![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > abeq2i | GIF version |
Description: Equality of a class variable and a class abstraction (inference form). (Contributed by NM, 3-Apr-1996.) |
Ref | Expression |
---|---|
abeqi.1 | ⊢ 𝐴 = {𝑥 ∣ 𝜑} |
Ref | Expression |
---|---|
abeq2i | ⊢ (𝑥 ∈ 𝐴 ↔ 𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | abeqi.1 | . . 3 ⊢ 𝐴 = {𝑥 ∣ 𝜑} | |
2 | 1 | eleq2i 2260 | . 2 ⊢ (𝑥 ∈ 𝐴 ↔ 𝑥 ∈ {𝑥 ∣ 𝜑}) |
3 | abid 2181 | . 2 ⊢ (𝑥 ∈ {𝑥 ∣ 𝜑} ↔ 𝜑) | |
4 | 2, 3 | bitri 184 | 1 ⊢ (𝑥 ∈ 𝐴 ↔ 𝜑) |
Colors of variables: wff set class |
Syntax hints: ↔ wb 105 = wceq 1364 ∈ wcel 2164 {cab 2179 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1458 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-ext 2175 |
This theorem depends on definitions: df-bi 117 df-sb 1774 df-clab 2180 df-cleq 2186 df-clel 2189 |
This theorem is referenced by: rabid 2670 vex 2763 csbco 3091 csbcow 3092 csbnestgf 3134 ifmdc 3598 pwss 3618 snsspw 3791 iunpw 4512 ordon 4519 funcnv3 5317 tfrlem4 6368 tfrlem8 6373 tfrlem9 6374 tfrlemibxssdm 6382 tfr1onlembxssdm 6398 tfrcllembxssdm 6411 ixpm 6786 mapsnen 6867 sbthlem1 7018 1idprl 7652 1idpru 7653 recexprlem1ssl 7695 recexprlem1ssu 7696 recexprlemss1l 7697 recexprlemss1u 7698 txbas 14437 |
Copyright terms: Public domain | W3C validator |