| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > abid | GIF version | ||
| Description: Simplification of class abstraction notation when the free and bound variables are identical. (Contributed by NM, 5-Aug-1993.) |
| Ref | Expression |
|---|---|
| abid | ⊢ (𝑥 ∈ {𝑥 ∣ 𝜑} ↔ 𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-clab 2193 | . 2 ⊢ (𝑥 ∈ {𝑥 ∣ 𝜑} ↔ [𝑥 / 𝑥]𝜑) | |
| 2 | sbid 1798 | . 2 ⊢ ([𝑥 / 𝑥]𝜑 ↔ 𝜑) | |
| 3 | 1, 2 | bitri 184 | 1 ⊢ (𝑥 ∈ {𝑥 ∣ 𝜑} ↔ 𝜑) |
| Colors of variables: wff set class |
| Syntax hints: ↔ wb 105 [wsb 1786 ∈ wcel 2177 {cab 2192 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-4 1534 ax-17 1550 ax-i9 1554 |
| This theorem depends on definitions: df-bi 117 df-sb 1787 df-clab 2193 |
| This theorem is referenced by: abeq2 2315 abeq2i 2317 abeq1i 2318 abeq2d 2319 abid2f 2375 elabgt 2918 elabgf 2919 ralab2 2941 rexab2 2943 sbccsbg 3126 sbccsb2g 3127 ss2ab 3265 abn0r 3489 abn0m 3490 tpid3g 3752 eluniab 3867 elintab 3901 iunab 3979 iinab 3994 intexabim 4203 iinexgm 4205 opm 4285 finds2 4656 dmmrnm 4905 iotaexab 5258 sniota 5270 eusvobj2 5942 eloprabga 6044 indpi 7470 4sqlem12 12795 elabgf0 15847 |
| Copyright terms: Public domain | W3C validator |