| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > grpinveu | GIF version | ||
| Description: The left inverse element of a group is unique. Lemma 2.2.1(b) of [Herstein] p. 55. (Contributed by NM, 24-Aug-2011.) |
| Ref | Expression |
|---|---|
| grpinveu.b | ⊢ 𝐵 = (Base‘𝐺) |
| grpinveu.p | ⊢ + = (+g‘𝐺) |
| grpinveu.o | ⊢ 0 = (0g‘𝐺) |
| Ref | Expression |
|---|---|
| grpinveu | ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵) → ∃!𝑦 ∈ 𝐵 (𝑦 + 𝑋) = 0 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | grpinveu.b | . . . 4 ⊢ 𝐵 = (Base‘𝐺) | |
| 2 | grpinveu.p | . . . 4 ⊢ + = (+g‘𝐺) | |
| 3 | grpinveu.o | . . . 4 ⊢ 0 = (0g‘𝐺) | |
| 4 | 1, 2, 3 | grpinvex 13417 | . . 3 ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵) → ∃𝑦 ∈ 𝐵 (𝑦 + 𝑋) = 0 ) |
| 5 | eqtr3 2226 | . . . . . . . . . . . 12 ⊢ (((𝑦 + 𝑋) = 0 ∧ (𝑧 + 𝑋) = 0 ) → (𝑦 + 𝑋) = (𝑧 + 𝑋)) | |
| 6 | 1, 2 | grprcan 13444 | . . . . . . . . . . . 12 ⊢ ((𝐺 ∈ Grp ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ∧ 𝑋 ∈ 𝐵)) → ((𝑦 + 𝑋) = (𝑧 + 𝑋) ↔ 𝑦 = 𝑧)) |
| 7 | 5, 6 | imbitrid 154 | . . . . . . . . . . 11 ⊢ ((𝐺 ∈ Grp ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ∧ 𝑋 ∈ 𝐵)) → (((𝑦 + 𝑋) = 0 ∧ (𝑧 + 𝑋) = 0 ) → 𝑦 = 𝑧)) |
| 8 | 7 | 3exp2 1228 | . . . . . . . . . 10 ⊢ (𝐺 ∈ Grp → (𝑦 ∈ 𝐵 → (𝑧 ∈ 𝐵 → (𝑋 ∈ 𝐵 → (((𝑦 + 𝑋) = 0 ∧ (𝑧 + 𝑋) = 0 ) → 𝑦 = 𝑧))))) |
| 9 | 8 | com24 87 | . . . . . . . . 9 ⊢ (𝐺 ∈ Grp → (𝑋 ∈ 𝐵 → (𝑧 ∈ 𝐵 → (𝑦 ∈ 𝐵 → (((𝑦 + 𝑋) = 0 ∧ (𝑧 + 𝑋) = 0 ) → 𝑦 = 𝑧))))) |
| 10 | 9 | imp41 353 | . . . . . . . 8 ⊢ ((((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵) ∧ 𝑧 ∈ 𝐵) ∧ 𝑦 ∈ 𝐵) → (((𝑦 + 𝑋) = 0 ∧ (𝑧 + 𝑋) = 0 ) → 𝑦 = 𝑧)) |
| 11 | 10 | an32s 568 | . . . . . . 7 ⊢ ((((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵) ∧ 𝑦 ∈ 𝐵) ∧ 𝑧 ∈ 𝐵) → (((𝑦 + 𝑋) = 0 ∧ (𝑧 + 𝑋) = 0 ) → 𝑦 = 𝑧)) |
| 12 | 11 | expd 258 | . . . . . 6 ⊢ ((((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵) ∧ 𝑦 ∈ 𝐵) ∧ 𝑧 ∈ 𝐵) → ((𝑦 + 𝑋) = 0 → ((𝑧 + 𝑋) = 0 → 𝑦 = 𝑧))) |
