ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  tfr1onlembxssdm GIF version

Theorem tfr1onlembxssdm 6429
Description: Lemma for tfr1on 6436. The union of 𝐵 is defined on all elements of 𝑋. (Contributed by Jim Kingdon, 14-Mar-2022.)
Hypotheses
Ref Expression
tfr1on.f 𝐹 = recs(𝐺)
tfr1on.g (𝜑 → Fun 𝐺)
tfr1on.x (𝜑 → Ord 𝑋)
tfr1on.ex ((𝜑𝑥𝑋𝑓 Fn 𝑥) → (𝐺𝑓) ∈ V)
tfr1onlemsucfn.1 𝐴 = {𝑓 ∣ ∃𝑥𝑋 (𝑓 Fn 𝑥 ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐺‘(𝑓𝑦)))}
tfr1onlembacc.3 𝐵 = { ∣ ∃𝑧𝐷𝑔(𝑔 Fn 𝑧𝑔𝐴 = (𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}))}
tfr1onlembacc.u ((𝜑𝑥 𝑋) → suc 𝑥𝑋)
tfr1onlembacc.4 (𝜑𝐷𝑋)
tfr1onlembacc.5 (𝜑 → ∀𝑧𝐷𝑔(𝑔 Fn 𝑧 ∧ ∀𝑤𝑧 (𝑔𝑤) = (𝐺‘(𝑔𝑤))))
Assertion
Ref Expression
tfr1onlembxssdm (𝜑𝐷 ⊆ dom 𝐵)
Distinct variable groups:   𝐴,𝑓,𝑔,,𝑥,𝑧   𝐷,𝑓,𝑔,𝑥   𝑓,𝐺,𝑥,𝑦   𝑓,𝑋,𝑥   𝜑,𝑓,𝑔,,𝑥,𝑧   𝑦,𝑔,𝑧   𝐵,𝑔,,𝑧   𝑤,𝐵,𝑔,𝑧   𝐷,,𝑧   ,𝐺,𝑧   𝑤,𝐺,𝑓,𝑥,𝑦   𝑔,𝑋,𝑧
Allowed substitution hints:   𝜑(𝑦,𝑤)   𝐴(𝑦,𝑤)   𝐵(𝑥,𝑦,𝑓)   𝐷(𝑦,𝑤)   𝐹(𝑥,𝑦,𝑧,𝑤,𝑓,𝑔,)   𝐺(𝑔)   𝑋(𝑦,𝑤,)

Proof of Theorem tfr1onlembxssdm
StepHypRef Expression
1 tfr1onlembacc.5 . . 3 (𝜑 → ∀𝑧𝐷𝑔(𝑔 Fn 𝑧 ∧ ∀𝑤𝑧 (𝑔𝑤) = (𝐺‘(𝑔𝑤))))
2 simp1 1000 . . . . . . . 8 ((𝜑𝑧𝐷 ∧ (𝑔 Fn 𝑧 ∧ ∀𝑤𝑧 (𝑔𝑤) = (𝐺‘(𝑔𝑤)))) → 𝜑)
3 simp2 1001 . . . . . . . . 9 ((𝜑𝑧𝐷 ∧ (𝑔 Fn 𝑧 ∧ ∀𝑤𝑧 (𝑔𝑤) = (𝐺‘(𝑔𝑤)))) → 𝑧𝐷)
4 tfr1onlembacc.4 . . . . . . . . . 10 (𝜑𝐷𝑋)
52, 4syl 14 . . . . . . . . 9 ((𝜑𝑧𝐷 ∧ (𝑔 Fn 𝑧 ∧ ∀𝑤𝑧 (𝑔𝑤) = (𝐺‘(𝑔𝑤)))) → 𝐷𝑋)
6 tfr1on.x . . . . . . . . . . 11 (𝜑 → Ord 𝑋)
7 ordtr1 4435 . . . . . . . . . . 11 (Ord 𝑋 → ((𝑧𝐷𝐷𝑋) → 𝑧𝑋))
86, 7syl 14 . . . . . . . . . 10 (𝜑 → ((𝑧𝐷𝐷𝑋) → 𝑧𝑋))
98imp 124 . . . . . . . . 9 ((𝜑 ∧ (𝑧𝐷𝐷𝑋)) → 𝑧𝑋)
102, 3, 5, 9syl12anc 1248 . . . . . . . 8 ((𝜑𝑧𝐷 ∧ (𝑔 Fn 𝑧 ∧ ∀𝑤𝑧 (𝑔𝑤) = (𝐺‘(𝑔𝑤)))) → 𝑧𝑋)
11 simp3l 1028 . . . . . . . 8 ((𝜑𝑧𝐷 ∧ (𝑔 Fn 𝑧 ∧ ∀𝑤𝑧 (𝑔𝑤) = (𝐺‘(𝑔𝑤)))) → 𝑔 Fn 𝑧)
12 fneq2 5363 . . . . . . . . . . . . 13 (𝑥 = 𝑧 → (𝑓 Fn 𝑥𝑓 Fn 𝑧))
1312imbi1d 231 . . . . . . . . . . . 12 (𝑥 = 𝑧 → ((𝑓 Fn 𝑥 → (𝐺𝑓) ∈ V) ↔ (𝑓 Fn 𝑧 → (𝐺𝑓) ∈ V)))
