| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > abid | GIF version | ||
| Description: Simplification of class abstraction notation when the free and bound variables are identical. (Contributed by NM, 5-Aug-1993.) |
| Ref | Expression |
|---|---|
| abid | ⊢ (𝑥 ∈ {𝑥 ∣ 𝜑} ↔ 𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-clab 2216 | . 2 ⊢ (𝑥 ∈ {𝑥 ∣ 𝜑} ↔ [𝑥 / 𝑥]𝜑) | |
| 2 | sbid 1820 | . 2 ⊢ ([𝑥 / 𝑥]𝜑 ↔ 𝜑) | |
| 3 | 1, 2 | bitri 184 | 1 ⊢ (𝑥 ∈ {𝑥 ∣ 𝜑} ↔ 𝜑) |
| Colors of variables: wff set class |
| Syntax hints: ↔ wb 105 [wsb 1808 ∈ wcel 2200 {cab 2215 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-4 1556 ax-17 1572 ax-i9 1576 |
| This theorem depends on definitions: df-bi 117 df-sb 1809 df-clab 2216 |
| This theorem is referenced by: abeq2 2338 abeq2i 2340 abeq1i 2341 abeq2d 2342 abid2f 2398 elabgt 2944 elabgf 2945 ralab2 2967 rexab2 2969 sbccsbg 3153 sbccsb2g 3154 ss2ab 3292 abn0r 3516 abn0m 3517 tpid3g 3781 eluniab 3899 elintab 3933 iunab 4011 iinab 4026 intexabim 4235 iinexgm 4237 opm 4319 finds2 4690 dmmrnm 4939 iotaexab 5293 sniota 5305 eusvobj2 5980 eloprabga 6082 indpi 7517 4sqlem12 12911 elabgf0 16071 |
| Copyright terms: Public domain | W3C validator |