Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  vtoclgft GIF version

Theorem vtoclgft 2762
 Description: Closed theorem form of vtoclgf 2770. (Contributed by NM, 17-Feb-2013.) (Revised by Mario Carneiro, 12-Oct-2016.)
Assertion
Ref Expression
vtoclgft (((𝑥𝐴 ∧ Ⅎ𝑥𝜓) ∧ (∀𝑥(𝑥 = 𝐴 → (𝜑𝜓)) ∧ ∀𝑥𝜑) ∧ 𝐴𝑉) → 𝜓)

Proof of Theorem vtoclgft
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 elex 2723 . 2 (𝐴𝑉𝐴 ∈ V)
2 elisset 2726 . . . . 5 (𝐴 ∈ V → ∃𝑧 𝑧 = 𝐴)
323ad2ant3 1005 . . . 4 (((𝑥𝐴 ∧ Ⅎ𝑥𝜓) ∧ (∀𝑥(𝑥 = 𝐴 → (𝜑𝜓)) ∧ ∀𝑥𝜑) ∧ 𝐴 ∈ V) → ∃𝑧 𝑧 = 𝐴)
4 nfnfc1 2302 . . . . . . 7 𝑥𝑥𝐴
5 nfcvd 2300 . . . . . . . 8 (𝑥𝐴𝑥𝑧)
6 id 19 . . . . . . . 8 (𝑥𝐴𝑥𝐴)
75, 6nfeqd 2314 . . . . . . 7 (𝑥𝐴 → Ⅎ𝑥 𝑧 = 𝐴)
8 eqeq1 2164 . . . . . . . 8 (𝑧 = 𝑥 → (𝑧 = 𝐴𝑥 = 𝐴))
98a1i 9 . . . . . . 7 (𝑥𝐴 → (𝑧 = 𝑥 → (𝑧 = 𝐴𝑥 = 𝐴)))
104, 7, 9cbvexd 1907 . . . . . 6 (𝑥𝐴 → (∃𝑧 𝑧 = 𝐴 ↔ ∃𝑥 𝑥 = 𝐴))
1110ad2antrr 480 . . . . 5 (((𝑥𝐴 ∧ Ⅎ𝑥𝜓) ∧ (∀𝑥(𝑥 = 𝐴 → (𝜑𝜓)) ∧ ∀𝑥𝜑)) → (∃𝑧 𝑧 = 𝐴 ↔ ∃𝑥 𝑥 = 𝐴))
12113adant3 1002 . . . 4 (((𝑥𝐴 ∧ Ⅎ𝑥𝜓) ∧ (∀𝑥(𝑥 = 𝐴 → (𝜑𝜓)) ∧ ∀𝑥𝜑) ∧ 𝐴 ∈ V) → (∃𝑧 𝑧 = 𝐴 ↔ ∃𝑥 𝑥 = 𝐴))
133, 12mpbid 146 . . 3 (((𝑥𝐴 ∧ Ⅎ𝑥𝜓) ∧ (∀𝑥(𝑥 = 𝐴 → (𝜑𝜓)) ∧ ∀𝑥𝜑) ∧ 𝐴 ∈ V) → ∃𝑥 𝑥 = 𝐴)
14 biimp 117 . . . . . . . . 9 ((𝜑𝜓) → (𝜑𝜓))
1514imim2i 12 . . . . . . . 8 ((𝑥 = 𝐴 → (𝜑𝜓)) → (𝑥 = 𝐴 → (𝜑𝜓)))
1615com23 78 . . . . . . 7 ((𝑥 = 𝐴 → (𝜑𝜓)) → (𝜑 → (𝑥 = 𝐴𝜓)))
1716imp 123 . . . . . 6 (((𝑥 = 𝐴 → (𝜑𝜓)) ∧ 𝜑) → (𝑥 = 𝐴𝜓))
1817alanimi 1439 . . . . 5 ((∀𝑥(𝑥 = 𝐴 → (𝜑𝜓)) ∧ ∀𝑥𝜑) → ∀𝑥(𝑥 = 𝐴𝜓))
19183ad2ant2 1004 . . . 4 (((𝑥𝐴 ∧ Ⅎ𝑥𝜓) ∧ (∀𝑥(𝑥 = 𝐴 → (𝜑𝜓)) ∧ ∀𝑥𝜑) ∧ 𝐴 ∈ V) → ∀𝑥(𝑥 = 𝐴𝜓))
20 simp1r 1007 . . . . 5 (((𝑥𝐴 ∧ Ⅎ𝑥𝜓) ∧ (∀𝑥(𝑥 = 𝐴 → (𝜑𝜓)) ∧ ∀𝑥𝜑) ∧ 𝐴 ∈ V) → Ⅎ𝑥𝜓)
21 19.23t 1657 . . . . 5 (Ⅎ𝑥𝜓 → (∀𝑥(𝑥 = 𝐴𝜓) ↔ (∃𝑥 𝑥 = 𝐴𝜓)))
2220, 21syl 14 . . . 4 (((𝑥𝐴 ∧ Ⅎ𝑥𝜓) ∧ (∀𝑥(𝑥 = 𝐴 → (𝜑𝜓)) ∧ ∀𝑥𝜑) ∧ 𝐴 ∈ V) → (∀𝑥(𝑥 = 𝐴𝜓) ↔ (∃𝑥 𝑥 = 𝐴𝜓)))
2319, 22mpbid 146 . . 3 (((𝑥𝐴 ∧ Ⅎ𝑥𝜓) ∧ (∀𝑥(𝑥 = 𝐴 → (𝜑𝜓)) ∧ ∀𝑥𝜑) ∧ 𝐴 ∈ V) → (∃𝑥 𝑥 = 𝐴𝜓))
2413, 23mpd 13 . 2 (((𝑥𝐴 ∧ Ⅎ𝑥𝜓) ∧ (∀𝑥(𝑥 = 𝐴 → (𝜑𝜓)) ∧ ∀𝑥𝜑) ∧ 𝐴 ∈ V) → 𝜓)
251, 24syl3an3 1255 1 (((𝑥𝐴 ∧ Ⅎ𝑥𝜓) ∧ (∀𝑥(𝑥 = 𝐴 → (𝜑𝜓)) ∧ ∀𝑥𝜑) ∧ 𝐴𝑉) → 𝜓)
 Colors of variables: wff set class Syntax hints:   → wi 4   ∧ wa 103   ↔ wb 104   ∧ w3a 963  ∀wal 1333   = wceq 1335  Ⅎwnf 1440  ∃wex 1472   ∈ wcel 2128  Ⅎwnfc 2286  Vcvv 2712 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-5 1427  ax-7 1428  ax-gen 1429  ax-ie1 1473  ax-ie2 1474  ax-8 1484  ax-4 1490  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2139 This theorem depends on definitions:  df-bi 116  df-3an 965  df-nf 1441  df-sb 1743  df-clab 2144  df-cleq 2150  df-clel 2153  df-nfc 2288  df-v 2714 This theorem is referenced by:  vtocldf  2763
 Copyright terms: Public domain W3C validator