ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  imadiflem GIF version

Theorem imadiflem 5337
Description: One direction of imadif 5338. This direction does not require Fun 𝐹. (Contributed by Jim Kingdon, 25-Dec-2018.)
Assertion
Ref Expression
imadiflem ((𝐹𝐴) ∖ (𝐹𝐵)) ⊆ (𝐹 “ (𝐴𝐵))

Proof of Theorem imadiflem
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-rex 2481 . . . 4 (∃𝑥𝐴 𝑥𝐹𝑦 ↔ ∃𝑥(𝑥𝐴𝑥𝐹𝑦))
2 df-rex 2481 . . . . 5 (∃𝑥𝐵 𝑥𝐹𝑦 ↔ ∃𝑥(𝑥𝐵𝑥𝐹𝑦))
32notbii 669 . . . 4 (¬ ∃𝑥𝐵 𝑥𝐹𝑦 ↔ ¬ ∃𝑥(𝑥𝐵𝑥𝐹𝑦))
4 alnex 1513 . . . . . . 7 (∀𝑥 ¬ (𝑥𝐵𝑥𝐹𝑦) ↔ ¬ ∃𝑥(𝑥𝐵𝑥𝐹𝑦))
5 19.29r 1635 . . . . . . 7 ((∃𝑥(𝑥𝐴𝑥𝐹𝑦) ∧ ∀𝑥 ¬ (𝑥𝐵𝑥𝐹𝑦)) → ∃𝑥((𝑥𝐴𝑥𝐹𝑦) ∧ ¬ (𝑥𝐵𝑥𝐹𝑦)))
64, 5sylan2br 288 . . . . . 6 ((∃𝑥(𝑥𝐴𝑥𝐹𝑦) ∧ ¬ ∃𝑥(𝑥𝐵𝑥𝐹𝑦)) → ∃𝑥((𝑥𝐴𝑥𝐹𝑦) ∧ ¬ (𝑥𝐵𝑥𝐹𝑦)))
7 simpl 109 . . . . . . . . 9 (((𝑥𝐴𝑥𝐹𝑦) ∧ ¬ (𝑥𝐵𝑥𝐹𝑦)) → (𝑥𝐴𝑥𝐹𝑦))
8 simplr 528 . . . . . . . . . 10 (((𝑥𝐴𝑥𝐹𝑦) ∧ ¬ (𝑥𝐵𝑥𝐹𝑦)) → 𝑥𝐹𝑦)
9 simpr 110 . . . . . . . . . . 11 (((𝑥𝐴𝑥𝐹𝑦) ∧ ¬ (𝑥𝐵𝑥𝐹𝑦)) → ¬ (𝑥𝐵𝑥𝐹𝑦))
10 ancom 266 . . . . . . . . . . . . 13 ((𝑥𝐵𝑥𝐹𝑦) ↔ (𝑥𝐹𝑦𝑥𝐵))
1110notbii 669 . . . . . . . . . . . 12 (¬ (𝑥𝐵𝑥𝐹𝑦) ↔ ¬ (𝑥𝐹𝑦𝑥𝐵))
12 imnan 691 . . . . . . . . . . . 12 ((𝑥𝐹𝑦 → ¬ 𝑥𝐵) ↔ ¬ (𝑥𝐹𝑦𝑥𝐵))
1311, 12bitr4i 187 . . . . . . . . . . 11 (¬ (𝑥𝐵𝑥𝐹𝑦) ↔ (𝑥𝐹𝑦 → ¬ 𝑥𝐵))
149, 13sylib 122 . . . . . . . . . 10 (((𝑥𝐴𝑥𝐹𝑦) ∧ ¬ (𝑥𝐵𝑥𝐹𝑦)) → (𝑥𝐹𝑦 → ¬ 𝑥𝐵))
158, 14mpd 13 . . . . . . . . 9 (((𝑥𝐴𝑥𝐹𝑦) ∧ ¬ (𝑥𝐵𝑥𝐹𝑦)) → ¬ 𝑥𝐵)
167, 15, 8jca32 310 . . . . . . . 8 (((𝑥𝐴𝑥𝐹𝑦) ∧ ¬ (𝑥𝐵𝑥𝐹𝑦)) → ((𝑥𝐴𝑥𝐹𝑦) ∧ (¬ 𝑥𝐵𝑥𝐹𝑦)))
17 eldif 3166 . . . . . . . . . 10 (𝑥 ∈ (𝐴𝐵) ↔ (𝑥𝐴 ∧ ¬ 𝑥𝐵))
1817anbi1i 458 . . . . . . . . 9 ((𝑥 ∈ (𝐴𝐵) ∧ 𝑥𝐹𝑦) ↔ ((𝑥𝐴 ∧ ¬ 𝑥𝐵) ∧ 𝑥𝐹𝑦))
19 anandir 591 . . . . . . . . 9 (((𝑥𝐴 ∧ ¬ 𝑥𝐵) ∧ 𝑥𝐹𝑦) ↔ ((𝑥𝐴𝑥𝐹𝑦) ∧ (¬ 𝑥𝐵𝑥𝐹𝑦)))
