![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > grpinveu | GIF version |
Description: The left inverse element of a group is unique. Lemma 2.2.1(b) of [Herstein] p. 55. (Contributed by NM, 24-Aug-2011.) |
Ref | Expression |
---|---|
grpinveu.b | ⊢ 𝐵 = (Base‘𝐺) |
grpinveu.p | ⊢ + = (+g‘𝐺) |
grpinveu.o | ⊢ 0 = (0g‘𝐺) |
Ref | Expression |
---|---|
grpinveu | ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵) → ∃!𝑦 ∈ 𝐵 (𝑦 + 𝑋) = 0 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | grpinveu.b | . . . 4 ⊢ 𝐵 = (Base‘𝐺) | |
2 | grpinveu.p | . . . 4 ⊢ + = (+g‘𝐺) | |
3 | grpinveu.o | . . . 4 ⊢ 0 = (0g‘𝐺) | |
4 | 1, 2, 3 | grpinvex 12921 | . . 3 ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵) → ∃𝑦 ∈ 𝐵 (𝑦 + 𝑋) = 0 ) |
5 | eqtr3 2209 | . . . . . . . . . . . 12 ⊢ (((𝑦 + 𝑋) = 0 ∧ (𝑧 + 𝑋) = 0 ) → (𝑦 + 𝑋) = (𝑧 + 𝑋)) | |
6 | 1, 2 | grprcan 12947 | . . . . . . . . . . . 12 ⊢ ((𝐺 ∈ Grp ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ∧ 𝑋 ∈ 𝐵)) → ((𝑦 + 𝑋) = (𝑧 + 𝑋) ↔ 𝑦 = 𝑧)) |
7 | 5, 6 | imbitrid 154 | . . . . . . . . . . 11 ⊢ ((𝐺 ∈ Grp ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ∧ 𝑋 ∈ 𝐵)) → (((𝑦 + 𝑋) = 0 ∧ (𝑧 + 𝑋) = 0 ) → 𝑦 = 𝑧)) |
8 | 7 | 3exp2 1227 | . . . . . . . . . 10 ⊢ (𝐺 ∈ Grp → (𝑦 ∈ 𝐵 → (𝑧 ∈ 𝐵 → (𝑋 ∈ 𝐵 → (((𝑦 + 𝑋) = 0 ∧ (𝑧 + 𝑋) = 0 ) → 𝑦 = 𝑧))))) |
9 | 8 | com24 87 | . . . . . . . . 9 ⊢ (𝐺 ∈ Grp → (𝑋 ∈ 𝐵 → (𝑧 ∈ 𝐵 → (𝑦 ∈ 𝐵 → (((𝑦 + 𝑋) = 0 ∧ (𝑧 + 𝑋) = 0 ) → 𝑦 = 𝑧))))) |
10 | 9 | imp41 353 | . . . . . . . 8 ⊢ ((((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵) ∧ 𝑧 ∈ 𝐵) ∧ 𝑦 ∈ 𝐵) → (((𝑦 + 𝑋) = 0 ∧ (𝑧 + 𝑋) = 0 ) → 𝑦 = 𝑧)) |
11 | 10 | an32s 568 | . . . . . . 7 ⊢ ((((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵) ∧ 𝑦 ∈ 𝐵) ∧ 𝑧 ∈ 𝐵) → (((𝑦 + 𝑋) = 0 ∧ (𝑧 + 𝑋) = 0 ) → 𝑦 = 𝑧)) |
12 | 11 | expd 258 | . . . . . 6 ⊢ ((((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵) ∧ 𝑦 ∈ 𝐵) ∧ 𝑧 ∈ 𝐵) → ((𝑦 + 𝑋) = 0 → ((𝑧 + 𝑋) = 0 → 𝑦 = 𝑧))) |
13 | 12 | ralrimdva 2570 | . . . . 5 ⊢ (((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵) ∧ 𝑦 ∈ 𝐵) → ((𝑦 + 𝑋) = 0 → ∀𝑧 ∈ 𝐵 ((𝑧 + 𝑋) = 0 → 𝑦 = 𝑧))) |
