| Step | Hyp | Ref
| Expression |
| 1 | | anandir 591 |
. . . . . . . 8
⊢ (((𝑥 ∈ 𝐴 ∧ ¬ 𝑥 ∈ 𝐵) ∧ 𝑥𝐹𝑦) ↔ ((𝑥 ∈ 𝐴 ∧ 𝑥𝐹𝑦) ∧ (¬ 𝑥 ∈ 𝐵 ∧ 𝑥𝐹𝑦))) |
| 2 | 1 | exbii 1619 |
. . . . . . 7
⊢
(∃𝑥((𝑥 ∈ 𝐴 ∧ ¬ 𝑥 ∈ 𝐵) ∧ 𝑥𝐹𝑦) ↔ ∃𝑥((𝑥 ∈ 𝐴 ∧ 𝑥𝐹𝑦) ∧ (¬ 𝑥 ∈ 𝐵 ∧ 𝑥𝐹𝑦))) |
| 3 | | 19.40 1645 |
. . . . . . 7
⊢
(∃𝑥((𝑥 ∈ 𝐴 ∧ 𝑥𝐹𝑦) ∧ (¬ 𝑥 ∈ 𝐵 ∧ 𝑥𝐹𝑦)) → (∃𝑥(𝑥 ∈ 𝐴 ∧ 𝑥𝐹𝑦) ∧ ∃𝑥(¬ 𝑥 ∈ 𝐵 ∧ 𝑥𝐹𝑦))) |
| 4 | 2, 3 | sylbi 121 |
. . . . . 6
⊢
(∃𝑥((𝑥 ∈ 𝐴 ∧ ¬ 𝑥 ∈ 𝐵) ∧ 𝑥𝐹𝑦) → (∃𝑥(𝑥 ∈ 𝐴 ∧ 𝑥𝐹𝑦) ∧ ∃𝑥(¬ 𝑥 ∈ 𝐵 ∧ 𝑥𝐹𝑦))) |
| 5 | | nfv 1542 |
. . . . . . . . . . 11
⊢
Ⅎ𝑥Fun ◡𝐹 |
| 6 | | nfe1 1510 |
. . . . . . . . . . 11
⊢
Ⅎ𝑥∃𝑥(𝑥𝐹𝑦 ∧ ¬ 𝑥 ∈ 𝐵) |
| 7 | 5, 6 | nfan 1579 |
. . . . . . . . . 10
⊢
Ⅎ𝑥(Fun ◡𝐹 ∧ ∃𝑥(𝑥𝐹𝑦 ∧ ¬ 𝑥 ∈ 𝐵)) |
| 8 | | funmo 5273 |
. . . . . . . . . . . . . 14
⊢ (Fun
◡𝐹 → ∃*𝑥 𝑦◡𝐹𝑥) |
| 9 | | vex 2766 |
. . . . . . . . . . . . . . . 16
⊢ 𝑦 ∈ V |
| 10 | | vex 2766 |
. . . . . . . . . . . . . . . 16
⊢ 𝑥 ∈ V |
| 11 | 9, 10 | brcnv 4849 |
. . . . . . . . . . . . . . 15
⊢ (𝑦◡𝐹𝑥 ↔ 𝑥𝐹𝑦) |
| 12 | 11 | mobii 2082 |
. . . . . . . . . . . . . 14
⊢
(∃*𝑥 𝑦◡𝐹𝑥 ↔ ∃*𝑥 𝑥𝐹𝑦) |
| 13 | 8, 12 | sylib 122 |
. . . . . . . . . . . . 13
⊢ (Fun
◡𝐹 → ∃*𝑥 𝑥𝐹𝑦) |
| 14 | | mopick 2123 |
. . . . . . . . . . . . 13
⊢
((∃*𝑥 𝑥𝐹𝑦 ∧ ∃𝑥(𝑥𝐹𝑦 ∧ ¬ 𝑥 ∈ 𝐵)) → (𝑥𝐹𝑦 → ¬ 𝑥 ∈ 𝐵)) |
| 15 | 13, 14 | sylan 283 |
. . . . . . . . . . . 12
⊢ ((Fun
◡𝐹 ∧ ∃𝑥(𝑥𝐹𝑦 ∧ ¬ 𝑥 ∈ 𝐵)) → (𝑥𝐹𝑦 → ¬ 𝑥 ∈ 𝐵)) |
| 16 | 15 | con2d 625 |
. . . . . . . . . . 11
⊢ ((Fun
◡𝐹 ∧ ∃𝑥(𝑥𝐹𝑦 ∧ ¬ 𝑥 ∈ 𝐵)) → (𝑥 ∈ 𝐵 → ¬ 𝑥𝐹𝑦)) |