1413albidv 1847 . . . . . . . . . . 11 (𝑥 = 𝑧 → (∀𝑓(𝑓 Fn 𝑥 → (𝐺𝑓) ∈ V) ↔ ∀𝑓(𝑓 Fn 𝑧 → (𝐺𝑓) ∈ V)))
15 tfr1on.ex . . . . . . . . . . . . . . 15 ((𝜑𝑥𝑋𝑓 Fn 𝑥) → (𝐺𝑓) ∈ V)
16153expia 1208 . . . . . . . . . . . . . 14 ((𝜑𝑥𝑋) → (𝑓 Fn 𝑥 → (𝐺𝑓) ∈ V))
1716alrimiv 1897 . . . . . . . . . . . . 13 ((𝜑𝑥𝑋) → ∀𝑓(𝑓 Fn 𝑥 → (𝐺𝑓) ∈ V))
1817ralrimiva 2579 . . . . . . . . . . . 12 (𝜑 → ∀𝑥𝑋𝑓(𝑓 Fn 𝑥 → (𝐺𝑓) ∈ V))
1918adantr 276 . . . . . . . . . . 11 ((𝜑𝑧𝑋) → ∀𝑥𝑋𝑓(𝑓 Fn 𝑥 → (𝐺𝑓) ∈ V))
20 simpr 110 . . . . . . . . . . 11 ((𝜑𝑧𝑋) → 𝑧𝑋)
2114, 19, 20rspcdva 2882 . . . . . . . . . 10 ((𝜑𝑧𝑋) → ∀𝑓(𝑓 Fn 𝑧 → (𝐺𝑓) ∈ V))
22 fneq1 5362 . . . . . . . . . . . 12 (𝑓 = 𝑔 → (𝑓 Fn 𝑧𝑔 Fn 𝑧))
23 fveq2 5576 . . . . . . . . . . . . 13 (𝑓 = 𝑔 → (𝐺𝑓) = (𝐺𝑔))
2423eleq1d 2274 . . . . . . . . . . . 12 (𝑓 = 𝑔 → ((𝐺𝑓) ∈ V ↔ (𝐺𝑔) ∈ V))
2522, 24imbi12d 234 . . . . . . . . . . 11 (𝑓 = 𝑔 → ((𝑓 Fn 𝑧 → (𝐺𝑓) ∈ V) ↔ (𝑔 Fn 𝑧 → (𝐺𝑔) ∈ V)))
2625spv 1883 . . . . . . . . . 10 (∀𝑓(𝑓 Fn 𝑧 → (𝐺𝑓) ∈ V) → (𝑔 Fn 𝑧 → (𝐺𝑔) ∈ V))
2721, 26syl 14 . . . . . . . . 9 ((𝜑𝑧𝑋) → (𝑔 Fn 𝑧 → (𝐺𝑔) ∈ V))
2827imp 124 . . . . . . . 8 (((𝜑𝑧𝑋) ∧ 𝑔 Fn 𝑧) → (𝐺𝑔) ∈ V)
292, 10, 11, 28syl21anc 1249 . . . . . . 7 ((𝜑𝑧𝐷 ∧ (𝑔 Fn 𝑧 ∧ ∀𝑤𝑧 (𝑔𝑤) = (𝐺‘(𝑔𝑤)))) → (𝐺𝑔) ∈ V)
30 vex 2775 . . . . . . . . . 10 𝑧 ∈ V
31 opexg 4272 . . . . . . . . . 10 ((𝑧 ∈ V ∧ (𝐺𝑔) ∈ V) → ⟨𝑧, (𝐺𝑔)⟩ ∈ V)
3230, 29, 31sylancr 414 . . . . . . . . 9 ((𝜑𝑧𝐷 ∧ (𝑔 Fn 𝑧 ∧ ∀𝑤𝑧 (𝑔𝑤) = (𝐺‘(𝑔𝑤)))) → ⟨𝑧, (𝐺𝑔)⟩ ∈ V)
33 snidg 3662 . . . . . . . . 9 (⟨𝑧, (𝐺𝑔)⟩ ∈ V → ⟨𝑧, (𝐺𝑔)⟩ ∈ {⟨𝑧, (𝐺𝑔)⟩})
34 elun2 3341 . . . . . . . . 9 (⟨𝑧, (𝐺𝑔)⟩ ∈ {⟨𝑧, (𝐺𝑔)⟩} → ⟨𝑧, (𝐺𝑔)⟩ ∈ (𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}))
3532, 33, 343syl 17 . . . . . . . 8 ((𝜑𝑧𝐷 ∧ (𝑔 Fn 𝑧 ∧ ∀𝑤𝑧 (𝑔𝑤) = (𝐺‘(𝑔𝑤)))) → ⟨𝑧, (𝐺𝑔)⟩ ∈ (𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}))
36 simp3r 1029 . . . . . . . . . . . 12 ((𝜑𝑧𝐷 ∧ (𝑔 Fn 𝑧 ∧ ∀𝑤𝑧 (𝑔𝑤) = (𝐺‘(𝑔𝑤)))) → ∀𝑤𝑧 (𝑔𝑤) = (𝐺‘(𝑔𝑤)))
