| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > grpinveu | GIF version | ||
| Description: The left inverse element of a group is unique. Lemma 2.2.1(b) of [Herstein] p. 55. (Contributed by NM, 24-Aug-2011.) | 
| Ref | Expression | 
|---|---|
| grpinveu.b | ⊢ 𝐵 = (Base‘𝐺) | 
| grpinveu.p | ⊢ + = (+g‘𝐺) | 
| grpinveu.o | ⊢ 0 = (0g‘𝐺) | 
| Ref | Expression | 
|---|---|
| grpinveu | ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵) → ∃!𝑦 ∈ 𝐵 (𝑦 + 𝑋) = 0 ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | grpinveu.b | . . . 4 ⊢ 𝐵 = (Base‘𝐺) | |
| 2 | grpinveu.p | . . . 4 ⊢ + = (+g‘𝐺) | |
| 3 | grpinveu.o | . . . 4 ⊢ 0 = (0g‘𝐺) | |
| 4 | 1, 2, 3 | grpinvex 13142 | . . 3 ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵) → ∃𝑦 ∈ 𝐵 (𝑦 + 𝑋) = 0 ) | 
| 5 | eqtr3 2216 | . . . . . . . . . . . 12 ⊢ (((𝑦 + 𝑋) = 0 ∧ (𝑧 + 𝑋) = 0 ) → (𝑦 + 𝑋) = (𝑧 + 𝑋)) | |
| 6 | 1, 2 | grprcan 13169 | . . . . . . . . . . . 12 ⊢ ((𝐺 ∈ Grp ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ∧ 𝑋 ∈ 𝐵)) → ((𝑦 + 𝑋) = (𝑧 + 𝑋) ↔ 𝑦 = 𝑧)) | 
| 7 | 5, 6 | imbitrid 154 | . . . . . . . . . . 11 ⊢ ((𝐺 ∈ Grp ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ∧ 𝑋 ∈ 𝐵)) → (((𝑦 + 𝑋) = 0 ∧ (𝑧 + 𝑋) = 0 ) → 𝑦 = 𝑧)) | 
| 8 | 7 | 3exp2 1227 | . . . . . . . . . 10 ⊢ (𝐺 ∈ Grp → (𝑦 ∈ 𝐵 → (𝑧 ∈ 𝐵 → (𝑋 ∈ 𝐵 → (((𝑦 + 𝑋) = 0 ∧ (𝑧 + 𝑋) = 0 ) → 𝑦 = 𝑧))))) | 
| 9 | 8 | com24 87 | . . . . . . . . 9 ⊢ (𝐺 ∈ Grp → (𝑋 ∈ 𝐵 → (𝑧 ∈ 𝐵 → (𝑦 ∈ 𝐵 → (((𝑦 + 𝑋) = 0 ∧ (𝑧 + 𝑋) = 0 ) → 𝑦 = 𝑧))))) | 
| 10 | 9 | imp41 353 | . . . . . . . 8 ⊢ ((((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵) ∧ 𝑧 ∈ 𝐵) ∧ 𝑦 ∈ 𝐵) → (((𝑦 + 𝑋) = 0 ∧ (𝑧 + 𝑋) = 0 ) → 𝑦 = 𝑧)) | 
| 11 | 10 | an32s 568 | . . . . . . 7 ⊢ ((((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵) ∧ 𝑦 ∈ 𝐵) ∧ 𝑧 ∈ 𝐵) → (((𝑦 + 𝑋) = 0 ∧ (𝑧 + 𝑋) = 0 ) → 𝑦 = 𝑧)) | 
| 12 | 11 | expd 258 | . . . . . 6 ⊢ ((((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵) ∧ 𝑦 ∈ 𝐵) ∧ 𝑧 ∈ 𝐵) → ((𝑦 + 𝑋) = 0 → ((𝑧 + 𝑋) = 0 → 𝑦 = 𝑧))) | 
