝑓,𝑔,,𝑥,𝑧   𝐷,𝑓,𝑔,𝑥   𝑓,𝐺,𝑥,𝑦   𝑓,𝑋,𝑥   𝜑,𝑓,𝑔,,𝑥,𝑧   𝑦,𝑔,𝑧   𝐵,𝑔,,𝑧   𝑤,𝐵,𝑔,𝑧   𝐷,,𝑧   ,𝐺,𝑧   𝑤,𝐺,𝑓,𝑥,𝑦   𝑔,𝑋,𝑧
Allowed substitution hints:   𝜑(𝑦,𝑤)   𝐴(𝑦,𝑤)   𝐵(𝑥,𝑦,𝑓)   𝐷(𝑦,𝑤)   𝐹(𝑥,𝑦,𝑧,𝑤,𝑓,𝑔,)   𝐺(𝑔)   𝑋(𝑦,𝑤,)

Proof of Theorem tfr1onlembxssdm
StepHypRef Expression
1 tfr1onlembacc.5 . . 3 (𝜑 → ∀𝑧𝐷𝑔(𝑔 Fn 𝑧 ∧ ∀𝑤𝑧 (𝑔𝑤) = (𝐺‘(𝑔𝑤))))
2 simp1 999 . . . . . . . 8 ((𝜑𝑧𝐷 ∧ (𝑔 Fn 𝑧 ∧ ∀𝑤𝑧 (𝑔𝑤) = (𝐺‘(𝑔𝑤)))) → 𝜑)
3 simp2 1000 . . . . . . . . 9 ((𝜑𝑧𝐷 ∧ (𝑔 Fn 𝑧 ∧ ∀𝑤𝑧 (𝑔𝑤) = (𝐺‘(𝑔𝑤)))) → 𝑧𝐷)
4 tfr1onlembacc.4 . . . . . . . . . 10 (𝜑𝐷𝑋)
52, 4syl 14 . . . . . . . . 9 ((𝜑𝑧𝐷 ∧ (𝑔 Fn 𝑧 ∧ ∀𝑤𝑧 (𝑔𝑤) = (𝐺‘(𝑔𝑤)))) → 𝐷𝑋)
6 tfr1on.x . . . . . . . . . . 11 (𝜑 → Ord 𝑋)
7 ordtr1 4423 . . . . . . . . . . 11 (Ord 𝑋 → ((𝑧𝐷𝐷𝑋) → 𝑧𝑋))
86, 7syl 14 . . . . . . . . . 10 (𝜑 → ((𝑧𝐷𝐷𝑋) → 𝑧𝑋))
98imp 124 . . . . . . . . 9 ((𝜑 ∧ (𝑧𝐷𝐷𝑋)) → 𝑧𝑋)
102, 3, 5, 9syl12anc 1247 . . . . . . . 8 ((𝜑𝑧𝐷 ∧ (𝑔 Fn 𝑧 ∧ ∀𝑤𝑧 (𝑔𝑤) = (𝐺‘(𝑔𝑤)))) → 𝑧𝑋)
11 simp3l 1027 . . . . . . . 8 ((𝜑𝑧𝐷 ∧ (𝑔 Fn 𝑧 ∧ ∀𝑤𝑧 (𝑔𝑤) = (𝐺‘(𝑔𝑤)))) → 𝑔 Fn 𝑧)
12 fneq2 5347 . . . . . . . . . . . . 13 (𝑥 = 𝑧 → (𝑓 Fn 𝑥𝑓 Fn 𝑧))
1312imbi1d 231 . . . . . . . . . . . 12 (𝑥 = 𝑧 → ((𝑓 Fn 𝑥 → (𝐺𝑓) ∈ V) ↔ (𝑓 Fn 𝑧 → (𝐺𝑓) ∈ V)))
1413albidv 1838 . . . . . . . . . . 11 (𝑥 = 𝑧 → (∀𝑓(𝑓 Fn 𝑥 → (𝐺𝑓) ∈ V) ↔ ∀𝑓(𝑓 Fn 𝑧 → (𝐺𝑓) ∈ V)))
15 tfr1on.ex . . . . . . . . . . . . . . 15 ((𝜑𝑥𝑋𝑓 Fn 𝑥) → (𝐺𝑓) ∈ V)
16153expia 1207 . . . . . . . . . . . . . 14 ((𝜑𝑥𝑋) → (𝑓 Fn 𝑥 → (𝐺𝑓) ∈ V))
1716alrimiv 1888 . . . . . . . . . . . . 13 ((𝜑𝑥𝑋) → ∀𝑓(𝑓 Fn 𝑥 → (𝐺𝑓) ∈ V))
1817ralrimiva 2570 . . . . . . . . . . . 12 (𝜑 → ∀𝑥𝑋𝑓(𝑓 Fn 𝑥 → (𝐺𝑓) ∈ V))
1918adantr 276 . . . . . . . . . . 11 ((𝜑𝑧𝑋) → ∀𝑥𝑋𝑓(𝑓 Fn 𝑥 → (𝐺𝑓) ∈ V))
20 simpr 110 . . . . . . . . . . 11 ((𝜑𝑧𝑋) → 𝑧𝑋)
