Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > abid | GIF version |
Description: Simplification of class abstraction notation when the free and bound variables are identical. (Contributed by NM, 5-Aug-1993.) |
Ref | Expression |
---|---|
abid | ⊢ (𝑥 ∈ {𝑥 ∣ 𝜑} ↔ 𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-clab 2157 | . 2 ⊢ (𝑥 ∈ {𝑥 ∣ 𝜑} ↔ [𝑥 / 𝑥]𝜑) | |
2 | sbid 1767 | . 2 ⊢ ([𝑥 / 𝑥]𝜑 ↔ 𝜑) | |
3 | 1, 2 | bitri 183 | 1 ⊢ (𝑥 ∈ {𝑥 ∣ 𝜑} ↔ 𝜑) |
Colors of variables: wff set class |
Syntax hints: ↔ wb 104 [wsb 1755 ∈ wcel 2141 {cab 2156 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-4 1503 ax-17 1519 ax-i9 1523 |
This theorem depends on definitions: df-bi 116 df-sb 1756 df-clab 2157 |
This theorem is referenced by: abeq2 2279 abeq2i 2281 abeq1i 2282 abeq2d 2283 abid2f 2338 elabgt 2871 elabgf 2872 ralab2 2894 rexab2 2896 sbccsbg 3078 sbccsb2g 3079 ss2ab 3215 abn0r 3439 abn0m 3440 tpid3g 3698 eluniab 3808 elintab 3842 iunab 3919 iinab 3934 intexabim 4138 iinexgm 4140 opm 4219 finds2 4585 dmmrnm 4830 sniota 5189 eusvobj2 5839 eloprabga 5940 indpi 7304 elabgf0 13812 |
Copyright terms: Public domain | W3C validator |