Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > abid | GIF version |
Description: Simplification of class abstraction notation when the free and bound variables are identical. (Contributed by NM, 5-Aug-1993.) |
Ref | Expression |
---|---|
abid | ⊢ (𝑥 ∈ {𝑥 ∣ 𝜑} ↔ 𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-clab 2162 | . 2 ⊢ (𝑥 ∈ {𝑥 ∣ 𝜑} ↔ [𝑥 / 𝑥]𝜑) | |
2 | sbid 1772 | . 2 ⊢ ([𝑥 / 𝑥]𝜑 ↔ 𝜑) | |
3 | 1, 2 | bitri 184 | 1 ⊢ (𝑥 ∈ {𝑥 ∣ 𝜑} ↔ 𝜑) |
Colors of variables: wff set class |
Syntax hints: ↔ wb 105 [wsb 1760 ∈ wcel 2146 {cab 2161 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-gen 1447 ax-ie1 1491 ax-ie2 1492 ax-8 1502 ax-4 1508 ax-17 1524 ax-i9 1528 |
This theorem depends on definitions: df-bi 117 df-sb 1761 df-clab 2162 |
This theorem is referenced by: abeq2 2284 abeq2i 2286 abeq1i 2287 abeq2d 2288 abid2f 2343 elabgt 2876 elabgf 2877 ralab2 2899 rexab2 2901 sbccsbg 3084 sbccsb2g 3085 ss2ab 3221 abn0r 3445 abn0m 3446 tpid3g 3704 eluniab 3817 elintab 3851 iunab 3928 iinab 3943 intexabim 4147 iinexgm 4149 opm 4228 finds2 4594 dmmrnm 4839 sniota 5199 eusvobj2 5851 eloprabga 5952 indpi 7316 elabgf0 14089 |
Copyright terms: Public domain | W3C validator |