Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > elfzuzb | GIF version |
Description: Membership in a finite set of sequential integers in terms of sets of upper integers. (Contributed by NM, 18-Sep-2005.) (Revised by Mario Carneiro, 28-Apr-2015.) |
Ref | Expression |
---|---|
elfzuzb | ⊢ (𝐾 ∈ (𝑀...𝑁) ↔ (𝐾 ∈ (ℤ≥‘𝑀) ∧ 𝑁 ∈ (ℤ≥‘𝐾))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-3an 975 | . . 3 ⊢ (((𝑀 ∈ ℤ ∧ 𝐾 ∈ ℤ) ∧ (𝐾 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑀 ≤ 𝐾 ∧ 𝐾 ≤ 𝑁)) ↔ (((𝑀 ∈ ℤ ∧ 𝐾 ∈ ℤ) ∧ (𝐾 ∈ ℤ ∧ 𝑁 ∈ ℤ)) ∧ (𝑀 ≤ 𝐾 ∧ 𝐾 ≤ 𝑁))) | |
2 | an6 1316 | . . 3 ⊢ (((𝑀 ∈ ℤ ∧ 𝐾 ∈ ℤ ∧ 𝑀 ≤ 𝐾) ∧ (𝐾 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐾 ≤ 𝑁)) ↔ ((𝑀 ∈ ℤ ∧ 𝐾 ∈ ℤ) ∧ (𝐾 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑀 ≤ 𝐾 ∧ 𝐾 ≤ 𝑁))) | |
3 | df-3an 975 | . . . . 5 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ) ↔ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝐾 ∈ ℤ)) | |
4 | anandir 586 | . . . . 5 ⊢ (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝐾 ∈ ℤ) ↔ ((𝑀 ∈ ℤ ∧ 𝐾 ∈ ℤ) ∧ (𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ))) | |
5 | ancom 264 | . . . . . 6 ⊢ ((𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ) ↔ (𝐾 ∈ ℤ ∧ 𝑁 ∈ ℤ)) | |
6 | 5 | anbi2i 454 | . . . . 5 ⊢ (((𝑀 ∈ ℤ ∧ 𝐾 ∈ ℤ) ∧ (𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ)) ↔ ((𝑀 ∈ ℤ ∧ 𝐾 ∈ ℤ) ∧ (𝐾 ∈ ℤ ∧ 𝑁 ∈ ℤ))) |
7 | 3, 4, 6 | 3bitri 205 | . . . 4 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ) ↔ ((𝑀 ∈ ℤ ∧ 𝐾 ∈ ℤ) ∧ (𝐾 ∈ ℤ ∧ 𝑁 ∈ ℤ))) |
8 | 7 | anbi1i 455 | . . 3 ⊢ (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ) ∧ (𝑀 ≤ 𝐾 ∧ 𝐾 ≤ 𝑁)) ↔ (((𝑀 ∈ ℤ ∧ 𝐾 ∈ ℤ) ∧ (𝐾 ∈ ℤ ∧ 𝑁 ∈ ℤ)) ∧ (𝑀 ≤ 𝐾 ∧ 𝐾 ≤ 𝑁))) |
9 | 1, 2, 8 | 3bitr4ri 212 | . 2 ⊢ (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ) ∧ (𝑀 ≤ 𝐾 ∧ 𝐾 ≤ 𝑁)) ↔ ((𝑀 ∈ ℤ ∧ 𝐾 ∈ ℤ ∧ 𝑀 ≤ 𝐾) ∧ (𝐾 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐾 ≤ 𝑁))) |
10 | elfz2 9959 | . 2 ⊢ (𝐾 ∈ (𝑀...𝑁) ↔ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ) ∧ (𝑀 ≤ 𝐾 ∧ 𝐾 ≤ 𝑁))) | |
11 | eluz2 9480 | . . 3 ⊢ (𝐾 ∈ (ℤ≥‘𝑀) ↔ (𝑀 ∈ ℤ ∧ 𝐾 ∈ ℤ ∧ 𝑀 ≤ 𝐾)) | |
12 | eluz2 9480 | . . 3 ⊢ (𝑁 ∈ (ℤ≥‘𝐾) ↔ (𝐾 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐾 ≤ 𝑁)) | |
13 | 11, 12 | anbi12i 457 | . 2 ⊢ ((𝐾 ∈ (ℤ≥‘𝑀) ∧ 𝑁 ∈ (ℤ≥‘𝐾)) ↔ ((𝑀 ∈ ℤ ∧ 𝐾 ∈ ℤ ∧ 𝑀 ≤ 𝐾) ∧ (𝐾 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐾 ≤ 𝑁))) |
14 | 9, 10, 13 | 3bitr4i 211 | 1 ⊢ (𝐾 ∈ (𝑀...𝑁) ↔ (𝐾 ∈ (ℤ≥‘𝑀) ∧ 𝑁 ∈ (ℤ≥‘𝐾))) |
Colors of variables: wff set class |
Syntax hints: ∧ wa 103 ↔ wb 104 ∧ w3a 973 ∈ wcel 2141 class class class wbr 3987 ‘cfv 5196 (class class class)co 5850 ≤ cle 7942 ℤcz 9199 ℤ≥cuz 9474 ...cfz 9952 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-14 2144 ax-ext 2152 ax-sep 4105 ax-pow 4158 ax-pr 4192 ax-setind 4519 ax-cnex 7852 ax-resscn 7853 |
This theorem depends on definitions: df-bi 116 df-3or 974 df-3an 975 df-tru 1351 df-fal 1354 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ne 2341 df-ral 2453 df-rex 2454 df-rab 2457 df-v 2732 df-sbc 2956 df-dif 3123 df-un 3125 df-in 3127 df-ss 3134 df-pw 3566 df-sn 3587 df-pr 3588 df-op 3590 df-uni 3795 df-br 3988 df-opab 4049 df-mpt 4050 df-id 4276 df-xp 4615 df-rel 4616 df-cnv 4617 df-co 4618 df-dm 4619 df-rn 4620 df-res 4621 df-ima 4622 df-iota 5158 df-fun 5198 df-fn 5199 df-f 5200 df-fv 5204 df-ov 5853 df-oprab 5854 df-mpo 5855 df-neg 8080 df-z 9200 df-uz 9475 df-fz 9953 |
This theorem is referenced by: eluzfz 9963 elfzuz 9964 elfzuz3 9965 elfzuz2 9972 peano2fzr 9980 fzsplit2 9993 fzass4 10005 fzss1 10006 fzss2 10007 fzp1elp1 10018 fznn 10032 elfz2nn0 10055 elfzofz 10105 fzosplitsnm1 10152 fzofzp1b 10171 fzosplitsn 10176 seq3fveq2 10412 monoord 10419 seq3id2 10452 bcn1 10679 seq3coll 10764 summodclem2a 11331 fisum0diag2 11397 mertenslemi1 11485 prodmodclem2a 11526 |
Copyright terms: Public domain | W3C validator |