2114, 19, 20rspcdva 2873 . . . . . . . . . 10 ((𝜑𝑧𝑋) → ∀𝑓(𝑓 Fn 𝑧 → (𝐺𝑓) ∈ V))
22 fneq1 5346 . . . . . . . . . . . 12 (𝑓 = 𝑔 → (𝑓 Fn 𝑧𝑔 Fn 𝑧))
23 fveq2 5558 . . . . . . . . . . . . 13 (𝑓 = 𝑔 → (𝐺𝑓) = (𝐺𝑔))
2423eleq1d 2265 . . . . . . . . . . . 12 (𝑓 = 𝑔 → ((𝐺𝑓) ∈ V ↔ (𝐺𝑔) ∈ V))
2522, 24imbi12d 234 . . . . . . . . . . 11 (𝑓 = 𝑔 → ((𝑓 Fn 𝑧 → (𝐺𝑓) ∈ V) ↔ (𝑔 Fn 𝑧 → (𝐺𝑔) ∈ V)))
2625spv 1874 . . . . . . . . . 10 (∀𝑓(𝑓 Fn 𝑧 → (𝐺𝑓) ∈ V) → (𝑔 Fn 𝑧 → (𝐺𝑔) ∈ V))
2721, 26syl 14 . . . . . . . . 9 ((𝜑𝑧𝑋) → (𝑔 Fn 𝑧 → (𝐺𝑔) ∈ V))
2827imp 124 . . . . . . . 8 (((𝜑𝑧𝑋) ∧ 𝑔 Fn 𝑧) → (𝐺𝑔) ∈ V)
292, 10, 11, 28syl21anc 1248 . . . . . . 7 ((𝜑𝑧𝐷 ∧ (𝑔 Fn 𝑧 ∧ ∀𝑤𝑧 (𝑔𝑤) = (𝐺‘(𝑔𝑤)))) → (𝐺𝑔) ∈ V)
30 vex 2766 . . . . . . . . . 10 𝑧 ∈ V
31 opexg 4261 . . . . . . . . . 10 ((𝑧 ∈ V ∧ (𝐺𝑔) ∈ V) → ⟨𝑧, (𝐺𝑔)⟩ ∈ V)
3230, 29, 31sylancr 414 . . . . . . . . 9 ((𝜑𝑧𝐷 ∧ (𝑔 Fn 𝑧 ∧ ∀𝑤𝑧 (𝑔𝑤) = (𝐺‘(𝑔𝑤)))) → ⟨𝑧, (𝐺𝑔)⟩ ∈ V)
33 snidg 3651 . . . . . . . . 9 (⟨𝑧, (𝐺𝑔)⟩ ∈ V → ⟨𝑧, (𝐺𝑔)⟩ ∈ {⟨𝑧, (𝐺𝑔)⟩})
34 elun2 3331 . . . . . . . . 9 (⟨𝑧, (𝐺𝑔)⟩ ∈ {⟨𝑧, (𝐺𝑔)⟩} → ⟨𝑧, (𝐺𝑔)⟩ ∈ (𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}))
3532, 33, 343syl 17 . . . . . . . 8 ((𝜑𝑧𝐷 ∧ (𝑔 Fn 𝑧 ∧ ∀𝑤𝑧 (𝑔𝑤) = (𝐺‘(𝑔𝑤)))) → ⟨𝑧, (𝐺𝑔)⟩ ∈ (𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}))
36 simp3r 1028 . . . . . . . . . . . 12 ((𝜑𝑧𝐷 ∧ (𝑔 Fn 𝑧 ∧ ∀𝑤𝑧 (𝑔𝑤) = (𝐺‘(𝑔𝑤)))) → ∀𝑤𝑧 (𝑔𝑤) = (𝐺‘(𝑔𝑤)))
37 rspe 2546 . . . . . . . . . . . 12 ((𝑧𝑋 ∧ (𝑔 Fn 𝑧 ∧ ∀𝑤𝑧 (𝑔𝑤) = (𝐺‘(𝑔𝑤)))) → ∃𝑧𝑋 (𝑔 Fn 𝑧 ∧ ∀𝑤𝑧 (𝑔𝑤) = (𝐺‘(𝑔𝑤))))
3810, 11, 36, 37syl12anc 1247 . . . . . . . . . . 11 ((𝜑𝑧𝐷 ∧ (𝑔 Fn 𝑧 ∧ ∀𝑤𝑧 (𝑔𝑤) = (𝐺‘(𝑔𝑤)))) → ∃𝑧𝑋 (𝑔 Fn 𝑧 ∧ ∀𝑤𝑧 (𝑔𝑤) = (𝐺‘(𝑔𝑤))))
39 vex 2766 . . . . . . . . . . . 12 𝑔 ∈ V
40 tfr1onlemsucfn.1 . . . . . . . . . . . . 13 𝐴 = {𝑓 ∣ ∃𝑥𝑋 (𝑓 Fn 𝑥 ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐺‘(𝑓𝑦)))}
