![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > anandi | GIF version |
Description: Distribution of conjunction over conjunction. (Contributed by NM, 14-Aug-1995.) |
Ref | Expression |
---|---|
anandi | ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒)) ↔ ((𝜑 ∧ 𝜓) ∧ (𝜑 ∧ 𝜒))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | anidm 396 | . . 3 ⊢ ((𝜑 ∧ 𝜑) ↔ 𝜑) | |
2 | 1 | anbi1i 458 | . 2 ⊢ (((𝜑 ∧ 𝜑) ∧ (𝜓 ∧ 𝜒)) ↔ (𝜑 ∧ (𝜓 ∧ 𝜒))) |
3 | an4 586 | . 2 ⊢ (((𝜑 ∧ 𝜑) ∧ (𝜓 ∧ 𝜒)) ↔ ((𝜑 ∧ 𝜓) ∧ (𝜑 ∧ 𝜒))) | |
4 | 2, 3 | bitr3i 186 | 1 ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒)) ↔ ((𝜑 ∧ 𝜓) ∧ (𝜑 ∧ 𝜒))) |
Colors of variables: wff set class |
Syntax hints: ∧ wa 104 ↔ wb 105 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
This theorem depends on definitions: df-bi 117 |
This theorem is referenced by: anandi3 991 moanim 2100 difundi 3389 inrab 3409 uniin 3831 xpcom 5177 fin 5404 fndmin 5625 nnaord 6512 ixpin 6725 ltexprlemdisj 7607 bldisj 13986 blininf 14009 |
Copyright terms: Public domain | W3C validator |