ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  imadif GIF version

Theorem imadif 5268
Description: The image of a difference is the difference of images. (Contributed by NM, 24-May-1998.)
Assertion
Ref Expression
imadif (Fun 𝐹 → (𝐹 “ (𝐴𝐵)) = ((𝐹𝐴) ∖ (𝐹𝐵)))

Proof of Theorem imadif
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 anandir 581 . . . . . . . 8 (((𝑥𝐴 ∧ ¬ 𝑥𝐵) ∧ 𝑥𝐹𝑦) ↔ ((𝑥𝐴𝑥𝐹𝑦) ∧ (¬ 𝑥𝐵𝑥𝐹𝑦)))
21exbii 1593 . . . . . . 7 (∃𝑥((𝑥𝐴 ∧ ¬ 𝑥𝐵) ∧ 𝑥𝐹𝑦) ↔ ∃𝑥((𝑥𝐴𝑥𝐹𝑦) ∧ (¬ 𝑥𝐵𝑥𝐹𝑦)))
3 19.40 1619 . . . . . . 7 (∃𝑥((𝑥𝐴𝑥𝐹𝑦) ∧ (¬ 𝑥𝐵𝑥𝐹𝑦)) → (∃𝑥(𝑥𝐴𝑥𝐹𝑦) ∧ ∃𝑥𝑥𝐵𝑥𝐹𝑦)))
42, 3sylbi 120 . . . . . 6 (∃𝑥((𝑥𝐴 ∧ ¬ 𝑥𝐵) ∧ 𝑥𝐹𝑦) → (∃𝑥(𝑥𝐴𝑥𝐹𝑦) ∧ ∃𝑥𝑥𝐵𝑥𝐹𝑦)))
5 nfv 1516 . . . . . . . . . . 11 𝑥Fun 𝐹
6 nfe1 1484 . . . . . . . . . . 11 𝑥𝑥(𝑥𝐹𝑦 ∧ ¬ 𝑥𝐵)
75, 6nfan 1553 . . . . . . . . . 10 𝑥(Fun 𝐹 ∧ ∃𝑥(𝑥𝐹𝑦 ∧ ¬ 𝑥𝐵))
8 funmo 5203 . . . . . . . . . . . . . 14 (Fun 𝐹 → ∃*𝑥 𝑦𝐹𝑥)
9 vex 2729 . . . . . . . . . . . . . . . 16 𝑦 ∈ V
10 vex 2729 . . . . . . . . . . . . . . . 16 𝑥 ∈ V
119, 10brcnv 4787 . . . . . . . . . . . . . . 15 (𝑦𝐹𝑥𝑥𝐹𝑦)
1211mobii 2051 . . . . . . . . . . . . . 14 (∃*𝑥 𝑦𝐹𝑥 ↔ ∃*𝑥 𝑥𝐹𝑦)
138, 12sylib 121 . . . . . . . . . . . . 13 (Fun 𝐹 → ∃*𝑥 𝑥𝐹𝑦)
14 mopick 2092 . . . . . . . . . . . . 13 ((∃*𝑥 𝑥𝐹𝑦 ∧ ∃𝑥(𝑥𝐹𝑦 ∧ ¬ 𝑥𝐵)) → (𝑥𝐹𝑦 → ¬ 𝑥𝐵))
1513, 14sylan 281 . . . . . . . . . . . 12 ((Fun 𝐹 ∧ ∃𝑥(𝑥𝐹𝑦 ∧ ¬ 𝑥𝐵)) → (𝑥𝐹𝑦 → ¬ 𝑥𝐵))
1615con2d 614 . . . . . . . . . . 11 ((Fun 𝐹 ∧ ∃𝑥(𝑥𝐹𝑦 ∧ ¬ 𝑥𝐵)) → (𝑥𝐵 → ¬ 𝑥𝐹𝑦))
17 imnan 680 . . . . . . . . . . 11 ((𝑥𝐵 → ¬ 𝑥𝐹𝑦) ↔ ¬ (𝑥𝐵𝑥𝐹𝑦))