4140tfr1onlem3ag 6395 . . . . . . . . . . . 12 (𝑔 ∈ V → (𝑔𝐴 ↔ ∃𝑧𝑋 (𝑔 Fn 𝑧 ∧ ∀𝑤𝑧 (𝑔𝑤) = (𝐺‘(𝑔𝑤)))))
4239, 41ax-mp 5 . . . . . . . . . . 11 (𝑔𝐴 ↔ ∃𝑧𝑋 (𝑔 Fn 𝑧 ∧ ∀𝑤𝑧 (𝑔𝑤) = (𝐺‘(𝑔𝑤))))
4338, 42sylibr 134 . . . . . . . . . 10 ((𝜑𝑧𝐷 ∧ (𝑔 Fn 𝑧 ∧ ∀𝑤𝑧 (𝑔𝑤) = (𝐺‘(𝑔𝑤)))) → 𝑔𝐴)
443, 11, 433jca 1179 . . . . . . . . 9 ((𝜑𝑧𝐷 ∧ (𝑔 Fn 𝑧 ∧ ∀𝑤𝑧 (𝑔𝑤) = (𝐺‘(𝑔𝑤)))) → (𝑧𝐷𝑔 Fn 𝑧𝑔𝐴))
45 snexg 4217 . . . . . . . . . . 11 (⟨𝑧, (𝐺𝑔)⟩ ∈ V → {⟨𝑧, (𝐺𝑔)⟩} ∈ V)
46 unexg 4478 . . . . . . . . . . . 12 ((𝑔 ∈ V ∧ {⟨𝑧, (𝐺𝑔)⟩} ∈ V) → (𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}) ∈ V)
4739, 46mpan 424 . . . . . . . . . . 11 ({⟨𝑧, (𝐺𝑔)⟩} ∈ V → (𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}) ∈ V)
4832, 45, 473syl 17 . . . . . . . . . 10 ((𝜑𝑧𝐷 ∧ (𝑔 Fn 𝑧 ∧ ∀𝑤𝑧 (𝑔𝑤) = (𝐺‘(𝑔𝑤)))) → (𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}) ∈ V)
49 isset 2769 . . . . . . . . . 10 ((𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}) ∈ V ↔ ∃ = (𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}))
5048, 49sylib 122 . . . . . . . . 9 ((𝜑𝑧𝐷 ∧ (𝑔 Fn 𝑧 ∧ ∀𝑤𝑧 (𝑔𝑤) = (𝐺‘(𝑔𝑤)))) → ∃ = (𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}))
51 simpr3 1007 . . . . . . . . . . . . 13 ((𝑧𝐷 ∧ (𝑔 Fn 𝑧𝑔𝐴 = (𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}))) → = (𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}))
52 19.8a 1604 . . . . . . . . . . . . . 14 ((𝑔 Fn 𝑧𝑔𝐴 = (𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩})) → ∃𝑔(𝑔 Fn 𝑧𝑔𝐴 = (𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩})))
53 rspe 2546 . . . . . . . . . . . . . . 15 ((𝑧𝐷 ∧ ∃𝑔(𝑔 Fn 𝑧𝑔𝐴 = (𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}))) → ∃𝑧𝐷𝑔(𝑔 Fn 𝑧𝑔𝐴 = (𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩})))
