ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  grpinveu GIF version

Theorem grpinveu 13445
Description: The left inverse element of a group is unique. Lemma 2.2.1(b) of [Herstein] p. 55. (Contributed by NM, 24-Aug-2011.)
Hypotheses
Ref Expression
grpinveu.b 𝐵 = (Base‘𝐺)
grpinveu.p + = (+g𝐺)
grpinveu.o 0 = (0g𝐺)
Assertion
Ref Expression
grpinveu ((𝐺 ∈ Grp ∧ 𝑋𝐵) → ∃!𝑦𝐵 (𝑦 + 𝑋) = 0 )
Distinct variable groups:   𝑦,𝐵   𝑦,𝐺   𝑦, +   𝑦, 0   𝑦,𝑋

Proof of Theorem grpinveu
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 grpinveu.b . . . 4 𝐵 = (Base‘𝐺)
2 grpinveu.p . . . 4 + = (+g𝐺)
3 grpinveu.o . . . 4 0 = (0g𝐺)
41, 2, 3grpinvex 13417 . . 3 ((𝐺 ∈ Grp ∧ 𝑋𝐵) → ∃𝑦𝐵 (𝑦 + 𝑋) = 0 )
5 eqtr3 2226 . . . . . . . . . . . 12 (((𝑦 + 𝑋) = 0 ∧ (𝑧 + 𝑋) = 0 ) → (𝑦 + 𝑋) = (𝑧 + 𝑋))
61, 2grprcan 13444 . . . . . . . . . . . 12 ((𝐺 ∈ Grp ∧ (𝑦𝐵𝑧𝐵𝑋𝐵)) → ((𝑦 + 𝑋) = (𝑧 + 𝑋) ↔ 𝑦 = 𝑧))
75, 6imbitrid 154 . . . . . . . . . . 11 ((𝐺 ∈ Grp ∧ (𝑦𝐵𝑧𝐵𝑋𝐵)) → (((𝑦 + 𝑋) = 0 ∧ (𝑧 + 𝑋) = 0 ) → 𝑦 = 𝑧))
873exp2 1228 . . . . . . . . . 10 (𝐺 ∈ Grp → (𝑦𝐵 → (𝑧𝐵 → (𝑋𝐵 → (((𝑦 + 𝑋) = 0 ∧ (𝑧 + 𝑋) = 0 ) → 𝑦 = 𝑧)))))
98com24 87 . . . . . . . . 9 (𝐺 ∈ Grp → (𝑋𝐵 → (𝑧𝐵 → (𝑦𝐵 → (((𝑦 + 𝑋) = 0 ∧ (𝑧 + 𝑋) = 0 ) → 𝑦 = 𝑧)))))
109imp41 353 . . . . . . . 8 ((((𝐺 ∈ Grp ∧ 𝑋𝐵) ∧ 𝑧𝐵) ∧ 𝑦𝐵) → (((𝑦 + 𝑋) = 0 ∧ (𝑧 + 𝑋) = 0 ) → 𝑦 = 𝑧))
1110an32s 568 . . . . . . 7 ((((𝐺 ∈ Grp ∧ 𝑋𝐵) ∧ 𝑦𝐵) ∧ 𝑧𝐵) → (((𝑦 + 𝑋) = 0 ∧ (𝑧 + 𝑋) = 0 ) → 𝑦 = 𝑧))
1211expd 258 . . . . . 6 ((((𝐺 ∈ Grp ∧ 𝑋𝐵) ∧ 𝑦𝐵) ∧ 𝑧𝐵) → ((𝑦 + 𝑋) = 0 → ((𝑧 + 𝑋) = 0𝑦 = 𝑧)))
1312ralrimdva 2587 . . . . 5 (((𝐺 ∈ Grp ∧ 𝑋𝐵) ∧ 𝑦𝐵) → ((𝑦 + 𝑋) = 0 → ∀𝑧𝐵 ((𝑧 + 𝑋) = 0𝑦 = 𝑧)))
1413ancld 325 . . . 4 (((𝐺 ∈ Grp ∧ 𝑋𝐵) ∧ 𝑦𝐵) → ((𝑦 + 𝑋) = 0 → ((𝑦 + 𝑋) = 0 ∧ ∀𝑧𝐵 ((𝑧 + 𝑋) = 0𝑦 = 𝑧))))
1514reximdva 2609 . . 3 ((𝐺 ∈ Grp ∧ 𝑋𝐵) → (∃𝑦𝐵 (𝑦 + 𝑋) = 0 → ∃𝑦𝐵 ((𝑦 + 𝑋) = 0 ∧ ∀𝑧𝐵 ((𝑧 + 𝑋) = 0𝑦 = 𝑧))))
164, 15mpd 13 . 2 ((𝐺 ∈ Grp ∧ 𝑋𝐵) → ∃𝑦𝐵 ((𝑦 + 𝑋) = 0 ∧ ∀𝑧𝐵 ((𝑧 + 𝑋) = 0𝑦 = 𝑧)))
17 oveq1 5964 . . . 4 (𝑦 = 𝑧 → (𝑦 + 𝑋) = (𝑧 + 𝑋))
1817eqeq1d 2215 . . 3 (𝑦 = 𝑧 → ((𝑦 + 𝑋) = 0 ↔ (𝑧 + 𝑋) = 0 ))
1918reu8 2973 . 2 (∃!𝑦𝐵 (𝑦 + 𝑋) = 0 ↔ ∃𝑦𝐵 ((𝑦 + 𝑋) = 0 ∧ ∀𝑧𝐵 ((𝑧 + 𝑋) = 0𝑦 = 𝑧)))
2016, 19sylibr 134 1 ((𝐺 ∈ Grp ∧ 𝑋𝐵) → ∃!𝑦𝐵 (𝑦 + 𝑋) = 0 )
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  w3a 981   = wceq 1373  wcel 2177  wral 2485  wrex 2486  ∃!wreu 2487  cfv 5280  (class class class)co 5957  Basecbs 12907  +gcplusg 12984  0gc0g 13163  Grpcgrp 13407
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-sep 4170  ax-pow 4226  ax-pr 4261  ax-un 4488  ax-cnex 8036  ax-resscn 8037  ax-1re 8039  ax-addrcl 8042
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ral 2490  df-rex 2491  df-reu 2492  df-rmo 2493  df-rab 2494  df-v 2775  df-sbc 3003  df-csb 3098  df-un 3174  df-in 3176  df-ss 3183  df-pw 3623  df-sn 3644  df-pr 3645  df-op 3647  df-uni 3857  df-int 3892  df-br 4052  df-opab 4114  df-mpt 4115  df-id 4348  df-xp 4689  df-rel 4690  df-cnv 4691  df-co 4692  df-dm 4693  df-rn 4694  df-res 4695  df-iota 5241  df-fun 5282  df-fn 5283  df-fv 5288  df-riota 5912  df-ov 5960  df-inn 9057  df-2 9115  df-ndx 12910  df-slot 12911  df-base 12913  df-plusg 12997  df-0g 13165  df-mgm 13263  df-sgrp 13309  df-mnd 13324  df-grp 13410
This theorem is referenced by:  grpinvf  13454  grplinv  13457  isgrpinv  13461
  Copyright terms: Public domain W3C validator