ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  tfr1onlembxssdm GIF version

Theorem tfr1onlembxssdm 6487
Description: Lemma for tfr1on 6494. The union of 𝐵 is defined on all elements of 𝑋. (Contributed by Jim Kingdon, 14-Mar-2022.)
Hypotheses
Ref Expression
tfr1on.f 𝐹 = recs(𝐺)
tfr1on.g (𝜑 → Fun 𝐺)
tfr1on.x (𝜑 → Ord 𝑋)
tfr1on.ex ((𝜑𝑥𝑋𝑓 Fn 𝑥) → (𝐺𝑓) ∈ V)
tfr1onlemsucfn.1 𝐴 = {𝑓 ∣ ∃𝑥𝑋 (𝑓 Fn 𝑥 ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐺‘(𝑓𝑦)))}
tfr1onlembacc.3 𝐵 = { ∣ ∃𝑧𝐷𝑔(𝑔 Fn 𝑧𝑔𝐴 = (𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}))}
tfr1onlembacc.u ((𝜑𝑥 𝑋) → suc 𝑥𝑋)
tfr1onlembacc.4 (𝜑𝐷𝑋)
tfr1onlembacc.5 (𝜑 → ∀𝑧𝐷𝑔(𝑔 Fn 𝑧 ∧ ∀𝑤𝑧 (𝑔𝑤) = (𝐺‘(𝑔𝑤))))
Assertion
Ref Expression
tfr1onlembxssdm (𝜑𝐷 ⊆ dom 𝐵)
Distinct variable groups:   𝐴,𝑓,𝑔,,𝑥,𝑧   𝐷,𝑓,𝑔,𝑥   𝑓,𝐺,𝑥,𝑦   𝑓,𝑋,𝑥   𝜑,𝑓,𝑔,,𝑥,𝑧   𝑦,𝑔,𝑧   𝐵,𝑔,,𝑧   𝑤,𝐵,𝑔,𝑧   𝐷,,𝑧   ,𝐺,𝑧   𝑤,𝐺,𝑓,𝑥,𝑦   𝑔,𝑋,𝑧
Allowed substitution hints:   𝜑(𝑦,𝑤)   𝐴(𝑦,𝑤)   𝐵(𝑥,𝑦,𝑓)   𝐷(𝑦,𝑤)   𝐹(𝑥,𝑦,𝑧,𝑤,𝑓,𝑔,)   𝐺(𝑔)   𝑋(𝑦,𝑤,)

Proof of Theorem tfr1onlembxssdm
StepHypRef Expression
1 tfr1onlembacc.5 . . 3 (𝜑 → ∀𝑧𝐷𝑔(𝑔 Fn 𝑧 ∧ ∀𝑤𝑧 (𝑔𝑤) = (𝐺‘(𝑔𝑤))))
2 simp1 1021 . . . . . . . 8 ((𝜑𝑧𝐷 ∧ (𝑔 Fn 𝑧 ∧ ∀𝑤𝑧 (𝑔𝑤) = (𝐺‘(𝑔𝑤)))) → 𝜑)
3 simp2 1022 . . . . . . . . 9 ((𝜑𝑧𝐷 ∧ (𝑔 Fn 𝑧 ∧ ∀𝑤𝑧 (𝑔𝑤) = (𝐺‘(𝑔𝑤)))) → 𝑧𝐷)
4 tfr1onlembacc.4 . . . . . . . . . 10 (𝜑𝐷𝑋)
52, 4syl 14 . . . . . . . . 9 ((𝜑𝑧𝐷 ∧ (𝑔 Fn 𝑧 ∧ ∀𝑤𝑧 (𝑔𝑤) = (𝐺‘(𝑔𝑤)))) → 𝐷𝑋)
6 tfr1on.x . . . . . . . . . . 11 (𝜑 → Ord 𝑋)
7 ordtr1 4478 . . . . . . . . . . 11 (Ord 𝑋 → ((𝑧𝐷𝐷𝑋) → 𝑧𝑋))
86, 7syl 14 . . . . . . . . . 10 (𝜑 → ((𝑧𝐷𝐷𝑋) → 𝑧𝑋))
98imp 124 . . . . . . . . 9 ((𝜑 ∧ (𝑧𝐷𝐷𝑋)) → 𝑧𝑋)
102, 3, 5, 9syl12anc 1269 . . . . . . . 8 ((𝜑𝑧𝐷 ∧ (𝑔 Fn 𝑧 ∧ ∀𝑤𝑧 (𝑔𝑤) = (𝐺‘(𝑔𝑤)))) → 𝑧𝑋)
11 simp3l 1049 . . . . . . . 8 ((𝜑𝑧𝐷 ∧ (𝑔 Fn 𝑧 ∧ ∀𝑤𝑧 (𝑔𝑤) = (𝐺‘(𝑔𝑤)))) → 𝑔 Fn 𝑧)
12 fneq2 5409 . . . . . . . . . . . . 13 (𝑥 = 𝑧 → (𝑓 Fn 𝑥𝑓 Fn 𝑧))
