ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  grpinveu GIF version

Theorem grpinveu 13566
Description: The left inverse element of a group is unique. Lemma 2.2.1(b) of [Herstein] p. 55. (Contributed by NM, 24-Aug-2011.)
Hypotheses
Ref Expression
grpinveu.b 𝐵 = (Base‘𝐺)
grpinveu.p + = (+g𝐺)
grpinveu.o 0 = (0g𝐺)
Assertion
Ref Expression
grpinveu ((𝐺 ∈ Grp ∧ 𝑋𝐵) → ∃!𝑦𝐵 (𝑦 + 𝑋) = 0 )
Distinct variable groups:   𝑦,𝐵   𝑦,𝐺   𝑦, +   𝑦, 0   𝑦,𝑋

Proof of Theorem grpinveu
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 grpinveu.b . . . 4 𝐵 = (Base‘𝐺)
2 grpinveu.p . . . 4 + = (+g𝐺)
3 grpinveu.o . . . 4 0 = (0g𝐺)
41, 2, 3grpinvex 13538 . . 3 ((𝐺 ∈ Grp ∧ 𝑋𝐵) → ∃𝑦𝐵 (𝑦 + 𝑋) = 0 )
5 eqtr3 2249 . . . . . . . . . . . 12 (((𝑦 + 𝑋) = 0 ∧ (𝑧 + 𝑋) = 0 ) → (𝑦 + 𝑋) = (𝑧 + 𝑋))
61, 2grprcan 13565 . . . . . . . . . . . 12 ((𝐺 ∈ Grp ∧ (𝑦𝐵𝑧𝐵𝑋𝐵)) → ((𝑦 + 𝑋) = (𝑧 + 𝑋) ↔ 𝑦 = 𝑧))
75, 6imbitrid 154 . . . . . . . . . . 11 ((𝐺 ∈ Grp ∧ (𝑦𝐵𝑧𝐵𝑋𝐵)) → (((𝑦 + 𝑋) = 0 ∧ (𝑧 + 𝑋) = 0 ) → 𝑦 = 𝑧))
873exp2 1249 . . . . . . . . . 10 (𝐺 ∈ Grp → (𝑦𝐵 → (𝑧𝐵 → (𝑋𝐵 → (((𝑦 + 𝑋) = 0 ∧ (𝑧 + 𝑋) = 0 ) → 𝑦 = 𝑧)))))
98com24 87 . . . . . . . . 9 (𝐺 ∈ Grp → (𝑋𝐵 → (𝑧𝐵 → (𝑦𝐵 → (((𝑦 + 𝑋) = 0 ∧ (𝑧 + 𝑋) = 0 ) → 𝑦 = 𝑧)))))
109imp41 353 . . . . . . . 8 ((((𝐺 ∈ Grp ∧ 𝑋𝐵) ∧ 𝑧𝐵) ∧ 𝑦𝐵) → (((𝑦 + 𝑋) = 0 ∧ (𝑧 + 𝑋) = 0 ) → 𝑦 = 𝑧))
1110an32s 568 . . . . . . 7 ((((𝐺 ∈ Grp ∧ 𝑋𝐵) ∧ 𝑦𝐵) ∧ 𝑧𝐵) → (((𝑦 + 𝑋) = 0 ∧ (𝑧 + 𝑋) = 0 ) → 𝑦 = 𝑧))
1211expd 258 . . . . . 6 ((((𝐺 ∈ Grp ∧ 𝑋𝐵) ∧ 𝑦𝐵) ∧ 𝑧𝐵) → ((𝑦 + 𝑋) = 0 → ((𝑧 + 𝑋) = 0𝑦 = 𝑧)))
1312ralrimdva 2610 . . . . 5 (((𝐺 ∈ Grp ∧ 𝑋𝐵) ∧ 𝑦𝐵) → ((𝑦 + 𝑋) = 0 → ∀𝑧𝐵 ((𝑧 + 𝑋) = 0𝑦 = 𝑧)))
1413ancld 325 . . . 4 (((𝐺 ∈ Grp ∧ 𝑋𝐵) ∧ 𝑦𝐵) → ((𝑦 + 𝑋) = 0 → ((𝑦 + 𝑋) = 0 ∧ ∀𝑧𝐵 ((𝑧 + 𝑋) = 0𝑦 = 𝑧))))
1514reximdva 2632 . . 3 ((𝐺 ∈ Grp ∧ 𝑋𝐵) → (∃𝑦𝐵 (𝑦 + 𝑋) = 0 → ∃𝑦𝐵 ((𝑦 + 𝑋) = 0 ∧ ∀𝑧𝐵 ((𝑧 + 𝑋) = 0𝑦 = 𝑧))))
164, 15mpd 13 . 2 ((𝐺 ∈ Grp ∧ 𝑋𝐵) → ∃𝑦𝐵 ((𝑦 + 𝑋) = 0 ∧ ∀𝑧𝐵 ((𝑧 + 𝑋) = 0𝑦 = 𝑧)))
17 oveq1 6007 . . . 4 (𝑦 = 𝑧 → (𝑦 + 𝑋) = (𝑧 + 𝑋))
1817eqeq1d 2238 . . 3 (𝑦 = 𝑧 → ((𝑦 + 𝑋) = 0 ↔ (𝑧 + 𝑋) = 0 ))
1918reu8 2999 . 2 (∃!𝑦𝐵 (𝑦 + 𝑋) = 0 ↔ ∃𝑦𝐵 ((𝑦 + 𝑋) = 0 ∧ ∀𝑧𝐵 ((𝑧 + 𝑋) = 0𝑦 = 𝑧)))
2016, 19sylibr 134 1 ((𝐺 ∈ Grp ∧ 𝑋𝐵) → ∃!𝑦𝐵 (𝑦 + 𝑋) = 0 )
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  w3a 1002   = wceq 1395  wcel 2200  wral 2508  wrex 2509  ∃!wreu 2510  cfv 5317  (class class class)co 6000  Basecbs 13027  +gcplusg 13105  0gc0g 13284  Grpcgrp 13528
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-sep 4201  ax-pow 4257  ax-pr 4292  ax-un 4523  ax-cnex 8086  ax-resscn 8087  ax-1re 8089  ax-addrcl 8092
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-rex 2514  df-reu 2515  df-rmo 2516  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-int 3923  df-br 4083  df-opab 4145  df-mpt 4146  df-id 4383  df-xp 4724  df-rel 4725  df-cnv 4726  df-co 4727  df-dm 4728  df-rn 4729  df-res 4730  df-iota 5277  df-fun 5319  df-fn 5320  df-fv 5325  df-riota 5953  df-ov 6003  df-inn 9107  df-2 9165  df-ndx 13030  df-slot 13031  df-base 13033  df-plusg 13118  df-0g 13286  df-mgm 13384  df-sgrp 13430  df-mnd 13445  df-grp 13531
This theorem is referenced by:  grpinvf  13575  grplinv  13578  isgrpinv  13582
  Copyright terms: Public domain W3C validator