Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  trin2 GIF version

Theorem trin2 4898
 Description: The intersection of two transitive classes is transitive. (Contributed by FL, 31-Jul-2009.)
Assertion
Ref Expression
trin2 (((𝑅𝑅) ⊆ 𝑅 ∧ (𝑆𝑆) ⊆ 𝑆) → ((𝑅𝑆) ∘ (𝑅𝑆)) ⊆ (𝑅𝑆))

Proof of Theorem trin2
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cotr 4888 . . . 4 ((𝑅𝑅) ⊆ 𝑅 ↔ ∀𝑥𝑦𝑧((𝑥𝑅𝑦𝑦𝑅𝑧) → 𝑥𝑅𝑧))
2 cotr 4888 . . . . . 6 ((𝑆𝑆) ⊆ 𝑆 ↔ ∀𝑥𝑦𝑧((𝑥𝑆𝑦𝑦𝑆𝑧) → 𝑥𝑆𝑧))
3 brin 3948 . . . . . . . . . . . . 13 (𝑥(𝑅𝑆)𝑦 ↔ (𝑥𝑅𝑦𝑥𝑆𝑦))
4 brin 3948 . . . . . . . . . . . . 13 (𝑦(𝑅𝑆)𝑧 ↔ (𝑦𝑅𝑧𝑦𝑆𝑧))
5 simpr 109 . . . . . . . . . . . . . . . 16 ((((𝑥𝑆𝑦𝑦𝑆𝑧) → 𝑥𝑆𝑧) ∧ ((𝑥𝑅𝑦𝑦𝑅𝑧) → 𝑥𝑅𝑧)) → ((𝑥𝑅𝑦𝑦𝑅𝑧) → 𝑥𝑅𝑧))
6 simpl 108 . . . . . . . . . . . . . . . 16 ((((𝑥𝑆𝑦𝑦𝑆𝑧) → 𝑥𝑆𝑧) ∧ ((𝑥𝑅𝑦𝑦𝑅𝑧) → 𝑥𝑅𝑧)) → ((𝑥𝑆𝑦𝑦𝑆𝑧) → 𝑥𝑆𝑧))
75, 6anim12d 331 . . . . . . . . . . . . . . 15 ((((𝑥𝑆𝑦𝑦𝑆𝑧) → 𝑥𝑆𝑧) ∧ ((𝑥𝑅𝑦𝑦𝑅𝑧) → 𝑥𝑅𝑧)) → (((𝑥𝑅𝑦𝑦𝑅𝑧) ∧ (𝑥𝑆𝑦𝑦𝑆𝑧)) → (𝑥𝑅𝑧𝑥𝑆𝑧)))
87com12 30 . . . . . . . . . . . . . 14 (((𝑥𝑅𝑦𝑦𝑅𝑧) ∧ (𝑥𝑆𝑦𝑦𝑆𝑧)) → ((((𝑥𝑆𝑦𝑦𝑆𝑧) → 𝑥𝑆𝑧) ∧ ((𝑥𝑅𝑦𝑦𝑅𝑧) → 𝑥𝑅𝑧)) → (𝑥𝑅𝑧𝑥𝑆𝑧)))
98an4s 560 . . . . . . . . . . . . 13 (((𝑥𝑅𝑦𝑥𝑆𝑦) ∧ (𝑦𝑅𝑧𝑦𝑆𝑧)) → ((((𝑥𝑆𝑦𝑦𝑆𝑧) → 𝑥𝑆𝑧) ∧ ((𝑥𝑅𝑦𝑦𝑅𝑧) → 𝑥𝑅𝑧)) → (𝑥𝑅𝑧𝑥𝑆𝑧)))
103, 4, 9syl2anb 287 . . . . . . . . . . . 12 ((𝑥(𝑅𝑆)𝑦𝑦(𝑅𝑆)𝑧) → ((((𝑥𝑆𝑦𝑦𝑆𝑧) → 𝑥𝑆𝑧) ∧ ((𝑥𝑅𝑦𝑦𝑅𝑧) → 𝑥𝑅𝑧)) → (𝑥𝑅𝑧𝑥𝑆𝑧)))
1110com12 30 . . . . . . . . . . 11 ((((𝑥𝑆𝑦𝑦𝑆𝑧) → 𝑥𝑆𝑧) ∧ ((𝑥𝑅𝑦𝑦𝑅𝑧) → 𝑥𝑅𝑧)) → ((𝑥(𝑅𝑆)𝑦𝑦(𝑅𝑆)𝑧) → (𝑥𝑅𝑧𝑥𝑆𝑧)))
12 brin 3948 . . . . . . . . . . 11 (𝑥(𝑅𝑆)𝑧 ↔ (𝑥𝑅𝑧𝑥𝑆𝑧))
1311, 12syl6ibr 161 . . . . . . . . . 10 ((((𝑥𝑆𝑦𝑦𝑆𝑧) → 𝑥𝑆𝑧) ∧ ((𝑥𝑅𝑦𝑦𝑅𝑧) → 𝑥𝑅𝑧)) → ((𝑥(𝑅𝑆)𝑦𝑦(𝑅𝑆)𝑧) → 𝑥(𝑅𝑆)𝑧))
1413alanimi 1418 . . . . . . . . 9 ((∀𝑧((𝑥𝑆𝑦𝑦𝑆𝑧) → 𝑥𝑆𝑧) ∧ ∀𝑧((𝑥𝑅𝑦𝑦𝑅𝑧) → 𝑥𝑅𝑧)) → ∀𝑧((𝑥(𝑅𝑆)𝑦𝑦(𝑅𝑆)𝑧) → 𝑥(𝑅𝑆)𝑧))