54 tfr1onlembacc.3 . . . . . . . . . . . . . . . 16 𝐵 = { ∣ ∃𝑧𝐷𝑔(𝑔 Fn 𝑧𝑔𝐴 = (𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}))}
5554abeq2i 2307 . . . . . . . . . . . . . . 15 (𝐵 ↔ ∃𝑧𝐷𝑔(𝑔 Fn 𝑧𝑔𝐴 = (𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩})))
5653, 55sylibr 134 . . . . . . . . . . . . . 14 ((𝑧𝐷 ∧ ∃𝑔(𝑔 Fn 𝑧𝑔𝐴 = (𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}))) → 𝐵)
5752, 56sylan2 286 . . . . . . . . . . . . 13 ((𝑧𝐷 ∧ (𝑔 Fn 𝑧𝑔𝐴 = (𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}))) → 𝐵)
5851, 57eqeltrrd 2274 . . . . . . . . . . . 12 ((𝑧𝐷 ∧ (𝑔 Fn 𝑧𝑔𝐴 = (𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}))) → (𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}) ∈ 𝐵)
59583exp2 1227 . . . . . . . . . . 11 (𝑧𝐷 → (𝑔 Fn 𝑧 → (𝑔𝐴 → ( = (𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}) → (𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}) ∈ 𝐵))))
60593imp 1195 . . . . . . . . . 10 ((𝑧𝐷𝑔 Fn 𝑧𝑔𝐴) → ( = (𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}) → (𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}) ∈ 𝐵))
6160exlimdv 1833 . . . . . . . . 9 ((𝑧𝐷𝑔 Fn 𝑧𝑔𝐴) → (∃ = (𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}) → (𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}) ∈ 𝐵))
6244, 50, 61sylc 62 . . . . . . . 8 ((𝜑𝑧𝐷 ∧ (𝑔 Fn 𝑧 ∧ ∀𝑤𝑧 (𝑔𝑤) = (𝐺‘(𝑔𝑤)))) → (𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}) ∈ 𝐵)
63 elunii 3844 . . . . . . . 8 ((⟨𝑧, (𝐺𝑔)⟩ ∈ (𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}) ∧ (𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}) ∈ 𝐵) → ⟨𝑧, (𝐺𝑔)⟩ ∈ 𝐵)
6435, 62, 63syl2anc 411 . . . . . . 7 ((𝜑𝑧𝐷 ∧ (𝑔 Fn 𝑧 ∧ ∀𝑤𝑧 (𝑔𝑤) = (𝐺‘(𝑔𝑤)))) → ⟨𝑧, (𝐺𝑔)⟩ ∈ 𝐵)