1312imbi1d 231 . . . . . . . . . . . 12 (𝑥 = 𝑧 → ((𝑓 Fn 𝑥 → (𝐺𝑓) ∈ V) ↔ (𝑓 Fn 𝑧 → (𝐺𝑓) ∈ V)))
1413albidv 1870 . . . . . . . . . . 11 (𝑥 = 𝑧 → (∀𝑓(𝑓 Fn 𝑥 → (𝐺𝑓) ∈ V) ↔ ∀𝑓(𝑓 Fn 𝑧 → (𝐺𝑓) ∈ V)))
15 tfr1on.ex . . . . . . . . . . . . . . 15 ((𝜑𝑥𝑋𝑓 Fn 𝑥) → (𝐺𝑓) ∈ V)
16153expia 1229 . . . . . . . . . . . . . 14 ((𝜑𝑥𝑋) → (𝑓 Fn 𝑥 → (𝐺𝑓) ∈ V))
1716alrimiv 1920 . . . . . . . . . . . . 13 ((𝜑𝑥𝑋) → ∀𝑓(𝑓 Fn 𝑥 → (𝐺𝑓) ∈ V))
1817ralrimiva 2603 . . . . . . . . . . . 12 (𝜑 → ∀𝑥𝑋𝑓(𝑓 Fn 𝑥 → (𝐺𝑓) ∈ V))
1918adantr 276 . . . . . . . . . . 11 ((𝜑𝑧𝑋) → ∀𝑥𝑋𝑓(𝑓 Fn 𝑥 → (𝐺𝑓) ∈ V))
20 simpr 110 . . . . . . . . . . 11 ((𝜑𝑧𝑋) → 𝑧𝑋)
2114, 19, 20rspcdva 2912 . . . . . . . . . 10 ((𝜑𝑧𝑋) → ∀𝑓(𝑓 Fn 𝑧 → (𝐺𝑓) ∈ V))
22 fneq1 5408 . . . . . . . . . . . 12 (𝑓 = 𝑔 → (𝑓 Fn 𝑧𝑔 Fn 𝑧))
23 fveq2 5626 . . . . . . . . . . . . 13 (𝑓 = 𝑔 → (𝐺𝑓) = (𝐺𝑔))
2423eleq1d 2298 . . . . . . . . . . . 12 (𝑓 = 𝑔 → ((𝐺𝑓) ∈ V ↔ (𝐺𝑔) ∈ V))
2522, 24imbi12d 234 . . . . . . . . . . 11 (𝑓 = 𝑔 → ((𝑓 Fn 𝑧 → (𝐺𝑓) ∈ V) ↔ (𝑔 Fn 𝑧 → (𝐺𝑔) ∈ V)))
2625spv 1906 . . . . . . . . . 10 (∀𝑓(𝑓 Fn 𝑧 → (𝐺𝑓) ∈ V) → (𝑔 Fn 𝑧 → (𝐺𝑔) ∈ V))
2721, 26syl 14 . . . . . . . . 9 ((𝜑𝑧𝑋) → (𝑔 Fn 𝑧 → (𝐺𝑔) ∈ V))
2827imp 124 . . . . . . . 8 (((𝜑𝑧𝑋) ∧ 𝑔 Fn 𝑧) → (𝐺𝑔) ∈ V)
292, 10, 11, 28syl21anc 1270 . . . . . . 7 ((𝜑𝑧𝐷 ∧ (𝑔 Fn 𝑧 ∧ ∀𝑤𝑧 (𝑔𝑤) = (𝐺‘(𝑔𝑤)))) → (𝐺𝑔) ∈ V)
30 vex 2802 . . . . . . . . . 10 𝑧 ∈ V
31 opexg 4313 . . . . . . . . . 10 ((𝑧 ∈ V ∧ (𝐺𝑔) ∈ V) → ⟨𝑧, (𝐺𝑔)⟩ ∈ V)
3230, 29, 31sylancr 414 . . . . . . . . 9 ((𝜑𝑧𝐷 ∧ (𝑔 Fn 𝑧 ∧ ∀𝑤𝑧 (𝑔𝑤) = (𝐺‘(𝑔𝑤)))) → ⟨𝑧, (𝐺𝑔)⟩ ∈ V)
33 snidg 3695 . . . . . . . . 9 (⟨𝑧, (𝐺𝑔)⟩ ∈ V → ⟨𝑧, (𝐺𝑔)⟩ ∈ {⟨𝑧, (𝐺𝑔)⟩})
34 elun2 3372 . . . . . . . . 9 (⟨𝑧, (𝐺𝑔)⟩ ∈ {⟨𝑧, (𝐺𝑔)⟩} → ⟨𝑧, (𝐺𝑔)⟩ ∈ (𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}))
3532, 33, 343syl 17 . . . . . . . 8 ((𝜑𝑧𝐷 ∧ (𝑔 Fn 𝑧 ∧ ∀𝑤𝑧 (𝑔𝑤) = (𝐺‘(𝑔𝑤)))) → ⟨𝑧, (𝐺𝑔)⟩ ∈ (𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}))
