ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  abeq2i GIF version

Theorem abeq2i 2307
Description: Equality of a class variable and a class abstraction (inference form). (Contributed by NM, 3-Apr-1996.)
Hypothesis
Ref Expression
abeqi.1 𝐴 = {𝑥𝜑}
Assertion
Ref Expression
abeq2i (𝑥𝐴𝜑)

Proof of Theorem abeq2i
StepHypRef Expression
1 abeqi.1 . . 3 𝐴 = {𝑥𝜑}
21eleq2i 2263 . 2 (𝑥𝐴𝑥 ∈ {𝑥𝜑})
3 abid 2184 . 2 (𝑥 ∈ {𝑥𝜑} ↔ 𝜑)
42, 3bitri 184 1 (𝑥𝐴𝜑)
Colors of variables: wff set class
Syntax hints:  wb 105   = wceq 1364  wcel 2167  {cab 2182
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1461  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-ext 2178
This theorem depends on definitions:  df-bi 117  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192
This theorem is referenced by:  rabid  2673  vex  2766  csbco  3094  csbcow  3095  csbnestgf  3137  ifmdc  3601  pwss  3621  snsspw  3794  iunpw  4515  ordon  4522  funcnv3  5320  tfrlem4  6371  tfrlem8  6376  tfrlem9  6377  tfrlemibxssdm  6385  tfr1onlembxssdm  6401  tfrcllembxssdm  6414  ixpm  6789  mapsnen  6870  sbthlem1  7023  1idprl  7657  1idpru  7658  recexprlem1ssl  7700  recexprlem1ssu  7701  recexprlemss1l  7702  recexprlemss1u  7703  txbas  14494
  Copyright terms: Public domain W3C validator