| 17 | | imnan 691 |
. . . . . . . . . . 11
⊢ ((𝑥 ∈ 𝐵 → ¬ 𝑥𝐹𝑦) ↔ ¬ (𝑥 ∈ 𝐵 ∧ 𝑥𝐹𝑦)) |
| 18 | 16, 17 | sylib 122 |
. . . . . . . . . 10
⊢ ((Fun
◡𝐹 ∧ ∃𝑥(𝑥𝐹𝑦 ∧ ¬ 𝑥 ∈ 𝐵)) → ¬ (𝑥 ∈ 𝐵 ∧ 𝑥𝐹𝑦)) |
| 19 | 7, 18 | alrimi 1536 |
. . . . . . . . 9
⊢ ((Fun
◡𝐹 ∧ ∃𝑥(𝑥𝐹𝑦 ∧ ¬ 𝑥 ∈ 𝐵)) → ∀𝑥 ¬ (𝑥 ∈ 𝐵 ∧ 𝑥𝐹𝑦)) |
| 20 | 19 | ex 115 |
. . . . . . . 8
⊢ (Fun
◡𝐹 → (∃𝑥(𝑥𝐹𝑦 ∧ ¬ 𝑥 ∈ 𝐵) → ∀𝑥 ¬ (𝑥 ∈ 𝐵 ∧ 𝑥𝐹𝑦))) |
| 21 | | exancom 1622 |
. . . . . . . 8
⊢
(∃𝑥(𝑥𝐹𝑦 ∧ ¬ 𝑥 ∈ 𝐵) ↔ ∃𝑥(¬ 𝑥 ∈ 𝐵 ∧ 𝑥𝐹𝑦)) |
| 22 | | alnex 1513 |
. . . . . . . 8
⊢
(∀𝑥 ¬
(𝑥 ∈ 𝐵 ∧ 𝑥𝐹𝑦) ↔ ¬ ∃𝑥(𝑥 ∈ 𝐵 ∧ 𝑥𝐹𝑦)) |
| 23 | 20, 21, 22 | 3imtr3g 204 |
. . . . . . 7
⊢ (Fun
◡𝐹 → (∃𝑥(¬ 𝑥 ∈ 𝐵 ∧ 𝑥𝐹𝑦) → ¬ ∃𝑥(𝑥 ∈ 𝐵 ∧ 𝑥𝐹𝑦))) |
| 24 | 23 | anim2d 337 |
. . . . . 6
⊢ (Fun
◡𝐹 → ((∃𝑥(𝑥 ∈ 𝐴 ∧ 𝑥𝐹𝑦) ∧ ∃𝑥(¬ 𝑥 ∈ 𝐵 ∧ 𝑥𝐹𝑦)) → (∃𝑥(𝑥 ∈ 𝐴 ∧ 𝑥𝐹𝑦) ∧ ¬ ∃𝑥(𝑥 ∈ 𝐵 ∧ 𝑥𝐹𝑦)))) |
| 25 | 4, 24 | syl5 32 |
. . . . 5
⊢ (Fun
◡𝐹 → (∃𝑥((𝑥 ∈ 𝐴 ∧ ¬ 𝑥 ∈ 𝐵) ∧ 𝑥𝐹𝑦) → (∃𝑥(𝑥 ∈ 𝐴 ∧ 𝑥𝐹𝑦) ∧ ¬ ∃𝑥(𝑥 ∈ 𝐵 ∧ 𝑥𝐹𝑦)))) |
| 26 | | df-rex 2481 |
. . . . . 6
⊢
(∃𝑥 ∈
(𝐴 ∖ 𝐵)𝑥𝐹𝑦 ↔ ∃𝑥(𝑥 ∈ (𝐴 ∖ 𝐵) ∧ 𝑥𝐹𝑦)) |
| 27 | | eldif 3166 |
. . . . . . . 8
⊢ (𝑥 ∈ (𝐴 ∖ 𝐵) ↔ (𝑥 ∈ 𝐴 ∧ ¬ 𝑥 ∈ 𝐵)) |
| 28 | 27 | anbi1i 458 |
. . . . . . 7
⊢ ((𝑥 ∈ (𝐴 ∖ 𝐵) ∧ 𝑥𝐹𝑦) ↔ ((𝑥 ∈ 𝐴 ∧ ¬ 𝑥 ∈ 𝐵) ∧ 𝑥𝐹𝑦)) |
| 29 | 28 | exbii 1619 |
. . . . . 6
⊢
(∃𝑥(𝑥 ∈ (𝐴 ∖ 𝐵) ∧ 𝑥𝐹𝑦) ↔ ∃𝑥((𝑥 ∈ 𝐴 ∧ ¬ 𝑥 ∈ 𝐵) ∧ 𝑥𝐹𝑦)) |
| 30 | 26, 29 | bitri 184 |
. . . . 5
⊢
(∃𝑥 ∈
(𝐴 ∖ 𝐵)𝑥𝐹𝑦 ↔ ∃𝑥((𝑥 ∈ 𝐴 ∧ ¬ 𝑥 ∈ 𝐵) ∧ 𝑥𝐹𝑦)) |
| 31 | | df-rex 2481 |
. . . . . 6
⊢
(∃𝑥 ∈
𝐴 𝑥𝐹𝑦 ↔ ∃𝑥(𝑥 ∈ 𝐴 ∧ 𝑥𝐹𝑦)) |
