| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > abeq2i | GIF version | ||
| Description: Equality of a class variable and a class abstraction (inference form). (Contributed by NM, 3-Apr-1996.) |
| Ref | Expression |
|---|---|
| abeqi.1 | ⊢ 𝐴 = {𝑥 ∣ 𝜑} |
| Ref | Expression |
|---|---|
| abeq2i | ⊢ (𝑥 ∈ 𝐴 ↔ 𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | abeqi.1 | . . 3 ⊢ 𝐴 = {𝑥 ∣ 𝜑} | |
| 2 | 1 | eleq2i 2273 | . 2 ⊢ (𝑥 ∈ 𝐴 ↔ 𝑥 ∈ {𝑥 ∣ 𝜑}) |
| 3 | abid 2194 | . 2 ⊢ (𝑥 ∈ {𝑥 ∣ 𝜑} ↔ 𝜑) | |
| 4 | 2, 3 | bitri 184 | 1 ⊢ (𝑥 ∈ 𝐴 ↔ 𝜑) |
| Colors of variables: wff set class |
| Syntax hints: ↔ wb 105 = wceq 1373 ∈ wcel 2177 {cab 2192 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1471 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-ext 2188 |
| This theorem depends on definitions: df-bi 117 df-sb 1787 df-clab 2193 df-cleq 2199 df-clel 2202 |
| This theorem is referenced by: rabid 2683 vex 2776 csbco 3107 csbcow 3108 csbnestgf 3150 ifmdc 3617 pwss 3637 snsspw 3813 iunpw 4540 ordon 4547 funcnv3 5350 tfrlem4 6417 tfrlem8 6422 tfrlem9 6423 tfrlemibxssdm 6431 tfr1onlembxssdm 6447 tfrcllembxssdm 6460 ixpm 6835 mapsnen 6922 sbthlem1 7080 1idprl 7733 1idpru 7734 recexprlem1ssl 7776 recexprlem1ssu 7777 recexprlemss1l 7778 recexprlemss1u 7779 txbas 14815 |
| Copyright terms: Public domain | W3C validator |