| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > abeq2i | GIF version | ||
| Description: Equality of a class variable and a class abstraction (inference form). (Contributed by NM, 3-Apr-1996.) |
| Ref | Expression |
|---|---|
| abeqi.1 | ⊢ 𝐴 = {𝑥 ∣ 𝜑} |
| Ref | Expression |
|---|---|
| abeq2i | ⊢ (𝑥 ∈ 𝐴 ↔ 𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | abeqi.1 | . . 3 ⊢ 𝐴 = {𝑥 ∣ 𝜑} | |
| 2 | 1 | eleq2i 2263 | . 2 ⊢ (𝑥 ∈ 𝐴 ↔ 𝑥 ∈ {𝑥 ∣ 𝜑}) |
| 3 | abid 2184 | . 2 ⊢ (𝑥 ∈ {𝑥 ∣ 𝜑} ↔ 𝜑) | |
| 4 | 2, 3 | bitri 184 | 1 ⊢ (𝑥 ∈ 𝐴 ↔ 𝜑) |
| Colors of variables: wff set class |
| Syntax hints: ↔ wb 105 = wceq 1364 ∈ wcel 2167 {cab 2182 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1461 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 |
| This theorem is referenced by: rabid 2673 vex 2766 csbco 3094 csbcow 3095 csbnestgf 3137 ifmdc 3601 pwss 3621 snsspw 3794 iunpw 4515 ordon 4522 funcnv3 5320 tfrlem4 6371 tfrlem8 6376 tfrlem9 6377 tfrlemibxssdm 6385 tfr1onlembxssdm 6401 tfrcllembxssdm 6414 ixpm 6789 mapsnen 6870 sbthlem1 7023 1idprl 7657 1idpru 7658 recexprlem1ssl 7700 recexprlem1ssu 7701 recexprlemss1l 7702 recexprlemss1u 7703 txbas 14494 |
| Copyright terms: Public domain | W3C validator |