| 32 | | df-rex 2481 |
. . . . . . 7
⊢
(∃𝑥 ∈
𝐵 𝑥𝐹𝑦 ↔ ∃𝑥(𝑥 ∈ 𝐵 ∧ 𝑥𝐹𝑦)) |
| 33 | 32 | notbii 669 |
. . . . . 6
⊢ (¬
∃𝑥 ∈ 𝐵 𝑥𝐹𝑦 ↔ ¬ ∃𝑥(𝑥 ∈ 𝐵 ∧ 𝑥𝐹𝑦)) |
| 34 | 31, 33 | anbi12i 460 |
. . . . 5
⊢
((∃𝑥 ∈
𝐴 𝑥𝐹𝑦 ∧ ¬ ∃𝑥 ∈ 𝐵 𝑥𝐹𝑦) ↔ (∃𝑥(𝑥 ∈ 𝐴 ∧ 𝑥𝐹𝑦) ∧ ¬ ∃𝑥(𝑥 ∈ 𝐵 ∧ 𝑥𝐹𝑦))) |
| 35 | 25, 30, 34 | 3imtr4g 205 |
. . . 4
⊢ (Fun
◡𝐹 → (∃𝑥 ∈ (𝐴 ∖ 𝐵)𝑥𝐹𝑦 → (∃𝑥 ∈ 𝐴 𝑥𝐹𝑦 ∧ ¬ ∃𝑥 ∈ 𝐵 𝑥𝐹𝑦))) |
| 36 | 35 | ss2abdv 3256 |
. . 3
⊢ (Fun
◡𝐹 → {𝑦 ∣ ∃𝑥 ∈ (𝐴 ∖ 𝐵)𝑥𝐹𝑦} ⊆ {𝑦 ∣ (∃𝑥 ∈ 𝐴 𝑥𝐹𝑦 ∧ ¬ ∃𝑥 ∈ 𝐵 𝑥𝐹𝑦)}) |
| 37 | | dfima2 5011 |
. . 3
⊢ (𝐹 “ (𝐴 ∖ 𝐵)) = {𝑦 ∣ ∃𝑥 ∈ (𝐴 ∖ 𝐵)𝑥𝐹𝑦} |
| 38 | | dfima2 5011 |
. . . . 5
⊢ (𝐹 “ 𝐴) = {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑥𝐹𝑦} |
| 39 | | dfima2 5011 |
. . . . 5
⊢ (𝐹 “ 𝐵) = {𝑦 ∣ ∃𝑥 ∈ 𝐵 𝑥𝐹𝑦} |
| 40 | 38, 39 | difeq12i 3279 |
. . . 4
⊢ ((𝐹 “ 𝐴) ∖ (𝐹 “ 𝐵)) = ({𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑥𝐹𝑦} ∖ {𝑦 ∣ ∃𝑥 ∈ 𝐵 𝑥𝐹𝑦}) |
| 41 | | difab 3432 |
. . . 4
⊢ ({𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑥𝐹𝑦} ∖ {𝑦 ∣ ∃𝑥 ∈ 𝐵 𝑥𝐹𝑦}) = {𝑦 ∣ (∃𝑥 ∈ 𝐴 𝑥𝐹𝑦 ∧ ¬ ∃𝑥 ∈ 𝐵 𝑥𝐹𝑦)} |
| 42 | 40, 41 | eqtri 2217 |
. . 3
⊢ ((𝐹 “ 𝐴) ∖ (𝐹 “ 𝐵)) = {𝑦 ∣ (∃𝑥 ∈ 𝐴 𝑥𝐹𝑦 ∧ ¬ ∃𝑥 ∈ 𝐵 𝑥𝐹𝑦)} |
| 43 | 36, 37, 42 | 3sstr4g 3226 |
. 2
⊢ (Fun
◡𝐹 → (𝐹 “ (𝐴 ∖ 𝐵)) ⊆ ((𝐹 “ 𝐴) ∖ (𝐹 “ 𝐵))) |
| 44 | | imadiflem 5337 |
. . 3
⊢ ((𝐹 “ 𝐴) ∖ (𝐹 “ 𝐵)) ⊆ (𝐹 “ (𝐴 ∖ 𝐵)) |
| 45 | 44 | a1i 9 |
. 2
⊢ (Fun
◡𝐹 → ((𝐹 “ 𝐴) ∖ (𝐹 “ 𝐵)) ⊆ (𝐹 “ (𝐴 ∖ 𝐵))) |
| 46 | 43, 45 | eqssd 3200 |
1
⊢ (Fun
◡𝐹 → (𝐹 “ (𝐴 ∖ 𝐵)) = ((𝐹 “ 𝐴) ∖ (𝐹 “ 𝐵))) |