14 | 13 | ancld 325 | . . . 4 ⊢ (((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵) ∧ 𝑦 ∈ 𝐵) → ((𝑦 + 𝑋) = 0 → ((𝑦 + 𝑋) = 0 ∧ ∀𝑧 ∈ 𝐵 ((𝑧 + 𝑋) = 0 → 𝑦 = 𝑧)))) |
15 | 14 | reximdva 2592 | . . 3 ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵) → (∃𝑦 ∈ 𝐵 (𝑦 + 𝑋) = 0 → ∃𝑦 ∈ 𝐵 ((𝑦 + 𝑋) = 0 ∧ ∀𝑧 ∈ 𝐵 ((𝑧 + 𝑋) = 0 → 𝑦 = 𝑧)))) |
16 | 4, 15 | mpd 13 | . 2 ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵) → ∃𝑦 ∈ 𝐵 ((𝑦 + 𝑋) = 0 ∧ ∀𝑧 ∈ 𝐵 ((𝑧 + 𝑋) = 0 → 𝑦 = 𝑧))) |
17 | oveq1 5898 | . . . 4 ⊢ (𝑦 = 𝑧 → (𝑦 + 𝑋) = (𝑧 + 𝑋)) | |
18 | 17 | eqeq1d 2198 | . . 3 ⊢ (𝑦 = 𝑧 → ((𝑦 + 𝑋) = 0 ↔ (𝑧 + 𝑋) = 0 )) |
19 | 18 | reu8 2948 | . 2 ⊢ (∃!𝑦 ∈ 𝐵 (𝑦 + 𝑋) = 0 ↔ ∃𝑦 ∈ 𝐵 ((𝑦 + 𝑋) = 0 ∧ ∀𝑧 ∈ 𝐵 ((𝑧 + 𝑋) = 0 → 𝑦 = 𝑧))) |
20 | 16, 19 | sylibr 134 | 1 ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵) → ∃!𝑦 ∈ 𝐵 (𝑦 + 𝑋) = 0 ) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 ∧ w3a 980 = wceq 1364 ∈ wcel 2160 ∀wral 2468 ∃wrex 2469 ∃!wreu 2470 ‘cfv 5231 (class class class)co 5891 Basecbs 12480 +gcplusg 12555 0gc0g 12727 Grpcgrp 12911 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2162 ax-14 2163 ax-ext 2171 ax-sep 4136 ax-pow 4189 ax-pr 4224 ax-un 4448 ax-cnex 7920 ax-resscn 7921 ax-1re 7923 ax-addrcl 7926 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1472 df-sb 1774 df-eu 2041 df-mo 2042 df-clab 2176 df-cleq 2182 df-clel 2185 df-nfc 2321 df-ral 2473 df-rex 2474 df-reu 2475 df-rmo 2476 df-rab 2477 df-v 2754 df-sbc 2978 df-csb 3073 df-un 3148 df-in 3150 df-ss 3157 df-pw 3592 df-sn 3613 df-pr 3614 df-op 3616 df-uni 3825 df-int 3860 df-br 4019 df-opab 4080 df-mpt 4081 df-id 4308 df-xp 4647 df-rel 4648 df-cnv 4649 df-co 4650 df-dm 4651 df-rn 4652 df-res 4653 df-iota 5193 df-fun 5233 df-fn 5234 df-fv 5239 df-riota 5847 df-ov 5894 df-inn 8938 df-2 8996 df-ndx 12483 df-slot 12484 df-base 12486 df-plusg 12568 df-0g 12729 df-mgm 12798 df-sgrp 12831 df-mnd 12844 df-grp 12914 |
This theorem is referenced by: grpinvf 12957 grplinv 12960 isgrpinv 12964 |
Copyright terms: Public domain | W3C validator |