1514alanimi 1418 . . . . . . . 8 ((∀𝑦𝑧((𝑥𝑆𝑦𝑦𝑆𝑧) → 𝑥𝑆𝑧) ∧ ∀𝑦𝑧((𝑥𝑅𝑦𝑦𝑅𝑧) → 𝑥𝑅𝑧)) → ∀𝑦𝑧((𝑥(𝑅𝑆)𝑦𝑦(𝑅𝑆)𝑧) → 𝑥(𝑅𝑆)𝑧))
1615alanimi 1418 . . . . . . 7 ((∀𝑥𝑦𝑧((𝑥𝑆𝑦𝑦𝑆𝑧) → 𝑥𝑆𝑧) ∧ ∀𝑥𝑦𝑧((𝑥𝑅𝑦𝑦𝑅𝑧) → 𝑥𝑅𝑧)) → ∀𝑥𝑦𝑧((𝑥(𝑅𝑆)𝑦𝑦(𝑅𝑆)𝑧) → 𝑥(𝑅𝑆)𝑧))
1716ex 114 . . . . . 6 (∀𝑥𝑦𝑧((𝑥𝑆𝑦𝑦𝑆𝑧) → 𝑥𝑆𝑧) → (∀𝑥𝑦𝑧((𝑥𝑅𝑦𝑦𝑅𝑧) → 𝑥𝑅𝑧) → ∀𝑥𝑦𝑧((𝑥(𝑅𝑆)𝑦𝑦(𝑅𝑆)𝑧) → 𝑥(𝑅𝑆)𝑧)))
182, 17sylbi 120 . . . . 5 ((𝑆𝑆) ⊆ 𝑆 → (∀𝑥𝑦𝑧((𝑥𝑅𝑦𝑦𝑅𝑧) → 𝑥𝑅𝑧) → ∀𝑥𝑦𝑧((𝑥(𝑅𝑆)𝑦𝑦(𝑅𝑆)𝑧) → 𝑥(𝑅𝑆)𝑧)))
1918com12 30 . . . 4 (∀𝑥𝑦𝑧((𝑥𝑅𝑦𝑦𝑅𝑧) → 𝑥𝑅𝑧) → ((𝑆𝑆) ⊆ 𝑆 → ∀𝑥𝑦𝑧((𝑥(𝑅𝑆)𝑦𝑦(𝑅𝑆)𝑧) → 𝑥(𝑅𝑆)𝑧)))
201, 19sylbi 120 . . 3 ((𝑅𝑅) ⊆ 𝑅 → ((𝑆𝑆) ⊆ 𝑆 → ∀𝑥𝑦𝑧((𝑥(𝑅𝑆)𝑦𝑦(𝑅𝑆)𝑧) → 𝑥(𝑅𝑆)𝑧)))
2120imp 123 . 2 (((𝑅𝑅) ⊆ 𝑅 ∧ (𝑆𝑆) ⊆ 𝑆) → ∀𝑥𝑦𝑧((𝑥(𝑅𝑆)𝑦𝑦(𝑅𝑆)𝑧) → 𝑥(𝑅𝑆)𝑧))
22 cotr 4888 . 2 (((𝑅𝑆) ∘ (𝑅𝑆)) ⊆ (𝑅𝑆) ↔ ∀𝑥𝑦𝑧((𝑥(𝑅𝑆)𝑦𝑦(𝑅𝑆)𝑧) → 𝑥(𝑅𝑆)𝑧))
2321, 22sylibr 133 1 (((𝑅𝑅) ⊆ 𝑅 ∧ (𝑆𝑆) ⊆ 𝑆) → ((𝑅𝑆) ∘ (𝑅𝑆)) ⊆ (𝑅𝑆))
 Colors of variables: wff set class Syntax hints:   → wi 4   ∧ wa 103  ∀wal 1312   ∩ cin 3038   ⊆ wss 3039   class class class wbr 3897   ∘ ccom 4511 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 681  ax-5 1406  ax-7 1407  ax-gen 1408  ax-ie1 1452  ax-ie2 1453  ax-8 1465  ax-10 1466  ax-11 1467  ax-i12 1468  ax-bndl 1469  ax-4 1470  ax-14 1475  ax-17 1489  ax-i9 1493  ax-ial 1497  ax-i5r 1498  ax-ext 2097  ax-sep 4014  ax-pow 4066  ax-pr 4099 This theorem depends on definitions:  df-bi 116  df-3an 947  df-tru 1317  df-nf 1420  df-sb 1719  df-eu 1978  df-mo 1979  df-clab 2102  df-cleq 2108  df-clel 2111  df-nfc 2245  df-ral 2396  df-rex 2397  df-v 2660  df-un 3043  df-in 3045  df-ss 3052  df-pw 3480  df-sn 3501  df-pr 3502  df-op 3504  df-br 3898  df-opab 3958  df-xp 4513  df-rel 4514  df-co 4516 This theorem is referenced by:  trinxp  4900
 Copyright terms: Public domain W3C validator