| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > abeq2i | GIF version | ||
| Description: Equality of a class variable and a class abstraction (inference form). (Contributed by NM, 3-Apr-1996.) |
| Ref | Expression |
|---|---|
| abeqi.1 | ⊢ 𝐴 = {𝑥 ∣ 𝜑} |
| Ref | Expression |
|---|---|
| abeq2i | ⊢ (𝑥 ∈ 𝐴 ↔ 𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | abeqi.1 | . . 3 ⊢ 𝐴 = {𝑥 ∣ 𝜑} | |
| 2 | 1 | eleq2i 2271 | . 2 ⊢ (𝑥 ∈ 𝐴 ↔ 𝑥 ∈ {𝑥 ∣ 𝜑}) |
| 3 | abid 2192 | . 2 ⊢ (𝑥 ∈ {𝑥 ∣ 𝜑} ↔ 𝜑) | |
| 4 | 2, 3 | bitri 184 | 1 ⊢ (𝑥 ∈ 𝐴 ↔ 𝜑) |
| Colors of variables: wff set class |
| Syntax hints: ↔ wb 105 = wceq 1372 ∈ wcel 2175 {cab 2190 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1469 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-ext 2186 |
| This theorem depends on definitions: df-bi 117 df-sb 1785 df-clab 2191 df-cleq 2197 df-clel 2200 |
| This theorem is referenced by: rabid 2681 vex 2774 csbco 3102 csbcow 3103 csbnestgf 3145 ifmdc 3611 pwss 3631 snsspw 3804 iunpw 4526 ordon 4533 funcnv3 5335 tfrlem4 6398 tfrlem8 6403 tfrlem9 6404 tfrlemibxssdm 6412 tfr1onlembxssdm 6428 tfrcllembxssdm 6441 ixpm 6816 mapsnen 6902 sbthlem1 7058 1idprl 7702 1idpru 7703 recexprlem1ssl 7745 recexprlem1ssu 7746 recexprlemss1l 7747 recexprlemss1u 7748 txbas 14672 |
| Copyright terms: Public domain | W3C validator |