1816, 17sylib 121 . . . . . . . . . 10 ((Fun 𝐹 ∧ ∃𝑥(𝑥𝐹𝑦 ∧ ¬ 𝑥𝐵)) → ¬ (𝑥𝐵𝑥𝐹𝑦))
197, 18alrimi 1510 . . . . . . . . 9 ((Fun 𝐹 ∧ ∃𝑥(𝑥𝐹𝑦 ∧ ¬ 𝑥𝐵)) → ∀𝑥 ¬ (𝑥𝐵𝑥𝐹𝑦))
2019ex 114 . . . . . . . 8 (Fun 𝐹 → (∃𝑥(𝑥𝐹𝑦 ∧ ¬ 𝑥𝐵) → ∀𝑥 ¬ (𝑥𝐵𝑥𝐹𝑦)))
21 exancom 1596 . . . . . . . 8 (∃𝑥(𝑥𝐹𝑦 ∧ ¬ 𝑥𝐵) ↔ ∃𝑥𝑥𝐵𝑥𝐹𝑦))
22 alnex 1487 . . . . . . . 8 (∀𝑥 ¬ (𝑥𝐵𝑥𝐹𝑦) ↔ ¬ ∃𝑥(𝑥𝐵𝑥𝐹𝑦))
2320, 21, 223imtr3g 203 . . . . . . 7 (Fun 𝐹 → (∃𝑥𝑥𝐵𝑥𝐹𝑦) → ¬ ∃𝑥(𝑥𝐵𝑥𝐹𝑦)))
2423anim2d 335 . . . . . 6 (Fun 𝐹 → ((∃𝑥(𝑥𝐴𝑥𝐹𝑦) ∧ ∃𝑥𝑥𝐵𝑥𝐹𝑦)) → (∃𝑥(𝑥𝐴𝑥𝐹𝑦) ∧ ¬ ∃𝑥(𝑥𝐵𝑥𝐹𝑦))))
254, 24syl5 32 . . . . 5 (Fun 𝐹 → (∃𝑥((𝑥𝐴 ∧ ¬ 𝑥𝐵) ∧ 𝑥𝐹𝑦) → (∃𝑥(𝑥𝐴𝑥𝐹𝑦) ∧ ¬ ∃𝑥(𝑥𝐵𝑥𝐹𝑦))))
26 df-rex 2450 . . . . . 6 (∃𝑥 ∈ (𝐴𝐵)𝑥𝐹𝑦 ↔ ∃𝑥(𝑥 ∈ (𝐴𝐵) ∧ 𝑥𝐹𝑦))
27 eldif 3125 . . . . . . . 8 (𝑥 ∈ (𝐴𝐵) ↔ (𝑥𝐴 ∧ ¬ 𝑥𝐵))
2827anbi1i 454 . . . . . . 7 ((𝑥 ∈ (𝐴𝐵) ∧ 𝑥𝐹𝑦) ↔ ((𝑥𝐴 ∧ ¬ 𝑥𝐵) ∧ 𝑥𝐹𝑦))
2928exbii 1593 . . . . . 6 (∃𝑥(𝑥 ∈ (𝐴𝐵) ∧ 𝑥𝐹𝑦) ↔ ∃𝑥((𝑥𝐴 ∧ ¬ 𝑥𝐵) ∧ 𝑥𝐹𝑦))
3026, 29bitri 183 . . . . 5 (∃𝑥 ∈ (𝐴𝐵)𝑥𝐹𝑦 ↔ ∃𝑥((𝑥𝐴 ∧ ¬ 𝑥𝐵) ∧ 𝑥𝐹𝑦))
31 df-rex 2450 . . . . . 6 (∃𝑥𝐴 𝑥𝐹𝑦 ↔ ∃𝑥(𝑥𝐴𝑥𝐹𝑦))
32 df-rex 2450 . . . . . . 7 (∃𝑥𝐵 𝑥𝐹𝑦 ↔ ∃𝑥(𝑥𝐵𝑥𝐹𝑦))
3332notbii 658 . . . . . 6 (¬ ∃𝑥𝐵 𝑥𝐹𝑦 ↔ ¬ ∃𝑥(𝑥𝐵𝑥𝐹𝑦))
3431, 33anbi12i 456 . . . . 5 ((∃𝑥𝐴 𝑥𝐹𝑦 ∧ ¬ ∃𝑥𝐵 𝑥𝐹𝑦) ↔ (∃𝑥(𝑥𝐴𝑥𝐹𝑦) ∧ ¬ ∃𝑥(𝑥𝐵𝑥𝐹𝑦)))
3525, 30, 343imtr4g 204 . . . 4 (Fun 𝐹 → (∃𝑥 ∈ (𝐴𝐵)𝑥𝐹𝑦 → (∃𝑥𝐴 𝑥𝐹𝑦 ∧ ¬ ∃𝑥𝐵 𝑥𝐹𝑦)))
3635ss2abdv 3215 . . 3 (Fun 𝐹 → {𝑦 ∣ ∃𝑥 ∈ (𝐴𝐵)𝑥𝐹𝑦} ⊆ {𝑦 ∣ (∃𝑥𝐴 𝑥𝐹𝑦 ∧ ¬ ∃𝑥𝐵 𝑥𝐹𝑦)})
37 dfima2 4948 . . 3 (𝐹 “ (𝐴𝐵)) = {𝑦 ∣ ∃𝑥 ∈ (𝐴𝐵)𝑥𝐹𝑦}
38 dfima2 4948 . . . . 5 (𝐹𝐴) = {𝑦 ∣ ∃𝑥𝐴 𝑥𝐹𝑦}