| 13 | 12 | ralrimdva 2587 | . . . . 5 ⊢ (((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵) ∧ 𝑦 ∈ 𝐵) → ((𝑦 + 𝑋) = 0 → ∀𝑧 ∈ 𝐵 ((𝑧 + 𝑋) = 0 → 𝑦 = 𝑧))) |
| 14 | 13 | ancld 325 | . . . 4 ⊢ (((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵) ∧ 𝑦 ∈ 𝐵) → ((𝑦 + 𝑋) = 0 → ((𝑦 + 𝑋) = 0 ∧ ∀𝑧 ∈ 𝐵 ((𝑧 + 𝑋) = 0 → 𝑦 = 𝑧)))) |
| 15 | 14 | reximdva 2609 | . . 3 ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵) → (∃𝑦 ∈ 𝐵 (𝑦 + 𝑋) = 0 → ∃𝑦 ∈ 𝐵 ((𝑦 + 𝑋) = 0 ∧ ∀𝑧 ∈ 𝐵 ((𝑧 + 𝑋) = 0 → 𝑦 = 𝑧)))) |
| 16 | 4, 15 | mpd 13 | . 2 ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵) → ∃𝑦 ∈ 𝐵 ((𝑦 + 𝑋) = 0 ∧ ∀𝑧 ∈ 𝐵 ((𝑧 + 𝑋) = 0 → 𝑦 = 𝑧))) |
| 17 | oveq1 5964 | . . . 4 ⊢ (𝑦 = 𝑧 → (𝑦 + 𝑋) = (𝑧 + 𝑋)) | |
| 18 | 17 | eqeq1d 2215 | . . 3 ⊢ (𝑦 = 𝑧 → ((𝑦 + 𝑋) = 0 ↔ (𝑧 + 𝑋) = 0 )) |
| 19 | 18 | reu8 2973 | . 2 ⊢ (∃!𝑦 ∈ 𝐵 (𝑦 + 𝑋) = 0 ↔ ∃𝑦 ∈ 𝐵 ((𝑦 + 𝑋) = 0 ∧ ∀𝑧 ∈ 𝐵 ((𝑧 + 𝑋) = 0 → 𝑦 = 𝑧))) |
| 20 | 16, 19 | sylibr 134 | 1 ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵) → ∃!𝑦 ∈ 𝐵 (𝑦 + 𝑋) = 0 ) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ∧ w3a 981 = wceq 1373 ∈ wcel 2177 ∀wral 2485 ∃wrex 2486 ∃!wreu 2487 ‘cfv 5280 (class class class)co 5957 Basecbs 12907 +gcplusg 12984 0gc0g 13163 Grpcgrp 13407 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-sep 4170 ax-pow 4226 ax-pr 4261 ax-un 4488 ax-cnex 8036 ax-resscn 8037 ax-1re 8039 ax-addrcl 8042 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ral 2490 df-rex 2491 df-reu 2492 df-rmo 2493 df-rab 2494 df-v 2775 df-sbc 3003 df-csb 3098 df-un 3174 df-in 3176 df-ss 3183 df-pw 3623 df-sn 3644 df-pr 3645 df-op 3647 df-uni 3857 df-int 3892 df-br 4052 df-opab 4114 df-mpt 4115 df-id 4348 df-xp 4689 df-rel 4690 df-cnv 4691 df-co 4692 df-dm 4693 df-rn 4694 df-res 4695 df-iota 5241 df-fun 5282 df-fn 5283 df-fv 5288 df-riota 5912 df-ov 5960 df-inn 9057 df-2 9115 df-ndx 12910 df-slot 12911 df-base 12913 df-plusg 12997 df-0g 13165 df-mgm 13263 df-sgrp 13309 df-mnd 13324 df-grp 13410 |
| This theorem is referenced by: grpinvf 13454 grplinv 13457 isgrpinv 13461 |
| Copyright terms: Public domain | W3C validator |