ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  imadiflem GIF version

Theorem imadiflem 5291
Description: One direction of imadif 5292. This direction does not require Fun 𝐹. (Contributed by Jim Kingdon, 25-Dec-2018.)
Assertion
Ref Expression
imadiflem ((𝐹𝐴) ∖ (𝐹𝐵)) ⊆ (𝐹 “ (𝐴𝐵))

Proof of Theorem imadiflem
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-rex 2461 . . . 4 (∃𝑥𝐴 𝑥𝐹𝑦 ↔ ∃𝑥(𝑥𝐴𝑥𝐹𝑦))
2 df-rex 2461 . . . . 5 (∃𝑥𝐵 𝑥𝐹𝑦 ↔ ∃𝑥(𝑥𝐵𝑥𝐹𝑦))
32notbii 668 . . . 4 (¬ ∃𝑥𝐵 𝑥𝐹𝑦 ↔ ¬ ∃𝑥(𝑥𝐵𝑥𝐹𝑦))
4 alnex 1499 . . . . . . 7 (∀𝑥 ¬ (𝑥𝐵𝑥𝐹𝑦) ↔ ¬ ∃𝑥(𝑥𝐵𝑥𝐹𝑦))
5 19.29r 1621 . . . . . . 7 ((∃𝑥(𝑥𝐴𝑥𝐹𝑦) ∧ ∀𝑥 ¬ (𝑥𝐵𝑥𝐹𝑦)) → ∃𝑥((𝑥𝐴𝑥𝐹𝑦) ∧ ¬ (𝑥𝐵𝑥𝐹𝑦)))
64, 5sylan2br 288 . . . . . 6 ((∃𝑥(𝑥𝐴𝑥𝐹𝑦) ∧ ¬ ∃𝑥(𝑥𝐵𝑥𝐹𝑦)) → ∃𝑥((𝑥𝐴𝑥𝐹𝑦) ∧ ¬ (𝑥𝐵𝑥𝐹𝑦)))
7 simpl 109 . . . . . . . . 9 (((𝑥𝐴𝑥𝐹𝑦) ∧ ¬ (𝑥𝐵𝑥𝐹𝑦)) → (𝑥𝐴𝑥𝐹𝑦))
8 simplr 528 . . . . . . . . . 10 (((𝑥𝐴𝑥𝐹𝑦) ∧ ¬ (𝑥𝐵𝑥𝐹𝑦)) → 𝑥𝐹𝑦)
9 simpr 110 . . . . . . . . . . 11 (((𝑥𝐴𝑥𝐹𝑦) ∧ ¬ (𝑥𝐵𝑥𝐹𝑦)) → ¬ (𝑥𝐵𝑥𝐹𝑦))
10 ancom 266 . . . . . . . . . . . . 13 ((𝑥𝐵𝑥𝐹𝑦) ↔ (𝑥𝐹𝑦𝑥𝐵))
1110notbii 668 . . . . . . . . . . . 12 (¬ (𝑥𝐵𝑥𝐹𝑦) ↔ ¬ (𝑥𝐹𝑦𝑥𝐵))
12 imnan 690 . . . . . . . . . . . 12 ((𝑥𝐹𝑦 → ¬ 𝑥𝐵) ↔ ¬ (𝑥𝐹𝑦𝑥𝐵))
1311, 12bitr4i 187 . . . . . . . . . . 11 (¬ (𝑥𝐵𝑥𝐹𝑦) ↔ (𝑥𝐹𝑦 → ¬ 𝑥𝐵))
149, 13sylib 122 . . . . . . . . . 10 (((𝑥𝐴𝑥𝐹𝑦) ∧ ¬ (𝑥𝐵𝑥𝐹𝑦)) → (𝑥𝐹𝑦 → ¬ 𝑥𝐵))
158, 14mpd 13 . . . . . . . . 9 (((𝑥𝐴𝑥𝐹𝑦) ∧ ¬ (𝑥𝐵𝑥𝐹𝑦)) → ¬ 𝑥𝐵)
167, 15, 8jca32 310 . . . . . . . 8 (((𝑥𝐴𝑥𝐹𝑦) ∧ ¬ (𝑥𝐵𝑥𝐹𝑦)) → ((𝑥𝐴𝑥𝐹𝑦) ∧ (¬ 𝑥𝐵𝑥𝐹𝑦)))
17 eldif 3138 . . . . . . . . . 10 (𝑥 ∈ (𝐴𝐵) ↔ (𝑥𝐴 ∧ ¬ 𝑥𝐵))
1817anbi1i 458 . . . . . . . . 9 ((𝑥 ∈ (𝐴𝐵) ∧ 𝑥𝐹𝑦) ↔ ((𝑥𝐴 ∧ ¬ 𝑥𝐵) ∧ 𝑥𝐹𝑦))
19 anandir 591 . . . . . . . . 9 (((𝑥𝐴 ∧ ¬ 𝑥𝐵) ∧ 𝑥𝐹𝑦) ↔ ((𝑥𝐴𝑥𝐹𝑦) ∧ (¬ 𝑥𝐵𝑥𝐹𝑦)))