36 simp3r 1050 . . . . . . . . . . . 12 ((𝜑𝑧𝐷 ∧ (𝑔 Fn 𝑧 ∧ ∀𝑤𝑧 (𝑔𝑤) = (𝐺‘(𝑔𝑤)))) → ∀𝑤𝑧 (𝑔𝑤) = (𝐺‘(𝑔𝑤)))
37 rspe 2579 . . . . . . . . . . . 12 ((𝑧𝑋 ∧ (𝑔 Fn 𝑧 ∧ ∀𝑤𝑧 (𝑔𝑤) = (𝐺‘(𝑔𝑤)))) → ∃𝑧𝑋 (𝑔 Fn 𝑧 ∧ ∀𝑤𝑧 (𝑔𝑤) = (𝐺‘(𝑔𝑤))))
3810, 11, 36, 37syl12anc 1269 . . . . . . . . . . 11 ((𝜑𝑧𝐷 ∧ (𝑔 Fn 𝑧 ∧ ∀𝑤𝑧 (𝑔𝑤) = (𝐺‘(𝑔𝑤)))) → ∃𝑧𝑋 (𝑔 Fn 𝑧 ∧ ∀𝑤𝑧 (𝑔𝑤) = (𝐺‘(𝑔𝑤))))
39 vex 2802 . . . . . . . . . . . 12 𝑔 ∈ V
40 tfr1onlemsucfn.1 . . . . . . . . . . . . 13 𝐴 = {𝑓 ∣ ∃𝑥𝑋 (𝑓 Fn 𝑥 ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐺‘(𝑓𝑦)))}
4140tfr1onlem3ag 6481 . . . . . . . . . . . 12 (𝑔 ∈ V → (𝑔𝐴 ↔ ∃𝑧𝑋 (𝑔 Fn 𝑧 ∧ ∀𝑤𝑧 (𝑔𝑤) = (𝐺‘(𝑔𝑤)))))
4239, 41ax-mp 5 . . . . . . . . . . 11 (𝑔𝐴 ↔ ∃𝑧𝑋 (𝑔 Fn 𝑧 ∧ ∀𝑤𝑧 (𝑔𝑤) = (𝐺‘(𝑔𝑤))))
4338, 42sylibr 134 . . . . . . . . . 10 ((𝜑𝑧𝐷 ∧ (𝑔 Fn 𝑧 ∧ ∀𝑤𝑧 (𝑔𝑤) = (𝐺‘(𝑔𝑤)))) → 𝑔𝐴)
443, 11, 433jca 1201 . . . . . . . . 9 ((𝜑𝑧𝐷 ∧ (𝑔 Fn 𝑧 ∧ ∀𝑤𝑧 (𝑔𝑤) = (𝐺‘(𝑔𝑤)))) → (𝑧𝐷𝑔 Fn 𝑧𝑔𝐴))
45 snexg 4267 . . . . . . . . . . 11 (⟨𝑧, (𝐺𝑔)⟩ ∈ V → {⟨𝑧, (𝐺𝑔)⟩} ∈ V)
46 unexg 4533 . . . . . . . . . . . 12 ((𝑔 ∈ V ∧ {⟨𝑧, (𝐺𝑔)⟩} ∈ V) → (𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}) ∈ V)
4739, 46mpan 424 . . . . . . . . . . 11 ({⟨𝑧, (𝐺𝑔)⟩} ∈ V → (𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}) ∈ V)
4832, 45, 473syl 17 . . . . . . . . . 10 ((𝜑𝑧𝐷 ∧ (𝑔 Fn 𝑧 ∧ ∀𝑤𝑧 (𝑔𝑤) = (𝐺‘(𝑔𝑤)))) → (𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}) ∈ V)
49 isset 2806 . . . . . . . . . 10 ((𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}) ∈ V ↔ ∃ = (𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}))
5048, 49sylib 122 . . . . . . . . 9 ((𝜑𝑧𝐷 ∧ (𝑔 Fn 𝑧 ∧ ∀𝑤𝑧 (𝑔𝑤) = (𝐺‘(𝑔𝑤)))) → ∃ = (𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}))
51 simpr3 1029 . . . . . . . . . . . . 13 ((𝑧𝐷 ∧ (𝑔 Fn 𝑧𝑔𝐴 = (𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}))) → = (𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}))
