![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > sbeqalb | GIF version |
Description: Theorem *14.121 in [WhiteheadRussell] p. 185. (Contributed by Andrew Salmon, 28-Jun-2011.) (Proof shortened by Wolf Lammen, 9-May-2013.) |
Ref | Expression |
---|---|
sbeqalb | ⊢ (𝐴 ∈ 𝑉 → ((∀𝑥(𝜑 ↔ 𝑥 = 𝐴) ∧ ∀𝑥(𝜑 ↔ 𝑥 = 𝐵)) → 𝐴 = 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bibi1 240 | . . . . 5 ⊢ ((𝜑 ↔ 𝑥 = 𝐴) → ((𝜑 ↔ 𝑥 = 𝐵) ↔ (𝑥 = 𝐴 ↔ 𝑥 = 𝐵))) | |
2 | 1 | biimpa 296 | . . . 4 ⊢ (((𝜑 ↔ 𝑥 = 𝐴) ∧ (𝜑 ↔ 𝑥 = 𝐵)) → (𝑥 = 𝐴 ↔ 𝑥 = 𝐵)) |
3 | 2 | biimpd 144 | . . 3 ⊢ (((𝜑 ↔ 𝑥 = 𝐴) ∧ (𝜑 ↔ 𝑥 = 𝐵)) → (𝑥 = 𝐴 → 𝑥 = 𝐵)) |
4 | 3 | alanimi 1459 | . 2 ⊢ ((∀𝑥(𝜑 ↔ 𝑥 = 𝐴) ∧ ∀𝑥(𝜑 ↔ 𝑥 = 𝐵)) → ∀𝑥(𝑥 = 𝐴 → 𝑥 = 𝐵)) |
5 | sbceqal 3018 | . 2 ⊢ (𝐴 ∈ 𝑉 → (∀𝑥(𝑥 = 𝐴 → 𝑥 = 𝐵) → 𝐴 = 𝐵)) | |
6 | 4, 5 | syl5 32 | 1 ⊢ (𝐴 ∈ 𝑉 → ((∀𝑥(𝜑 ↔ 𝑥 = 𝐴) ∧ ∀𝑥(𝜑 ↔ 𝑥 = 𝐵)) → 𝐴 = 𝐵)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 ∀wal 1351 = wceq 1353 ∈ wcel 2148 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-ext 2159 |
This theorem depends on definitions: df-bi 117 df-tru 1356 df-nf 1461 df-sb 1763 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-v 2739 df-sbc 2963 |
This theorem is referenced by: iotaval 5188 |
Copyright terms: Public domain | W3C validator |