2018, 19bitri 184 . . . . . . . 8 ((𝑥 ∈ (𝐴𝐵) ∧ 𝑥𝐹𝑦) ↔ ((𝑥𝐴𝑥𝐹𝑦) ∧ (¬ 𝑥𝐵𝑥𝐹𝑦)))
2116, 20sylibr 134 . . . . . . 7 (((𝑥𝐴𝑥𝐹𝑦) ∧ ¬ (𝑥𝐵𝑥𝐹𝑦)) → (𝑥 ∈ (𝐴𝐵) ∧ 𝑥𝐹𝑦))
2221eximi 1600 . . . . . 6 (∃𝑥((𝑥𝐴𝑥𝐹𝑦) ∧ ¬ (𝑥𝐵𝑥𝐹𝑦)) → ∃𝑥(𝑥 ∈ (𝐴𝐵) ∧ 𝑥𝐹𝑦))
236, 22syl 14 . . . . 5 ((∃𝑥(𝑥𝐴𝑥𝐹𝑦) ∧ ¬ ∃𝑥(𝑥𝐵𝑥𝐹𝑦)) → ∃𝑥(𝑥 ∈ (𝐴𝐵) ∧ 𝑥𝐹𝑦))
24 df-rex 2461 . . . . 5 (∃𝑥 ∈ (𝐴𝐵)𝑥𝐹𝑦 ↔ ∃𝑥(𝑥 ∈ (𝐴𝐵) ∧ 𝑥𝐹𝑦))
2523, 24sylibr 134 . . . 4 ((∃𝑥(𝑥𝐴𝑥𝐹𝑦) ∧ ¬ ∃𝑥(𝑥𝐵𝑥𝐹𝑦)) → ∃𝑥 ∈ (𝐴𝐵)𝑥𝐹𝑦)
261, 3, 25syl2anb 291 . . 3 ((∃𝑥𝐴 𝑥𝐹𝑦 ∧ ¬ ∃𝑥𝐵 𝑥𝐹𝑦) → ∃𝑥 ∈ (𝐴𝐵)𝑥𝐹𝑦)
2726ss2abi 3227 . 2 {𝑦 ∣ (∃𝑥𝐴 𝑥𝐹𝑦 ∧ ¬ ∃𝑥𝐵 𝑥𝐹𝑦)} ⊆ {𝑦 ∣ ∃𝑥 ∈ (𝐴𝐵)𝑥𝐹𝑦}
28 dfima2 4968 . . . 4 (𝐹𝐴) = {𝑦 ∣ ∃𝑥𝐴 𝑥𝐹𝑦}
29 dfima2 4968 . . . 4 (𝐹𝐵) = {𝑦 ∣ ∃𝑥𝐵 𝑥𝐹𝑦}
3028, 29difeq12i 3251 . . 3 ((𝐹𝐴) ∖ (𝐹𝐵)) = ({𝑦 ∣ ∃𝑥𝐴 𝑥𝐹𝑦} ∖ {𝑦 ∣ ∃𝑥𝐵 𝑥𝐹𝑦})
31 difab 3404 . . 3 ({𝑦 ∣ ∃𝑥𝐴 𝑥𝐹𝑦} ∖ {𝑦 ∣ ∃𝑥𝐵 𝑥𝐹𝑦}) = {𝑦 ∣ (∃𝑥𝐴 𝑥𝐹𝑦 ∧ ¬ ∃𝑥𝐵 𝑥𝐹𝑦)}
3230, 31eqtri 2198 . 2 ((𝐹𝐴) ∖ (𝐹𝐵)) = {𝑦 ∣ (∃𝑥𝐴 𝑥𝐹𝑦 ∧ ¬ ∃𝑥𝐵 𝑥𝐹𝑦)}
33 dfima2 4968 . 2 (𝐹 “ (𝐴𝐵)) = {𝑦 ∣ ∃𝑥 ∈ (𝐴𝐵)𝑥𝐹𝑦}
3427, 32, 333sstr4i 3196 1 ((𝐹𝐴) ∖ (𝐹𝐵)) ⊆ (𝐹 “ (𝐴𝐵))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wal 1351  wex 1492  wcel 2148  {cab 2163  wrex 2456  cdif 3126  wss 3129   class class class wbr 4000  cima 4626
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-14 2151  ax-ext 2159  ax-sep 4118  ax-pow 4171  ax-pr 4206
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ral 2460  df-rex 2461  df-rab 2464  df-v 2739  df-dif 3131  df-un 3133  df-in 3135  df-ss 3142  df-pw 3576  df-sn 3597  df-pr 3598  df-op 3600  df-br 4001  df-opab 4062  df-xp 4629  df-cnv 4631  df-dm 4633  df-rn 4634  df-res 4635  df-ima 4636
This theorem is referenced by:  imadif  5292
  Copyright terms: Public domain W3C validator