| 13 | 12 | ralrimdva 2577 | . . . . 5 ⊢ (((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵) ∧ 𝑦 ∈ 𝐵) → ((𝑦 + 𝑋) = 0 → ∀𝑧 ∈ 𝐵 ((𝑧 + 𝑋) = 0 → 𝑦 = 𝑧))) | 
| 14 | 13 | ancld 325 | . . . 4 ⊢ (((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵) ∧ 𝑦 ∈ 𝐵) → ((𝑦 + 𝑋) = 0 → ((𝑦 + 𝑋) = 0 ∧ ∀𝑧 ∈ 𝐵 ((𝑧 + 𝑋) = 0 → 𝑦 = 𝑧)))) | 
| 15 | 14 | reximdva 2599 | . . 3 ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵) → (∃𝑦 ∈ 𝐵 (𝑦 + 𝑋) = 0 → ∃𝑦 ∈ 𝐵 ((𝑦 + 𝑋) = 0 ∧ ∀𝑧 ∈ 𝐵 ((𝑧 + 𝑋) = 0 → 𝑦 = 𝑧)))) | 
| 16 | 4, 15 | mpd 13 | . 2 ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵) → ∃𝑦 ∈ 𝐵 ((𝑦 + 𝑋) = 0 ∧ ∀𝑧 ∈ 𝐵 ((𝑧 + 𝑋) = 0 → 𝑦 = 𝑧))) | 
| 17 | oveq1 5929 | . . . 4 ⊢ (𝑦 = 𝑧 → (𝑦 + 𝑋) = (𝑧 + 𝑋)) | |
| 18 | 17 | eqeq1d 2205 | . . 3 ⊢ (𝑦 = 𝑧 → ((𝑦 + 𝑋) = 0 ↔ (𝑧 + 𝑋) = 0 )) | 
| 19 | 18 | reu8 2960 | . 2 ⊢ (∃!𝑦 ∈ 𝐵 (𝑦 + 𝑋) = 0 ↔ ∃𝑦 ∈ 𝐵 ((𝑦 + 𝑋) = 0 ∧ ∀𝑧 ∈ 𝐵 ((𝑧 + 𝑋) = 0 → 𝑦 = 𝑧))) | 
| 20 | 16, 19 | sylibr 134 | 1 ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵) → ∃!𝑦 ∈ 𝐵 (𝑦 + 𝑋) = 0 ) | 
| Colors of variables: wff set class | 
| Syntax hints: → wi 4 ∧ wa 104 ∧ w3a 980 = wceq 1364 ∈ wcel 2167 ∀wral 2475 ∃wrex 2476 ∃!wreu 2477 ‘cfv 5258 (class class class)co 5922 Basecbs 12678 +gcplusg 12755 0gc0g 12927 Grpcgrp 13132 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-sep 4151 ax-pow 4207 ax-pr 4242 ax-un 4468 ax-cnex 7970 ax-resscn 7971 ax-1re 7973 ax-addrcl 7976 | 
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-reu 2482 df-rmo 2483 df-rab 2484 df-v 2765 df-sbc 2990 df-csb 3085 df-un 3161 df-in 3163 df-ss 3170 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-int 3875 df-br 4034 df-opab 4095 df-mpt 4096 df-id 4328 df-xp 4669 df-rel 4670 df-cnv 4671 df-co 4672 df-dm 4673 df-rn 4674 df-res 4675 df-iota 5219 df-fun 5260 df-fn 5261 df-fv 5266 df-riota 5877 df-ov 5925 df-inn 8991 df-2 9049 df-ndx 12681 df-slot 12682 df-base 12684 df-plusg 12768 df-0g 12929 df-mgm 12999 df-sgrp 13045 df-mnd 13058 df-grp 13135 | 
| This theorem is referenced by: grpinvf 13179 grplinv 13182 isgrpinv 13186 | 
| Copyright terms: Public domain | W3C validator |