![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > grpinveu | GIF version |
Description: The left inverse element of a group is unique. Lemma 2.2.1(b) of [Herstein] p. 55. (Contributed by NM, 24-Aug-2011.) |
Ref | Expression |
---|---|
grpinveu.b | ⊢ 𝐵 = (Base‘𝐺) |
grpinveu.p | ⊢ + = (+g‘𝐺) |
grpinveu.o | ⊢ 0 = (0g‘𝐺) |
Ref | Expression |
---|---|
grpinveu | ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵) → ∃!𝑦 ∈ 𝐵 (𝑦 + 𝑋) = 0 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | grpinveu.b | . . . 4 ⊢ 𝐵 = (Base‘𝐺) | |
2 | grpinveu.p | . . . 4 ⊢ + = (+g‘𝐺) | |
3 | grpinveu.o | . . . 4 ⊢ 0 = (0g‘𝐺) | |
4 | 1, 2, 3 | grpinvex 12906 | . . 3 ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵) → ∃𝑦 ∈ 𝐵 (𝑦 + 𝑋) = 0 ) |
5 | eqtr3 2207 | . . . . . . . . . . . 12 ⊢ (((𝑦 + 𝑋) = 0 ∧ (𝑧 + 𝑋) = 0 ) → (𝑦 + 𝑋) = (𝑧 + 𝑋)) | |
6 | 1, 2 | grprcan 12931 | . . . . . . . . . . . 12 ⊢ ((𝐺 ∈ Grp ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ∧ 𝑋 ∈ 𝐵)) → ((𝑦 + 𝑋) = (𝑧 + 𝑋) ↔ 𝑦 = 𝑧)) |
7 | 5, 6 | imbitrid 154 | . . . . . . . . . . 11 ⊢ ((𝐺 ∈ Grp ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ∧ 𝑋 ∈ 𝐵)) → (((𝑦 + 𝑋) = 0 ∧ (𝑧 + 𝑋) = 0 ) → 𝑦 = 𝑧)) |
8 | 7 | 3exp2 1226 | . . . . . . . . . 10 ⊢ (𝐺 ∈ Grp → (𝑦 ∈ 𝐵 → (𝑧 ∈ 𝐵 → (𝑋 ∈ 𝐵 → (((𝑦 + 𝑋) = 0 ∧ (𝑧 + 𝑋) = 0 ) → 𝑦 = 𝑧))))) |
9 | 8 | com24 87 | . . . . . . . . 9 ⊢ (𝐺 ∈ Grp → (𝑋 ∈ 𝐵 → (𝑧 ∈ 𝐵 → (𝑦 ∈ 𝐵 → (((𝑦 + 𝑋) = 0 ∧ (𝑧 + 𝑋) = 0 ) → 𝑦 = 𝑧))))) |
10 | 9 | imp41 353 | . . . . . . . 8 ⊢ ((((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵) ∧ 𝑧 ∈ 𝐵) ∧ 𝑦 ∈ 𝐵) → (((𝑦 + 𝑋) = 0 ∧ (𝑧 + 𝑋) = 0 ) → 𝑦 = 𝑧)) |
11 | 10 | an32s 568 | . . . . . . 7 ⊢ ((((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵) ∧ 𝑦 ∈ 𝐵) ∧ 𝑧 ∈ 𝐵) → (((𝑦 + 𝑋) = 0 ∧ (𝑧 + 𝑋) = 0 ) → 𝑦 = 𝑧)) |
12 | 11 | expd 258 | . . . . . 6 ⊢ ((((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵) ∧ 𝑦 ∈ 𝐵) ∧ 𝑧 ∈ 𝐵) → ((𝑦 + 𝑋) = 0 → ((𝑧 + 𝑋) = 0 → 𝑦 = 𝑧))) |
13 | 12 | ralrimdva 2567 | . . . . 5 ⊢ (((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵) ∧ 𝑦 ∈ 𝐵) → ((𝑦 + 𝑋) = 0 → ∀𝑧 ∈ 𝐵 ((𝑧 + 𝑋) = 0 → 𝑦 = 𝑧))) |
