ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  imainlem GIF version

Theorem imainlem 5212
Description: One direction of imain 5213. This direction does not require Fun 𝐹. (Contributed by Jim Kingdon, 25-Dec-2018.)
Assertion
Ref Expression
imainlem (𝐹 “ (𝐴𝐵)) ⊆ ((𝐹𝐴) ∩ (𝐹𝐵))

Proof of Theorem imainlem
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-rex 2423 . . . . 5 (∃𝑥 ∈ (𝐴𝐵)𝑥𝐹𝑦 ↔ ∃𝑥(𝑥 ∈ (𝐴𝐵) ∧ 𝑥𝐹𝑦))
2 elin 3264 . . . . . . . . 9 (𝑥 ∈ (𝐴𝐵) ↔ (𝑥𝐴𝑥𝐵))
32anbi1i 454 . . . . . . . 8 ((𝑥 ∈ (𝐴𝐵) ∧ 𝑥𝐹𝑦) ↔ ((𝑥𝐴𝑥𝐵) ∧ 𝑥𝐹𝑦))
4 anandir 581 . . . . . . . 8 (((𝑥𝐴𝑥𝐵) ∧ 𝑥𝐹𝑦) ↔ ((𝑥𝐴𝑥𝐹𝑦) ∧ (𝑥𝐵𝑥𝐹𝑦)))
53, 4bitri 183 . . . . . . 7 ((𝑥 ∈ (𝐴𝐵) ∧ 𝑥𝐹𝑦) ↔ ((𝑥𝐴𝑥𝐹𝑦) ∧ (𝑥𝐵𝑥𝐹𝑦)))
65exbii 1585 . . . . . 6 (∃𝑥(𝑥 ∈ (𝐴𝐵) ∧ 𝑥𝐹𝑦) ↔ ∃𝑥((𝑥𝐴𝑥𝐹𝑦) ∧ (𝑥𝐵𝑥𝐹𝑦)))
7 19.40 1611 . . . . . 6 (∃𝑥((𝑥𝐴𝑥𝐹𝑦) ∧ (𝑥𝐵𝑥𝐹𝑦)) → (∃𝑥(𝑥𝐴𝑥𝐹𝑦) ∧ ∃𝑥(𝑥𝐵𝑥𝐹𝑦)))
86, 7sylbi 120 . . . . 5 (∃𝑥(𝑥 ∈ (𝐴𝐵) ∧ 𝑥𝐹𝑦) → (∃𝑥(𝑥𝐴𝑥𝐹𝑦) ∧ ∃𝑥(𝑥𝐵𝑥𝐹𝑦)))
91, 8sylbi 120 . . . 4 (∃𝑥 ∈ (𝐴𝐵)𝑥𝐹𝑦 → (∃𝑥(𝑥𝐴𝑥𝐹𝑦) ∧ ∃𝑥(𝑥𝐵𝑥𝐹𝑦)))
10 df-rex 2423 . . . . 5 (∃𝑥𝐴 𝑥𝐹𝑦 ↔ ∃𝑥(𝑥𝐴𝑥𝐹𝑦))
11 df-rex 2423 . . . . 5 (∃𝑥𝐵 𝑥𝐹𝑦 ↔ ∃𝑥(𝑥𝐵𝑥𝐹𝑦))
1210, 11anbi12i 456 . . . 4 ((∃𝑥𝐴 𝑥𝐹𝑦 ∧ ∃𝑥𝐵 𝑥𝐹𝑦) ↔ (∃𝑥(𝑥𝐴𝑥𝐹𝑦) ∧ ∃𝑥(𝑥𝐵𝑥𝐹𝑦)))
139, 12sylibr 133 . . 3 (∃𝑥 ∈ (𝐴𝐵)𝑥𝐹𝑦 → (∃𝑥𝐴 𝑥𝐹𝑦 ∧ ∃𝑥𝐵 𝑥𝐹𝑦))
1413ss2abi 3174 . 2 {𝑦 ∣ ∃𝑥 ∈ (𝐴𝐵)𝑥𝐹𝑦} ⊆ {𝑦 ∣ (∃𝑥𝐴 𝑥𝐹𝑦 ∧ ∃𝑥𝐵 𝑥𝐹𝑦)}
15 dfima2 4891 . 2 (𝐹 “ (𝐴𝐵)) = {𝑦 ∣ ∃𝑥 ∈ (𝐴𝐵)𝑥𝐹𝑦}
16 dfima2 4891 . . . 4 (𝐹𝐴) = {𝑦 ∣ ∃𝑥𝐴 𝑥𝐹𝑦}
17 dfima2 4891 . . . 4 (𝐹𝐵) = {𝑦 ∣ ∃𝑥𝐵 𝑥𝐹𝑦}
1816, 17ineq12i 3280 . . 3 ((𝐹𝐴) ∩ (𝐹𝐵)) = ({𝑦 ∣ ∃𝑥𝐴 𝑥𝐹𝑦} ∩ {𝑦 ∣ ∃𝑥𝐵 𝑥𝐹𝑦})
19 inab 3349 . . 3 ({𝑦 ∣ ∃𝑥𝐴 𝑥𝐹𝑦} ∩ {𝑦 ∣ ∃𝑥𝐵 𝑥𝐹𝑦}) = {𝑦 ∣ (∃𝑥𝐴 𝑥𝐹𝑦 ∧ ∃𝑥𝐵 𝑥𝐹𝑦)}
2018, 19eqtri 2161 . 2 ((𝐹𝐴) ∩ (𝐹𝐵)) = {𝑦 ∣ (∃𝑥𝐴 𝑥𝐹𝑦 ∧ ∃𝑥𝐵 𝑥𝐹𝑦)}
2114, 15, 203sstr4i 3143 1 (𝐹 “ (𝐴𝐵)) ⊆ ((𝐹𝐴) ∩ (𝐹𝐵))
Colors of variables: wff set class
Syntax hints:  wa 103  wex 1469  wcel 1481  {cab 2126  wrex 2418  cin 3075  wss 3076   class class class wbr 3937  cima 4550
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1483  ax-10 1484  ax-11 1485  ax-i12 1486  ax-bndl 1487  ax-4 1488  ax-14 1493  ax-17 1507  ax-i9 1511  ax-ial 1515  ax-i5r 1516  ax-ext 2122  ax-sep 4054  ax-pow 4106  ax-pr 4139
This theorem depends on definitions:  df-bi 116  df-3an 965  df-tru 1335  df-nf 1438  df-sb 1737  df-eu 2003  df-mo 2004  df-clab 2127  df-cleq 2133  df-clel 2136  df-nfc 2271  df-ral 2422  df-rex 2423  df-v 2691  df-un 3080  df-in 3082  df-ss 3089  df-pw 3517  df-sn 3538  df-pr 3539  df-op 3541  df-br 3938  df-opab 3998  df-xp 4553  df-cnv 4555  df-dm 4557  df-rn 4558  df-res 4559  df-ima 4560
This theorem is referenced by:  imain  5213
  Copyright terms: Public domain W3C validator