2018, 19bitri 184 . . . . . . . 8 ((𝑥 ∈ (𝐴𝐵) ∧ 𝑥𝐹𝑦) ↔ ((𝑥𝐴𝑥𝐹𝑦) ∧ (¬ 𝑥𝐵𝑥𝐹𝑦)))
2116, 20sylibr 134 . . . . . . 7 (((𝑥𝐴𝑥𝐹𝑦) ∧ ¬ (𝑥𝐵𝑥𝐹𝑦)) → (𝑥 ∈ (𝐴𝐵) ∧ 𝑥𝐹𝑦))
2221eximi 1614 . . . . . 6 (∃𝑥((𝑥𝐴𝑥𝐹𝑦) ∧ ¬ (𝑥𝐵𝑥𝐹𝑦)) → ∃𝑥(𝑥 ∈ (𝐴𝐵) ∧ 𝑥𝐹𝑦))
236, 22syl 14 . . . . 5 ((∃𝑥(𝑥𝐴𝑥𝐹𝑦) ∧ ¬ ∃𝑥(𝑥𝐵𝑥𝐹𝑦)) → ∃𝑥(𝑥 ∈ (𝐴𝐵) ∧ 𝑥𝐹𝑦))
24 df-rex 2481 . . . . 5 (∃𝑥 ∈ (𝐴𝐵)𝑥𝐹𝑦 ↔ ∃𝑥(𝑥 ∈ (𝐴𝐵) ∧ 𝑥𝐹𝑦))
2523, 24sylibr 134 . . . 4 ((∃𝑥(𝑥𝐴𝑥𝐹𝑦) ∧ ¬ ∃𝑥(𝑥𝐵𝑥𝐹𝑦)) → ∃𝑥 ∈ (𝐴𝐵)𝑥𝐹𝑦)
261, 3, 25syl2anb 291 . . 3 ((∃𝑥𝐴 𝑥𝐹𝑦 ∧ ¬ ∃𝑥𝐵 𝑥𝐹𝑦) → ∃𝑥 ∈ (𝐴𝐵)𝑥𝐹𝑦)
2726ss2abi 3255 . 2 {𝑦 ∣ (∃𝑥𝐴 𝑥𝐹𝑦 ∧ ¬ ∃𝑥𝐵 𝑥𝐹𝑦)} ⊆ {𝑦 ∣ ∃𝑥 ∈ (𝐴𝐵)𝑥𝐹𝑦}
28 dfima2 5011 . . . 4 (𝐹𝐴) = {𝑦 ∣ ∃𝑥𝐴 𝑥𝐹𝑦}
29 dfima2 5011 . . . 4 (𝐹𝐵) = {𝑦 ∣ ∃𝑥𝐵 𝑥𝐹𝑦}
3028, 29difeq12i 3279 . . 3 ((𝐹𝐴) ∖ (𝐹𝐵)) = ({𝑦 ∣ ∃𝑥𝐴 𝑥𝐹𝑦} ∖ {𝑦 ∣ ∃𝑥𝐵 𝑥𝐹𝑦})
31 difab 3432 . . 3 ({𝑦 ∣ ∃𝑥𝐴 𝑥𝐹𝑦} ∖ {𝑦 ∣ ∃𝑥𝐵 𝑥𝐹𝑦}) = {𝑦 ∣ (∃𝑥𝐴 𝑥𝐹𝑦 ∧ ¬ ∃𝑥𝐵 𝑥𝐹𝑦)}
3230, 31eqtri 2217 . 2 ((𝐹𝐴) ∖ (𝐹𝐵)) = {𝑦 ∣ (∃𝑥𝐴 𝑥𝐹𝑦 ∧ ¬ ∃𝑥𝐵 𝑥𝐹𝑦)}
33 dfima2 5011 . 2 (𝐹 “ (𝐴𝐵)) = {𝑦 ∣ ∃𝑥 ∈ (𝐴𝐵)𝑥𝐹𝑦}
3427, 32, 333sstr4i 3224 1 ((𝐹𝐴) ∖ (𝐹𝐵)) ⊆ (𝐹 “ (𝐴𝐵))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wal 1362  wex 1506  wcel 2167  {cab 2182  wrex 2476  cdif 3154  wss 3157   class class class wbr 4033  cima 4666
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-14 2170  ax-ext 2178  ax-sep 4151  ax-pow 4207  ax-pr 4242
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ral 2480  df-rex 2481  df-rab 2484  df-v 2765  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-br 4034  df-opab 4095  df-xp 4669  df-cnv 4671  df-dm 4673  df-rn 4674  df-res 4675  df-ima 4676
This theorem is referenced by:  imadif  5338
  Copyright terms: Public domain W3C validator