37 rspe 2555 . . . . . . . . . . . 12 ((𝑧𝑋 ∧ (𝑔 Fn 𝑧 ∧ ∀𝑤𝑧 (𝑔𝑤) = (𝐺‘(𝑔𝑤)))) → ∃𝑧𝑋 (𝑔 Fn 𝑧 ∧ ∀𝑤𝑧 (𝑔𝑤) = (𝐺‘(𝑔𝑤))))
3810, 11, 36, 37syl12anc 1248 . . . . . . . . . . 11 ((𝜑𝑧𝐷 ∧ (𝑔 Fn 𝑧 ∧ ∀𝑤𝑧 (𝑔𝑤) = (𝐺‘(𝑔𝑤)))) → ∃𝑧𝑋 (𝑔 Fn 𝑧 ∧ ∀𝑤𝑧 (𝑔𝑤) = (𝐺‘(𝑔𝑤))))
39 vex 2775 . . . . . . . . . . . 12 𝑔 ∈ V
40 tfr1onlemsucfn.1 . . . . . . . . . . . . 13 𝐴 = {𝑓 ∣ ∃𝑥𝑋 (𝑓 Fn 𝑥 ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐺‘(𝑓𝑦)))}
4140tfr1onlem3ag 6423 . . . . . . . . . . . 12 (𝑔 ∈ V → (𝑔𝐴 ↔ ∃𝑧𝑋 (𝑔 Fn 𝑧 ∧ ∀𝑤𝑧 (𝑔𝑤) = (𝐺‘(𝑔𝑤)))))
4239, 41ax-mp 5 . . . . . . . . . . 11 (𝑔𝐴 ↔ ∃𝑧𝑋 (𝑔 Fn 𝑧 ∧ ∀𝑤𝑧 (𝑔𝑤) = (𝐺‘(𝑔𝑤))))
4338, 42sylibr 134 . . . . . . . . . 10 ((𝜑𝑧𝐷 ∧ (𝑔 Fn 𝑧 ∧ ∀𝑤𝑧 (𝑔𝑤) = (𝐺‘(𝑔𝑤)))) → 𝑔𝐴)
443, 11, 433jca 1180 . . . . . . . . 9 ((𝜑𝑧𝐷 ∧ (𝑔 Fn 𝑧 ∧ ∀𝑤𝑧 (𝑔𝑤) = (𝐺‘(𝑔𝑤)))) → (𝑧𝐷𝑔 Fn 𝑧𝑔𝐴))
45 snexg 4228 . . . . . . . . . . 11 (⟨𝑧, (𝐺𝑔)⟩ ∈ V → {⟨𝑧, (𝐺𝑔)⟩} ∈ V)
46 unexg 4490 . . . . . . . . . . . 12 ((𝑔 ∈ V ∧ {⟨𝑧, (𝐺𝑔)⟩} ∈ V) → (𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}) ∈ V)
4739, 46mpan 424 . . . . . . . . . . 11 ({⟨𝑧, (𝐺𝑔)⟩} ∈ V → (𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}) ∈ V)
4832, 45, 473syl 17 . . . . . . . . . 10 ((𝜑𝑧𝐷 ∧ (𝑔 Fn 𝑧 ∧ ∀𝑤𝑧 (𝑔𝑤) = (𝐺‘(𝑔𝑤)))) → (𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}) ∈ V)
49 isset 2778 . . . . . . . . . 10 ((𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}) ∈ V ↔ ∃ = (𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}))
5048, 49sylib 122 . . . . . . . . 9 ((𝜑𝑧𝐷 ∧ (𝑔 Fn 𝑧 ∧ ∀𝑤𝑧 (𝑔𝑤) = (𝐺‘(𝑔𝑤)))) → ∃ = (𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}))
51 simpr3 1008 . . . . . . . . . . . . 13 ((𝑧𝐷 ∧ (𝑔 Fn 𝑧𝑔𝐴 = (𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}))) → = (𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}))
52 19.8a 1613 . . . . . . . . . . . . . 14 ((𝑔 Fn 𝑧𝑔𝐴 = (𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩})) → ∃𝑔(𝑔 Fn 𝑧𝑔𝐴 = (𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩})))