52 19.8a 1636 . . . . . . . . . . . . . 14 ((𝑔 Fn 𝑧𝑔𝐴 = (𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩})) → ∃𝑔(𝑔 Fn 𝑧𝑔𝐴 = (𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩})))
53 rspe 2579 . . . . . . . . . . . . . . 15 ((𝑧𝐷 ∧ ∃𝑔(𝑔 Fn 𝑧𝑔𝐴 = (𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}))) → ∃𝑧𝐷𝑔(𝑔 Fn 𝑧𝑔𝐴 = (𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩})))
54 tfr1onlembacc.3 . . . . . . . . . . . . . . . 16 𝐵 = { ∣ ∃𝑧𝐷𝑔(𝑔 Fn 𝑧𝑔𝐴 = (𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}))}
5554abeq2i 2340 . . . . . . . . . . . . . . 15 (𝐵 ↔ ∃𝑧𝐷𝑔(𝑔 Fn 𝑧𝑔𝐴 = (𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩})))
5653, 55sylibr 134 . . . . . . . . . . . . . 14 ((𝑧𝐷 ∧ ∃𝑔(𝑔 Fn 𝑧𝑔𝐴 = (𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}))) → 𝐵)
5752, 56sylan2 286 . . . . . . . . . . . . 13 ((𝑧𝐷 ∧ (𝑔 Fn 𝑧𝑔𝐴 = (𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}))) → 𝐵)
5851, 57eqeltrrd 2307 . . . . . . . . . . . 12 ((𝑧𝐷 ∧ (𝑔 Fn 𝑧𝑔𝐴 = (𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}))) → (𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}) ∈ 𝐵)
59583exp2 1249 . . . . . . . . . . 11 (𝑧𝐷 → (𝑔 Fn 𝑧 → (𝑔𝐴 → ( = (𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}) → (𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}) ∈ 𝐵))))
60593imp 1217 . . . . . . . . . 10 ((𝑧𝐷𝑔 Fn 𝑧𝑔𝐴) → ( = (𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}) → (𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}) ∈ 𝐵))
6160exlimdv 1865 . . . . . . . . 9 ((𝑧𝐷𝑔 Fn 𝑧𝑔𝐴) → (∃ = (𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}) → (𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}) ∈ 𝐵))
6244, 50, 61sylc 62 . . . . . . . 8 ((𝜑𝑧𝐷 ∧ (𝑔 Fn 𝑧 ∧ ∀𝑤𝑧 (𝑔𝑤) = (𝐺‘(𝑔𝑤)))) → (𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}) ∈ 𝐵)
