| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > abeq2i | GIF version | ||
| Description: Equality of a class variable and a class abstraction (inference form). (Contributed by NM, 3-Apr-1996.) |
| Ref | Expression |
|---|---|
| abeqi.1 | ⊢ 𝐴 = {𝑥 ∣ 𝜑} |
| Ref | Expression |
|---|---|
| abeq2i | ⊢ (𝑥 ∈ 𝐴 ↔ 𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | abeqi.1 | . . 3 ⊢ 𝐴 = {𝑥 ∣ 𝜑} | |
| 2 | 1 | eleq2i 2296 | . 2 ⊢ (𝑥 ∈ 𝐴 ↔ 𝑥 ∈ {𝑥 ∣ 𝜑}) |
| 3 | abid 2217 | . 2 ⊢ (𝑥 ∈ {𝑥 ∣ 𝜑} ↔ 𝜑) | |
| 4 | 2, 3 | bitri 184 | 1 ⊢ (𝑥 ∈ 𝐴 ↔ 𝜑) |
| Colors of variables: wff set class |
| Syntax hints: ↔ wb 105 = wceq 1395 ∈ wcel 2200 {cab 2215 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1493 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 |
| This theorem is referenced by: rabid 2707 vex 2802 csbco 3134 csbcow 3135 csbnestgf 3177 ifmdc 3645 pwss 3665 snsspw 3841 iunpw 4570 ordon 4577 funcnv3 5382 tfrlem4 6457 tfrlem8 6462 tfrlem9 6463 tfrlemibxssdm 6471 tfr1onlembxssdm 6487 tfrcllembxssdm 6500 ixpm 6875 mapsnen 6962 sbthlem1 7120 1idprl 7773 1idpru 7774 recexprlem1ssl 7816 recexprlem1ssu 7817 recexprlemss1l 7818 recexprlemss1u 7819 txbas 14926 |
| Copyright terms: Public domain | W3C validator |