ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  abeq2i GIF version

Theorem abeq2i 2288
Description: Equality of a class variable and a class abstraction (inference form). (Contributed by NM, 3-Apr-1996.)
Hypothesis
Ref Expression
abeqi.1 𝐴 = {𝑥𝜑}
Assertion
Ref Expression
abeq2i (𝑥𝐴𝜑)

Proof of Theorem abeq2i
StepHypRef Expression
1 abeqi.1 . . 3 𝐴 = {𝑥𝜑}
21eleq2i 2244 . 2 (𝑥𝐴𝑥 ∈ {𝑥𝜑})
3 abid 2165 . 2 (𝑥 ∈ {𝑥𝜑} ↔ 𝜑)
42, 3bitri 184 1 (𝑥𝐴𝜑)
Colors of variables: wff set class
Syntax hints:  wb 105   = wceq 1353  wcel 2148  {cab 2163
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1447  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-ext 2159
This theorem depends on definitions:  df-bi 117  df-sb 1763  df-clab 2164  df-cleq 2170  df-clel 2173
This theorem is referenced by:  rabid  2653  vex  2741  csbco  3068  csbcow  3069  csbnestgf  3110  ifmdc  3575  pwss  3592  snsspw  3765  iunpw  4481  ordon  4486  funcnv3  5279  tfrlem4  6314  tfrlem8  6319  tfrlem9  6320  tfrlemibxssdm  6328  tfr1onlembxssdm  6344  tfrcllembxssdm  6357  ixpm  6730  mapsnen  6811  sbthlem1  6956  1idprl  7589  1idpru  7590  recexprlem1ssl  7632  recexprlem1ssu  7633  recexprlemss1l  7634  recexprlemss1u  7635  txbas  13761
  Copyright terms: Public domain W3C validator