39 dfima2 4948 . . . . 5 (𝐹𝐵) = {𝑦 ∣ ∃𝑥𝐵 𝑥𝐹𝑦}
4038, 39difeq12i 3238 . . . 4 ((𝐹𝐴) ∖ (𝐹𝐵)) = ({𝑦 ∣ ∃𝑥𝐴 𝑥𝐹𝑦} ∖ {𝑦 ∣ ∃𝑥𝐵 𝑥𝐹𝑦})
41 difab 3391 . . . 4 ({𝑦 ∣ ∃𝑥𝐴 𝑥𝐹𝑦} ∖ {𝑦 ∣ ∃𝑥𝐵 𝑥𝐹𝑦}) = {𝑦 ∣ (∃𝑥𝐴 𝑥𝐹𝑦 ∧ ¬ ∃𝑥𝐵 𝑥𝐹𝑦)}
4240, 41eqtri 2186 . . 3 ((𝐹𝐴) ∖ (𝐹𝐵)) = {𝑦 ∣ (∃𝑥𝐴 𝑥𝐹𝑦 ∧ ¬ ∃𝑥𝐵 𝑥𝐹𝑦)}
4336, 37, 423sstr4g 3185 . 2 (Fun 𝐹 → (𝐹 “ (𝐴𝐵)) ⊆ ((𝐹𝐴) ∖ (𝐹𝐵)))
44 imadiflem 5267 . . 3 ((𝐹𝐴) ∖ (𝐹𝐵)) ⊆ (𝐹 “ (𝐴𝐵))
4544a1i 9 . 2 (Fun 𝐹 → ((𝐹𝐴) ∖ (𝐹𝐵)) ⊆ (𝐹 “ (𝐴𝐵)))
4643, 45eqssd 3159 1 (Fun 𝐹 → (𝐹 “ (𝐴𝐵)) = ((𝐹𝐴) ∖ (𝐹𝐵)))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 103  wal 1341   = wceq 1343  wex 1480  ∃*wmo 2015  wcel 2136  {cab 2151  wrex 2445  cdif 3113  wss 3116   class class class wbr 3982  ccnv 4603  cima 4607  Fun wfun 5182
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-14 2139  ax-ext 2147  ax-sep 4100  ax-pow 4153  ax-pr 4187
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-fal 1349  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ral 2449  df-rex 2450  df-rab 2453  df-v 2728  df-dif 3118  df-un 3120  df-in 3122  df-ss 3129  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-br 3983  df-opab 4044  df-id 4271  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-rn 4615  df-res 4616  df-ima 4617  df-fun 5190
This theorem is referenced by:  resdif  5454  difpreima  5612  phplem4  6821  phplem4dom  6828  phplem4on  6833  cnclima  12863
  Copyright terms: Public domain W3C validator