ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  abeq2i GIF version

Theorem abeq2i 2317
Description: Equality of a class variable and a class abstraction (inference form). (Contributed by NM, 3-Apr-1996.)
Hypothesis
Ref Expression
abeqi.1 𝐴 = {𝑥𝜑}
Assertion
Ref Expression
abeq2i (𝑥𝐴𝜑)

Proof of Theorem abeq2i
StepHypRef Expression
1 abeqi.1 . . 3 𝐴 = {𝑥𝜑}
21eleq2i 2273 . 2 (𝑥𝐴𝑥 ∈ {𝑥𝜑})
3 abid 2194 . 2 (𝑥 ∈ {𝑥𝜑} ↔ 𝜑)
42, 3bitri 184 1 (𝑥𝐴𝜑)
Colors of variables: wff set class
Syntax hints:  wb 105   = wceq 1373  wcel 2177  {cab 2192
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1471  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-ext 2188
This theorem depends on definitions:  df-bi 117  df-sb 1787  df-clab 2193  df-cleq 2199  df-clel 2202
This theorem is referenced by:  rabid  2683  vex  2776  csbco  3107  csbcow  3108  csbnestgf  3150  ifmdc  3617  pwss  3637  snsspw  3813  iunpw  4540  ordon  4547  funcnv3  5350  tfrlem4  6417  tfrlem8  6422  tfrlem9  6423  tfrlemibxssdm  6431  tfr1onlembxssdm  6447  tfrcllembxssdm  6460  ixpm  6835  mapsnen  6922  sbthlem1  7080  1idprl  7733  1idpru  7734  recexprlem1ssl  7776  recexprlem1ssu  7777  recexprlemss1l  7778  recexprlemss1u  7779  txbas  14815
  Copyright terms: Public domain W3C validator