65 opeq2 3809 . . . . . . . . . 10 (𝑤 = (𝐺𝑔) → ⟨𝑧, 𝑤⟩ = ⟨𝑧, (𝐺𝑔)⟩)
6665eleq1d 2265 . . . . . . . . 9 (𝑤 = (𝐺𝑔) → (⟨𝑧, 𝑤⟩ ∈ 𝐵 ↔ ⟨𝑧, (𝐺𝑔)⟩ ∈ 𝐵))
6766spcegv 2852 . . . . . . . 8 ((𝐺𝑔) ∈ V → (⟨𝑧, (𝐺𝑔)⟩ ∈ 𝐵 → ∃𝑤𝑧, 𝑤⟩ ∈ 𝐵))
6830eldm2 4864 . . . . . . . 8 (𝑧 ∈ dom 𝐵 ↔ ∃𝑤𝑧, 𝑤⟩ ∈ 𝐵)
6967, 68imbitrrdi 162 . . . . . . 7 ((𝐺𝑔) ∈ V → (⟨𝑧, (𝐺𝑔)⟩ ∈ 𝐵𝑧 ∈ dom 𝐵))
7029, 64, 69sylc 62 . . . . . 6 ((𝜑𝑧𝐷 ∧ (𝑔 Fn 𝑧 ∧ ∀𝑤𝑧 (𝑔𝑤) = (𝐺‘(𝑔𝑤)))) → 𝑧 ∈ dom 𝐵)
71703expia 1207 . . . . 5 ((𝜑𝑧𝐷) → ((𝑔 Fn 𝑧 ∧ ∀𝑤𝑧 (𝑔𝑤) = (𝐺‘(𝑔𝑤))) → 𝑧 ∈ dom 𝐵))
7271exlimdv 1833 . . . 4 ((𝜑𝑧𝐷) → (∃𝑔(𝑔 Fn 𝑧 ∧ ∀𝑤𝑧 (𝑔𝑤) = (𝐺‘(𝑔𝑤))) → 𝑧 ∈ dom 𝐵))
7372ralimdva 2564 . . 3 (𝜑 → (∀𝑧𝐷𝑔(𝑔 Fn 𝑧 ∧ ∀𝑤𝑧 (𝑔𝑤) = (𝐺‘(𝑔𝑤))) → ∀𝑧𝐷 𝑧 ∈ dom 𝐵))
741, 73mpd 13 . 2 (𝜑 → ∀𝑧𝐷 𝑧 ∈ dom 𝐵)
75 dfss3 3173 . 2 (𝐷 ⊆ dom 𝐵 ↔ ∀𝑧𝐷 𝑧 ∈ dom 𝐵)
7674, 75sylibr 134 1 (𝜑𝐷 ⊆ dom 𝐵)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  w3a 980  wal 1362   = wceq 1364  wex 1506  wcel 2167  {cab 2182  wral 2475  wrex 2476  Vcvv 2763  cun 3155  wss 3157  {csn 3622  cop 3625   cuni 3839  Ord word 4397  suc csuc 4400  dom cdm 4663  cres 4665  Fun wfun 5252   Fn wfn 5253  cfv 5258  recscrecs 6362
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-sep 4151  ax-pow 4207  ax-pr 4242  ax-un 4468
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ral 2480  df-rex 2481  df-v 2765  df-un 3161  df-in 3163  df-ss 3170  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-br 4034  df-opab 4095  df-tr 4132  df-iord 4401  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-res 4675  df-iota 5219  df-fun 5260  df-fn 5261  df-fv 5266
This theorem is referenced by:  tfr1onlembfn  6402
  Copyright terms: Public domain W3C validator