ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  imadiflem GIF version

Theorem imadiflem 5399
Description: One direction of imadif 5400. This direction does not require Fun 𝐹. (Contributed by Jim Kingdon, 25-Dec-2018.)
Assertion
Ref Expression
imadiflem ((𝐹𝐴) ∖ (𝐹𝐵)) ⊆ (𝐹 “ (𝐴𝐵))

Proof of Theorem imadiflem
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-rex 2514 . . . 4 (∃𝑥𝐴 𝑥𝐹𝑦 ↔ ∃𝑥(𝑥𝐴𝑥𝐹𝑦))
2 df-rex 2514 . . . . 5 (∃𝑥𝐵 𝑥𝐹𝑦 ↔ ∃𝑥(𝑥𝐵𝑥𝐹𝑦))
32notbii 672 . . . 4 (¬ ∃𝑥𝐵 𝑥𝐹𝑦 ↔ ¬ ∃𝑥(𝑥𝐵𝑥𝐹𝑦))
4 alnex 1545 . . . . . . 7 (∀𝑥 ¬ (𝑥𝐵𝑥𝐹𝑦) ↔ ¬ ∃𝑥(𝑥𝐵𝑥𝐹𝑦))
5 19.29r 1667 . . . . . . 7 ((∃𝑥(𝑥𝐴𝑥𝐹𝑦) ∧ ∀𝑥 ¬ (𝑥𝐵𝑥𝐹𝑦)) → ∃𝑥((𝑥𝐴𝑥𝐹𝑦) ∧ ¬ (𝑥𝐵𝑥𝐹𝑦)))
64, 5sylan2br 288 . . . . . 6 ((∃𝑥(𝑥𝐴𝑥𝐹𝑦) ∧ ¬ ∃𝑥(𝑥𝐵𝑥𝐹𝑦)) → ∃𝑥((𝑥𝐴𝑥𝐹𝑦) ∧ ¬ (𝑥𝐵𝑥𝐹𝑦)))
7 simpl 109 . . . . . . . . 9 (((𝑥𝐴𝑥𝐹𝑦) ∧ ¬ (𝑥𝐵𝑥𝐹𝑦)) → (𝑥𝐴𝑥𝐹𝑦))
8 simplr 528 . . . . . . . . . 10 (((𝑥𝐴𝑥𝐹𝑦) ∧ ¬ (𝑥𝐵𝑥𝐹𝑦)) → 𝑥𝐹𝑦)
9 simpr 110 . . . . . . . . . . 11 (((𝑥𝐴𝑥𝐹𝑦) ∧ ¬ (𝑥𝐵𝑥𝐹𝑦)) → ¬ (𝑥𝐵𝑥𝐹𝑦))
10 ancom 266 . . . . . . . . . . . . 13 ((𝑥𝐵𝑥𝐹𝑦) ↔ (𝑥𝐹𝑦𝑥𝐵))
1110notbii 672 . . . . . . . . . . . 12 (¬ (𝑥𝐵𝑥𝐹𝑦) ↔ ¬ (𝑥𝐹𝑦𝑥𝐵))
12 imnan 694 . . . . . . . . . . . 12 ((𝑥𝐹𝑦 → ¬ 𝑥𝐵) ↔ ¬ (𝑥𝐹𝑦𝑥𝐵))
1311, 12bitr4i 187 . . . . . . . . . . 11 (¬ (𝑥𝐵𝑥𝐹𝑦) ↔ (𝑥𝐹𝑦 → ¬ 𝑥𝐵))
149, 13sylib 122 . . . . . . . . . 10 (((𝑥𝐴𝑥𝐹𝑦) ∧ ¬ (𝑥𝐵𝑥𝐹𝑦)) → (𝑥𝐹𝑦 → ¬ 𝑥𝐵))
158, 14mpd 13 . . . . . . . . 9 (((𝑥𝐴𝑥𝐹𝑦) ∧ ¬ (𝑥𝐵𝑥𝐹𝑦)) → ¬ 𝑥𝐵)
167, 15, 8jca32 310 . . . . . . . 8 (((𝑥𝐴𝑥𝐹𝑦) ∧ ¬ (𝑥𝐵𝑥𝐹𝑦)) → ((𝑥𝐴𝑥𝐹𝑦) ∧ (¬ 𝑥𝐵𝑥𝐹𝑦)))
17 eldif 3206 . . . . . . . . . 10 (𝑥 ∈ (𝐴𝐵) ↔ (𝑥𝐴 ∧ ¬ 𝑥𝐵))
1817anbi1i 458 . . . . . . . . 9 ((𝑥 ∈ (𝐴𝐵) ∧ 𝑥𝐹𝑦) ↔ ((𝑥𝐴 ∧ ¬ 𝑥𝐵) ∧ 𝑥𝐹𝑦))
19 anandir 593 . . . . . . . . 9 (((𝑥𝐴 ∧ ¬ 𝑥𝐵) ∧ 𝑥𝐹𝑦) ↔ ((𝑥𝐴𝑥𝐹𝑦) ∧ (¬ 𝑥𝐵𝑥𝐹𝑦)))
