Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > abeq2i | GIF version |
Description: Equality of a class variable and a class abstraction (inference form). (Contributed by NM, 3-Apr-1996.) |
Ref | Expression |
---|---|
abeqi.1 | ⊢ 𝐴 = {𝑥 ∣ 𝜑} |
Ref | Expression |
---|---|
abeq2i | ⊢ (𝑥 ∈ 𝐴 ↔ 𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | abeqi.1 | . . 3 ⊢ 𝐴 = {𝑥 ∣ 𝜑} | |
2 | 1 | eleq2i 2233 | . 2 ⊢ (𝑥 ∈ 𝐴 ↔ 𝑥 ∈ {𝑥 ∣ 𝜑}) |
3 | abid 2153 | . 2 ⊢ (𝑥 ∈ {𝑥 ∣ 𝜑} ↔ 𝜑) | |
4 | 2, 3 | bitri 183 | 1 ⊢ (𝑥 ∈ 𝐴 ↔ 𝜑) |
Colors of variables: wff set class |
Syntax hints: ↔ wb 104 = wceq 1343 ∈ wcel 2136 {cab 2151 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1435 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-ext 2147 |
This theorem depends on definitions: df-bi 116 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 |
This theorem is referenced by: rabid 2641 vex 2729 csbco 3055 csbcow 3056 csbnestgf 3097 ifmdc 3558 pwss 3575 snsspw 3744 iunpw 4458 ordon 4463 funcnv3 5250 tfrlem4 6281 tfrlem8 6286 tfrlem9 6287 tfrlemibxssdm 6295 tfr1onlembxssdm 6311 tfrcllembxssdm 6324 ixpm 6696 mapsnen 6777 sbthlem1 6922 1idprl 7531 1idpru 7532 recexprlem1ssl 7574 recexprlem1ssu 7575 recexprlemss1l 7576 recexprlemss1u 7577 txbas 12898 |
Copyright terms: Public domain | W3C validator |