14 | 13 | ancld 325 | . . . 4 ⊢ (((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵) ∧ 𝑦 ∈ 𝐵) → ((𝑦 + 𝑋) = 0 → ((𝑦 + 𝑋) = 0 ∧ ∀𝑧 ∈ 𝐵 ((𝑧 + 𝑋) = 0 → 𝑦 = 𝑧)))) |
15 | 14 | reximdva 2589 | . . 3 ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵) → (∃𝑦 ∈ 𝐵 (𝑦 + 𝑋) = 0 → ∃𝑦 ∈ 𝐵 ((𝑦 + 𝑋) = 0 ∧ ∀𝑧 ∈ 𝐵 ((𝑧 + 𝑋) = 0 → 𝑦 = 𝑧)))) |
16 | 4, 15 | mpd 13 | . 2 ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵) → ∃𝑦 ∈ 𝐵 ((𝑦 + 𝑋) = 0 ∧ ∀𝑧 ∈ 𝐵 ((𝑧 + 𝑋) = 0 → 𝑦 = 𝑧))) |
17 | oveq1 5895 | . . . 4 ⊢ (𝑦 = 𝑧 → (𝑦 + 𝑋) = (𝑧 + 𝑋)) | |
18 | 17 | eqeq1d 2196 | . . 3 ⊢ (𝑦 = 𝑧 → ((𝑦 + 𝑋) = 0 ↔ (𝑧 + 𝑋) = 0 )) |
19 | 18 | reu8 2945 | . 2 ⊢ (∃!𝑦 ∈ 𝐵 (𝑦 + 𝑋) = 0 ↔ ∃𝑦 ∈ 𝐵 ((𝑦 + 𝑋) = 0 ∧ ∀𝑧 ∈ 𝐵 ((𝑧 + 𝑋) = 0 → 𝑦 = 𝑧))) |
20 | 16, 19 | sylibr 134 | 1 ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵) → ∃!𝑦 ∈ 𝐵 (𝑦 + 𝑋) = 0 ) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 ∧ w3a 979 = wceq 1363 ∈ wcel 2158 ∀wral 2465 ∃wrex 2466 ∃!wreu 2467 ‘cfv 5228 (class class class)co 5888 Basecbs 12475 +gcplusg 12550 0gc0g 12722 Grpcgrp 12896 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1457 ax-7 1458 ax-gen 1459 ax-ie1 1503 ax-ie2 1504 ax-8 1514 ax-10 1515 ax-11 1516 ax-i12 1517 ax-bndl 1519 ax-4 1520 ax-17 1536 ax-i9 1540 ax-ial 1544 ax-i5r 1545 ax-13 2160 ax-14 2161 ax-ext 2169 ax-sep 4133 ax-pow 4186 ax-pr 4221 ax-un 4445 ax-cnex 7915 ax-resscn 7916 ax-1re 7918 ax-addrcl 7921 |
This theorem depends on definitions: df-bi 117 df-3an 981 df-tru 1366 df-nf 1471 df-sb 1773 df-eu 2039 df-mo 2040 df-clab 2174 df-cleq 2180 df-clel 2183 df-nfc 2318 df-ral 2470 df-rex 2471 df-reu 2472 df-rmo 2473 df-rab 2474 df-v 2751 df-sbc 2975 df-csb 3070 df-un 3145 df-in 3147 df-ss 3154 df-pw 3589 df-sn 3610 df-pr 3611 df-op 3613 df-uni 3822 df-int 3857 df-br 4016 df-opab 4077 df-mpt 4078 df-id 4305 df-xp 4644 df-rel 4645 df-cnv 4646 df-co 4647 df-dm 4648 df-rn 4649 df-res 4650 df-iota 5190 df-fun 5230 df-fn 5231 df-fv 5236 df-riota 5844 df-ov 5891 df-inn 8933 df-2 8991 df-ndx 12478 df-slot 12479 df-base 12481 df-plusg 12563 df-0g 12724 df-mgm 12793 df-sgrp 12826 df-mnd 12837 df-grp 12899 |
This theorem is referenced by: grpinvf 12941 grplinv 12944 isgrpinv 12948 |
Copyright terms: Public domain | W3C validator |