2018, 19bitri 184 . . . . . . . 8 ((𝑥 ∈ (𝐴𝐵) ∧ 𝑥𝐹𝑦) ↔ ((𝑥𝐴𝑥𝐹𝑦) ∧ (¬ 𝑥𝐵𝑥𝐹𝑦)))
2116, 20sylibr 134 . . . . . . 7 (((𝑥𝐴𝑥𝐹𝑦) ∧ ¬ (𝑥𝐵𝑥𝐹𝑦)) → (𝑥 ∈ (𝐴𝐵) ∧ 𝑥𝐹𝑦))
2221eximi 1646 . . . . . 6 (∃𝑥((𝑥𝐴𝑥𝐹𝑦) ∧ ¬ (𝑥𝐵𝑥𝐹𝑦)) → ∃𝑥(𝑥 ∈ (𝐴𝐵) ∧ 𝑥𝐹𝑦))
236, 22syl 14 . . . . 5 ((∃𝑥(𝑥𝐴𝑥𝐹𝑦) ∧ ¬ ∃𝑥(𝑥𝐵𝑥𝐹𝑦)) → ∃𝑥(𝑥 ∈ (𝐴𝐵) ∧ 𝑥𝐹𝑦))
24 df-rex 2514 . . . . 5 (∃𝑥 ∈ (𝐴𝐵)𝑥𝐹𝑦 ↔ ∃𝑥(𝑥 ∈ (𝐴𝐵) ∧ 𝑥𝐹𝑦))
2523, 24sylibr 134 . . . 4 ((∃𝑥(𝑥𝐴𝑥𝐹𝑦) ∧ ¬ ∃𝑥(𝑥𝐵𝑥𝐹𝑦)) → ∃𝑥 ∈ (𝐴𝐵)𝑥𝐹𝑦)
261, 3, 25syl2anb 291 . . 3 ((∃𝑥𝐴 𝑥𝐹𝑦 ∧ ¬ ∃𝑥𝐵 𝑥𝐹𝑦) → ∃𝑥 ∈ (𝐴𝐵)𝑥𝐹𝑦)
2726ss2abi 3296 . 2 {𝑦 ∣ (∃𝑥𝐴 𝑥𝐹𝑦 ∧ ¬ ∃𝑥𝐵 𝑥𝐹𝑦)} ⊆ {𝑦 ∣ ∃𝑥 ∈ (𝐴𝐵)𝑥𝐹𝑦}
28 dfima2 5069 . . . 4 (𝐹𝐴) = {𝑦 ∣ ∃𝑥𝐴 𝑥𝐹𝑦}
29 dfima2 5069 . . . 4 (𝐹𝐵) = {𝑦 ∣ ∃𝑥𝐵 𝑥𝐹𝑦}
3028, 29difeq12i 3320 . . 3 ((𝐹𝐴) ∖ (𝐹𝐵)) = ({𝑦 ∣ ∃𝑥𝐴 𝑥𝐹𝑦} ∖ {𝑦 ∣ ∃𝑥𝐵 𝑥𝐹𝑦})
31 difab 3473 . . 3 ({𝑦 ∣ ∃𝑥𝐴 𝑥𝐹𝑦} ∖ {𝑦 ∣ ∃𝑥𝐵 𝑥𝐹𝑦}) = {𝑦 ∣ (∃𝑥𝐴 𝑥𝐹𝑦 ∧ ¬ ∃𝑥𝐵 𝑥𝐹𝑦)}
3230, 31eqtri 2250 . 2 ((𝐹𝐴) ∖ (𝐹𝐵)) = {𝑦 ∣ (∃𝑥𝐴 𝑥𝐹𝑦 ∧ ¬ ∃𝑥𝐵 𝑥𝐹𝑦)}
33 dfima2 5069 . 2 (𝐹 “ (𝐴𝐵)) = {𝑦 ∣ ∃𝑥 ∈ (𝐴𝐵)𝑥𝐹𝑦}
3427, 32, 333sstr4i 3265 1 ((𝐹𝐴) ∖ (𝐹𝐵)) ⊆ (𝐹 “ (𝐴𝐵))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wal 1393  wex 1538  wcel 2200  {cab 2215  wrex 2509  cdif 3194  wss 3197   class class class wbr 4082  cima 4721
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-14 2203  ax-ext 2211  ax-sep 4201  ax-pow 4257  ax-pr 4292
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-rex 2514  df-rab 2517  df-v 2801  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-br 4083  df-opab 4145  df-xp 4724  df-cnv 4726  df-dm 4728  df-rn 4729  df-res 4730  df-ima 4731
This theorem is referenced by:  imadif  5400
  Copyright terms: Public domain W3C validator