![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > sbeqalb | GIF version |
Description: Theorem *14.121 in [WhiteheadRussell] p. 185. (Contributed by Andrew Salmon, 28-Jun-2011.) (Proof shortened by Wolf Lammen, 9-May-2013.) |
Ref | Expression |
---|---|
sbeqalb | ⊢ (𝐴 ∈ 𝑉 → ((∀𝑥(𝜑 ↔ 𝑥 = 𝐴) ∧ ∀𝑥(𝜑 ↔ 𝑥 = 𝐵)) → 𝐴 = 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bibi1 239 | . . . . 5 ⊢ ((𝜑 ↔ 𝑥 = 𝐴) → ((𝜑 ↔ 𝑥 = 𝐵) ↔ (𝑥 = 𝐴 ↔ 𝑥 = 𝐵))) | |
2 | 1 | biimpa 292 | . . . 4 ⊢ (((𝜑 ↔ 𝑥 = 𝐴) ∧ (𝜑 ↔ 𝑥 = 𝐵)) → (𝑥 = 𝐴 ↔ 𝑥 = 𝐵)) |
3 | 2 | biimpd 143 | . . 3 ⊢ (((𝜑 ↔ 𝑥 = 𝐴) ∧ (𝜑 ↔ 𝑥 = 𝐵)) → (𝑥 = 𝐴 → 𝑥 = 𝐵)) |
4 | 3 | alanimi 1403 | . 2 ⊢ ((∀𝑥(𝜑 ↔ 𝑥 = 𝐴) ∧ ∀𝑥(𝜑 ↔ 𝑥 = 𝐵)) → ∀𝑥(𝑥 = 𝐴 → 𝑥 = 𝐵)) |
5 | sbceqal 2916 | . 2 ⊢ (𝐴 ∈ 𝑉 → (∀𝑥(𝑥 = 𝐴 → 𝑥 = 𝐵) → 𝐴 = 𝐵)) | |
6 | 4, 5 | syl5 32 | 1 ⊢ (𝐴 ∈ 𝑉 → ((∀𝑥(𝜑 ↔ 𝑥 = 𝐴) ∧ ∀𝑥(𝜑 ↔ 𝑥 = 𝐵)) → 𝐴 = 𝐵)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 ↔ wb 104 ∀wal 1297 = wceq 1299 ∈ wcel 1448 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 671 ax-5 1391 ax-7 1392 ax-gen 1393 ax-ie1 1437 ax-ie2 1438 ax-8 1450 ax-10 1451 ax-11 1452 ax-i12 1453 ax-bndl 1454 ax-4 1455 ax-17 1474 ax-i9 1478 ax-ial 1482 ax-i5r 1483 ax-ext 2082 |
This theorem depends on definitions: df-bi 116 df-tru 1302 df-nf 1405 df-sb 1704 df-clab 2087 df-cleq 2093 df-clel 2096 df-nfc 2229 df-v 2643 df-sbc 2863 |
This theorem is referenced by: iotaval 5035 |
Copyright terms: Public domain | W3C validator |