ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  abid GIF version

Theorem abid 2217
Description: Simplification of class abstraction notation when the free and bound variables are identical. (Contributed by NM, 5-Aug-1993.)
Assertion
Ref Expression
abid (𝑥 ∈ {𝑥𝜑} ↔ 𝜑)

Proof of Theorem abid
StepHypRef Expression
1 df-clab 2216 . 2 (𝑥 ∈ {𝑥𝜑} ↔ [𝑥 / 𝑥]𝜑)
2 sbid 1820 . 2 ([𝑥 / 𝑥]𝜑𝜑)
31, 2bitri 184 1 (𝑥 ∈ {𝑥𝜑} ↔ 𝜑)
Colors of variables: wff set class
Syntax hints:  wb 105  [wsb 1808  wcel 2200  {cab 2215
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-4 1556  ax-17 1572  ax-i9 1576
This theorem depends on definitions:  df-bi 117  df-sb 1809  df-clab 2216
This theorem is referenced by:  abeq2  2338  abeq2i  2340  abeq1i  2341  abeq2d  2342  abid2f  2398  elabgt  2944  elabgf  2945  ralab2  2967  rexab2  2969  sbccsbg  3153  sbccsb2g  3154  ss2ab  3292  abn0r  3516  abn0m  3517  tpid3g  3781  eluniab  3899  elintab  3933  iunab  4011  iinab  4026  intexabim  4235  iinexgm  4237  opm  4319  finds2  4690  dmmrnm  4939  iotaexab  5293  sniota  5305  eusvobj2  5980  eloprabga  6082  indpi  7517  4sqlem12  12911  elabgf0  16071
  Copyright terms: Public domain W3C validator