![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > abeq2i | GIF version |
Description: Equality of a class variable and a class abstraction (inference form). (Contributed by NM, 3-Apr-1996.) |
Ref | Expression |
---|---|
abeqi.1 | ⊢ 𝐴 = {𝑥 ∣ 𝜑} |
Ref | Expression |
---|---|
abeq2i | ⊢ (𝑥 ∈ 𝐴 ↔ 𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | abeqi.1 | . . 3 ⊢ 𝐴 = {𝑥 ∣ 𝜑} | |
2 | 1 | eleq2i 2260 | . 2 ⊢ (𝑥 ∈ 𝐴 ↔ 𝑥 ∈ {𝑥 ∣ 𝜑}) |
3 | abid 2181 | . 2 ⊢ (𝑥 ∈ {𝑥 ∣ 𝜑} ↔ 𝜑) | |
4 | 2, 3 | bitri 184 | 1 ⊢ (𝑥 ∈ 𝐴 ↔ 𝜑) |
Colors of variables: wff set class |
Syntax hints: ↔ wb 105 = wceq 1364 ∈ wcel 2164 {cab 2179 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1458 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-ext 2175 |
This theorem depends on definitions: df-bi 117 df-sb 1774 df-clab 2180 df-cleq 2186 df-clel 2189 |
This theorem is referenced by: rabid 2670 vex 2763 csbco 3090 csbcow 3091 csbnestgf 3133 ifmdc 3597 pwss 3617 snsspw 3790 iunpw 4511 ordon 4518 funcnv3 5316 tfrlem4 6366 tfrlem8 6371 tfrlem9 6372 tfrlemibxssdm 6380 tfr1onlembxssdm 6396 tfrcllembxssdm 6409 ixpm 6784 mapsnen 6865 sbthlem1 7016 1idprl 7650 1idpru 7651 recexprlem1ssl 7693 recexprlem1ssu 7694 recexprlemss1l 7695 recexprlemss1u 7696 txbas 14426 |
Copyright terms: Public domain | W3C validator |