53 rspe 2555 . . . . . . . . . . . . . . 15 ((𝑧𝐷 ∧ ∃𝑔(𝑔 Fn 𝑧𝑔𝐴 = (𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}))) → ∃𝑧𝐷𝑔(𝑔 Fn 𝑧𝑔𝐴 = (𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩})))
54 tfr1onlembacc.3 . . . . . . . . . . . . . . . 16 𝐵 = { ∣ ∃𝑧𝐷𝑔(𝑔 Fn 𝑧𝑔𝐴 = (𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}))}
5554abeq2i 2316 . . . . . . . . . . . . . . 15 (𝐵 ↔ ∃𝑧𝐷𝑔(𝑔 Fn 𝑧𝑔𝐴 = (𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩})))
5653, 55sylibr 134 . . . . . . . . . . . . . 14 ((𝑧𝐷 ∧ ∃𝑔(𝑔 Fn 𝑧𝑔𝐴 = (𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}))) → 𝐵)
5752, 56sylan2 286 . . . . . . . . . . . . 13 ((𝑧𝐷 ∧ (𝑔 Fn 𝑧𝑔𝐴 = (𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}))) → 𝐵)
5851, 57eqeltrrd 2283 . . . . . . . . . . . 12 ((𝑧𝐷 ∧ (𝑔 Fn 𝑧𝑔𝐴 = (𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}))) → (𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}) ∈ 𝐵)
59583exp2 1228 . . . . . . . . . . 11 (𝑧𝐷 → (𝑔 Fn 𝑧 → (𝑔𝐴 → ( = (𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}) → (𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}) ∈ 𝐵))))
60593imp 1196 . . . . . . . . . 10 ((𝑧𝐷𝑔 Fn 𝑧𝑔𝐴) → ( = (𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}) → (𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}) ∈ 𝐵))
6160exlimdv 1842 . . . . . . . . 9 ((𝑧𝐷𝑔 Fn 𝑧𝑔𝐴) → (∃ = (𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}) → (𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}) ∈ 𝐵))
6244, 50, 61sylc 62 . . . . . . . 8 ((𝜑𝑧𝐷 ∧ (𝑔 Fn 𝑧 ∧ ∀𝑤𝑧 (𝑔𝑤) = (𝐺‘(𝑔𝑤)))) → (𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}) ∈ 𝐵)
63 elunii 3855 . . . . . . . 8 ((⟨𝑧, (𝐺𝑔)⟩ ∈ (𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}) ∧ (𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}) ∈ 𝐵) → ⟨𝑧, (𝐺𝑔)⟩ ∈ 𝐵)