63 elunii 3892 . . . . . . . 8 ((⟨𝑧, (𝐺𝑔)⟩ ∈ (𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}) ∧ (𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}) ∈ 𝐵) → ⟨𝑧, (𝐺𝑔)⟩ ∈ 𝐵)
6435, 62, 63syl2anc 411 . . . . . . 7 ((𝜑𝑧𝐷 ∧ (𝑔 Fn 𝑧 ∧ ∀𝑤𝑧 (𝑔𝑤) = (𝐺‘(𝑔𝑤)))) → ⟨𝑧, (𝐺𝑔)⟩ ∈ 𝐵)
65 opeq2 3857 . . . . . . . . . 10 (𝑤 = (𝐺𝑔) → ⟨𝑧, 𝑤⟩ = ⟨𝑧, (𝐺𝑔)⟩)
6665eleq1d 2298 . . . . . . . . 9 (𝑤 = (𝐺𝑔) → (⟨𝑧, 𝑤⟩ ∈ 𝐵 ↔ ⟨𝑧, (𝐺𝑔)⟩ ∈ 𝐵))
6766spcegv 2891 . . . . . . . 8 ((𝐺𝑔) ∈ V → (⟨𝑧, (𝐺𝑔)⟩ ∈ 𝐵 → ∃𝑤𝑧, 𝑤⟩ ∈ 𝐵))
6830eldm2 4920 . . . . . . . 8 (𝑧 ∈ dom 𝐵 ↔ ∃𝑤𝑧, 𝑤⟩ ∈ 𝐵)
6967, 68imbitrrdi 162 . . . . . . 7 ((𝐺𝑔) ∈ V → (⟨𝑧, (𝐺𝑔)⟩ ∈ 𝐵𝑧 ∈ dom 𝐵))
7029, 64, 69sylc 62 . . . . . 6 ((𝜑𝑧𝐷 ∧ (𝑔 Fn 𝑧 ∧ ∀𝑤𝑧 (𝑔𝑤) = (𝐺‘(𝑔𝑤)))) → 𝑧 ∈ dom 𝐵)
71703expia 1229 . . . . 5 ((𝜑𝑧𝐷) → ((𝑔 Fn 𝑧 ∧ ∀𝑤𝑧 (𝑔𝑤) = (𝐺‘(𝑔𝑤))) → 𝑧 ∈ dom 𝐵))
7271exlimdv 1865 . . . 4 ((𝜑𝑧𝐷) → (∃𝑔(𝑔 Fn 𝑧 ∧ ∀𝑤𝑧 (𝑔𝑤) = (𝐺‘(𝑔𝑤))) → 𝑧 ∈ dom 𝐵))
7372ralimdva 2597 . . 3 (𝜑 → (∀𝑧𝐷𝑔(𝑔 Fn 𝑧 ∧ ∀𝑤𝑧 (𝑔𝑤) = (𝐺‘(𝑔𝑤))) → ∀𝑧𝐷 𝑧 ∈ dom 𝐵))
741, 73mpd 13 . 2 (𝜑 → ∀𝑧𝐷 𝑧 ∈ dom 𝐵)
75 dfss3 3213 . 2 (𝐷 ⊆ dom 𝐵 ↔ ∀𝑧𝐷 𝑧 ∈ dom 𝐵)
7674, 75sylibr 134 1 (𝜑𝐷 ⊆ dom 𝐵)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  w3a 1002  wal 1393   = wceq 1395  wex 1538  wcel 2200  {cab 2215  wral 2508  wrex 2509  Vcvv 2799  cun 3195  wss 3197  {csn 3666  cop 3669   cuni 3887  Ord word 4452  suc csuc 4455  dom cdm 4718  cres 4720  Fun wfun 5311   Fn wfn 5312  cfv 5317  recscrecs 6448
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-sep 4201  ax-pow 4257  ax-pr 4292  ax-un 4523
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-rex 2514  df-v 2801  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-br 4083  df-opab 4145  df-tr 4182  df-iord 4456  df-xp 4724  df-rel 4725  df-cnv 4726  df-co 4727  df-dm 4728  df-res 4730  df-iota 5277  df-fun 5319  df-fn 5320  df-fv 5325
This theorem is referenced by:  tfr1onlembfn  6488
  Copyright terms: Public domain W3C validator