ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  imainlem GIF version

Theorem imainlem 5293
Description: One direction of imain 5294. This direction does not require Fun 𝐹. (Contributed by Jim Kingdon, 25-Dec-2018.)
Assertion
Ref Expression
imainlem (𝐹 “ (𝐴𝐵)) ⊆ ((𝐹𝐴) ∩ (𝐹𝐵))

Proof of Theorem imainlem
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-rex 2461 . . . . 5 (∃𝑥 ∈ (𝐴𝐵)𝑥𝐹𝑦 ↔ ∃𝑥(𝑥 ∈ (𝐴𝐵) ∧ 𝑥𝐹𝑦))
2 elin 3318 . . . . . . . . 9 (𝑥 ∈ (𝐴𝐵) ↔ (𝑥𝐴𝑥𝐵))
32anbi1i 458 . . . . . . . 8 ((𝑥 ∈ (𝐴𝐵) ∧ 𝑥𝐹𝑦) ↔ ((𝑥𝐴𝑥𝐵) ∧ 𝑥𝐹𝑦))
4 anandir 591 . . . . . . . 8 (((𝑥𝐴𝑥𝐵) ∧ 𝑥𝐹𝑦) ↔ ((𝑥𝐴𝑥𝐹𝑦) ∧ (𝑥𝐵𝑥𝐹𝑦)))
53, 4bitri 184 . . . . . . 7 ((𝑥 ∈ (𝐴𝐵) ∧ 𝑥𝐹𝑦) ↔ ((𝑥𝐴𝑥𝐹𝑦) ∧ (𝑥𝐵𝑥𝐹𝑦)))
65exbii 1605 . . . . . 6 (∃𝑥(𝑥 ∈ (𝐴𝐵) ∧ 𝑥𝐹𝑦) ↔ ∃𝑥((𝑥𝐴𝑥𝐹𝑦) ∧ (𝑥𝐵𝑥𝐹𝑦)))
7 19.40 1631 . . . . . 6 (∃𝑥((𝑥𝐴𝑥𝐹𝑦) ∧ (𝑥𝐵𝑥𝐹𝑦)) → (∃𝑥(𝑥𝐴𝑥𝐹𝑦) ∧ ∃𝑥(𝑥𝐵𝑥𝐹𝑦)))
86, 7sylbi 121 . . . . 5 (∃𝑥(𝑥 ∈ (𝐴𝐵) ∧ 𝑥𝐹𝑦) → (∃𝑥(𝑥𝐴𝑥𝐹𝑦) ∧ ∃𝑥(𝑥𝐵𝑥𝐹𝑦)))
91, 8sylbi 121 . . . 4 (∃𝑥 ∈ (𝐴𝐵)𝑥𝐹𝑦 → (∃𝑥(𝑥𝐴𝑥𝐹𝑦) ∧ ∃𝑥(𝑥𝐵𝑥𝐹𝑦)))
10 df-rex 2461 . . . . 5 (∃𝑥𝐴 𝑥𝐹𝑦 ↔ ∃𝑥(𝑥𝐴𝑥𝐹𝑦))
11 df-rex 2461 . . . . 5 (∃𝑥𝐵 𝑥𝐹𝑦 ↔ ∃𝑥(𝑥𝐵𝑥𝐹𝑦))
1210, 11anbi12i 460 . . . 4 ((∃𝑥𝐴 𝑥𝐹𝑦 ∧ ∃𝑥𝐵 𝑥𝐹𝑦) ↔ (∃𝑥(𝑥𝐴𝑥𝐹𝑦) ∧ ∃𝑥(𝑥𝐵𝑥𝐹𝑦)))
139, 12sylibr 134 . . 3 (∃𝑥 ∈ (𝐴𝐵)𝑥𝐹𝑦 → (∃𝑥𝐴 𝑥𝐹𝑦 ∧ ∃𝑥𝐵 𝑥𝐹𝑦))
1413ss2abi 3227 . 2 {𝑦 ∣ ∃𝑥 ∈ (𝐴𝐵)𝑥𝐹𝑦} ⊆ {𝑦 ∣ (∃𝑥𝐴 𝑥𝐹𝑦 ∧ ∃𝑥𝐵 𝑥𝐹𝑦)}
15 dfima2 4968 . 2 (𝐹 “ (𝐴𝐵)) = {𝑦 ∣ ∃𝑥 ∈ (𝐴𝐵)𝑥𝐹𝑦}
16 dfima2 4968 . . . 4 (𝐹𝐴) = {𝑦 ∣ ∃𝑥𝐴 𝑥𝐹𝑦}
17 dfima2 4968 . . . 4 (𝐹𝐵) = {𝑦 ∣ ∃𝑥𝐵 𝑥𝐹𝑦}
1816, 17ineq12i 3334 . . 3 ((𝐹𝐴) ∩ (𝐹𝐵)) = ({𝑦 ∣ ∃𝑥𝐴 𝑥𝐹𝑦} ∩ {𝑦 ∣ ∃𝑥𝐵 𝑥𝐹𝑦})
19 inab 3403 . . 3 ({𝑦 ∣ ∃𝑥𝐴 𝑥𝐹𝑦} ∩ {𝑦 ∣ ∃𝑥𝐵 𝑥𝐹𝑦}) = {𝑦 ∣ (∃𝑥𝐴 𝑥𝐹𝑦 ∧ ∃𝑥𝐵 𝑥𝐹𝑦)}
2018, 19eqtri 2198 . 2 ((𝐹𝐴) ∩ (𝐹𝐵)) = {𝑦 ∣ (∃𝑥𝐴 𝑥𝐹𝑦 ∧ ∃𝑥𝐵 𝑥𝐹𝑦)}
2114, 15, 203sstr4i 3196 1 (𝐹 “ (𝐴𝐵)) ⊆ ((𝐹𝐴) ∩ (𝐹𝐵))
Colors of variables: wff set class
Syntax hints:  wa 104  wex 1492  wcel 2148  {cab 2163  wrex 2456  cin 3128  wss 3129   class class class wbr 4000  cima 4626
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-14 2151  ax-ext 2159  ax-sep 4118  ax-pow 4171  ax-pr 4206
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ral 2460  df-rex 2461  df-v 2739  df-un 3133  df-in 3135  df-ss 3142  df-pw 3576  df-sn 3597  df-pr 3598  df-op 3600  df-br 4001  df-opab 4062  df-xp 4629  df-cnv 4631  df-dm 4633  df-rn 4634  df-res 4635  df-ima 4636
This theorem is referenced by:  imain  5294
  Copyright terms: Public domain W3C validator