6435, 62, 63syl2anc 411 . . . . . . 7 ((𝜑𝑧𝐷 ∧ (𝑔 Fn 𝑧 ∧ ∀𝑤𝑧 (𝑔𝑤) = (𝐺‘(𝑔𝑤)))) → ⟨𝑧, (𝐺𝑔)⟩ ∈ 𝐵)
65 opeq2 3820 . . . . . . . . . 10 (𝑤 = (𝐺𝑔) → ⟨𝑧, 𝑤⟩ = ⟨𝑧, (𝐺𝑔)⟩)
6665eleq1d 2274 . . . . . . . . 9 (𝑤 = (𝐺𝑔) → (⟨𝑧, 𝑤⟩ ∈ 𝐵 ↔ ⟨𝑧, (𝐺𝑔)⟩ ∈ 𝐵))
6766spcegv 2861 . . . . . . . 8 ((𝐺𝑔) ∈ V → (⟨𝑧, (𝐺𝑔)⟩ ∈ 𝐵 → ∃𝑤𝑧, 𝑤⟩ ∈ 𝐵))
6830eldm2 4876 . . . . . . . 8 (𝑧 ∈ dom 𝐵 ↔ ∃𝑤𝑧, 𝑤⟩ ∈ 𝐵)
6967, 68imbitrrdi 162 . . . . . . 7 ((𝐺𝑔) ∈ V → (⟨𝑧, (𝐺𝑔)⟩ ∈ 𝐵𝑧 ∈ dom 𝐵))
7029, 64, 69sylc 62 . . . . . 6 ((𝜑𝑧𝐷 ∧ (𝑔 Fn 𝑧 ∧ ∀𝑤𝑧 (𝑔𝑤) = (𝐺‘(𝑔𝑤)))) → 𝑧 ∈ dom 𝐵)
71703expia 1208 . . . . 5 ((𝜑𝑧𝐷) → ((𝑔 Fn 𝑧 ∧ ∀𝑤𝑧 (𝑔𝑤) = (𝐺‘(𝑔𝑤))) → 𝑧 ∈ dom 𝐵))
7271exlimdv 1842 . . . 4 ((𝜑𝑧𝐷) → (∃𝑔(𝑔 Fn 𝑧 ∧ ∀𝑤𝑧 (𝑔𝑤) = (𝐺‘(𝑔𝑤))) → 𝑧 ∈ dom 𝐵))
7372ralimdva 2573 . . 3 (𝜑 → (∀𝑧𝐷𝑔(𝑔 Fn 𝑧 ∧ ∀𝑤𝑧 (𝑔𝑤) = (𝐺‘(𝑔𝑤))) → ∀𝑧𝐷 𝑧 ∈ dom 𝐵))
741, 73mpd 13 . 2 (𝜑 → ∀𝑧𝐷 𝑧 ∈ dom 𝐵)
75 dfss3 3182 . 2 (𝐷 ⊆ dom 𝐵 ↔ ∀𝑧𝐷 𝑧 ∈ dom 𝐵)
7674, 75sylibr 134 1 (𝜑𝐷 ⊆ dom 𝐵)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  w3a 981  wal 1371   = wceq 1373  wex 1515  wcel 2176  {cab 2191  wral 2484  wrex 2485  Vcvv 2772  cun 3164  wss 3166  {csn 3633  cop 3636   cuni 3850  Ord word 4409  suc csuc 4412  dom cdm 4675  cres 4677  Fun wfun 5265   Fn wfn 5266  cfv 5271  recscrecs 6390
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-13 2178  ax-14 2179  ax-ext 2187  ax-sep 4162  ax-pow 4218  ax-pr 4253  ax-un 4480
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1484  df-sb 1786  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ral 2489  df-rex 2490  df-v 2774  df-un 3170  df-in 3172  df-ss 3179  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-br 4045  df-opab 4106  df-tr 4143  df-iord 4413  df-xp 4681  df-rel 4682  df-cnv 4683  df-co 4684  df-dm 4685  df-res 4687  df-iota 5232  df-fun 5273  df-fn 5274  df-fv 5279
This theorem is referenced by:  tfr1onlembfn  6430
  Copyright terms: Public domain W3C validator