| Step | Hyp | Ref
| Expression |
| 1 | | df-rex 2481 |
. . . . 5
⊢
(∃𝑥 ∈
(𝐴 ∩ 𝐵)𝑥𝐹𝑦 ↔ ∃𝑥(𝑥 ∈ (𝐴 ∩ 𝐵) ∧ 𝑥𝐹𝑦)) |
| 2 | | elin 3347 |
. . . . . . . . 9
⊢ (𝑥 ∈ (𝐴 ∩ 𝐵) ↔ (𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵)) |
| 3 | 2 | anbi1i 458 |
. . . . . . . 8
⊢ ((𝑥 ∈ (𝐴 ∩ 𝐵) ∧ 𝑥𝐹𝑦) ↔ ((𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵) ∧ 𝑥𝐹𝑦)) |
| 4 | | anandir 591 |
. . . . . . . 8
⊢ (((𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵) ∧ 𝑥𝐹𝑦) ↔ ((𝑥 ∈ 𝐴 ∧ 𝑥𝐹𝑦) ∧ (𝑥 ∈ 𝐵 ∧ 𝑥𝐹𝑦))) |
| 5 | 3, 4 | bitri 184 |
. . . . . . 7
⊢ ((𝑥 ∈ (𝐴 ∩ 𝐵) ∧ 𝑥𝐹𝑦) ↔ ((𝑥 ∈ 𝐴 ∧ 𝑥𝐹𝑦) ∧ (𝑥 ∈ 𝐵 ∧ 𝑥𝐹𝑦))) |
| 6 | 5 | exbii 1619 |
. . . . . 6
⊢
(∃𝑥(𝑥 ∈ (𝐴 ∩ 𝐵) ∧ 𝑥𝐹𝑦) ↔ ∃𝑥((𝑥 ∈ 𝐴 ∧ 𝑥𝐹𝑦) ∧ (𝑥 ∈ 𝐵 ∧ 𝑥𝐹𝑦))) |
| 7 | | 19.40 1645 |
. . . . . 6
⊢
(∃𝑥((𝑥 ∈ 𝐴 ∧ 𝑥𝐹𝑦) ∧ (𝑥 ∈ 𝐵 ∧ 𝑥𝐹𝑦)) → (∃𝑥(𝑥 ∈ 𝐴 ∧ 𝑥𝐹𝑦) ∧ ∃𝑥(𝑥 ∈ 𝐵 ∧ 𝑥𝐹𝑦))) |
| 8 | 6, 7 | sylbi 121 |
. . . . 5
⊢
(∃𝑥(𝑥 ∈ (𝐴 ∩ 𝐵) ∧ 𝑥𝐹𝑦) → (∃𝑥(𝑥 ∈ 𝐴 ∧ 𝑥𝐹𝑦) ∧ ∃𝑥(𝑥 ∈ 𝐵 ∧ 𝑥𝐹𝑦))) |
| 9 | 1, 8 | sylbi 121 |
. . . 4
⊢
(∃𝑥 ∈
(𝐴 ∩ 𝐵)𝑥𝐹𝑦 → (∃𝑥(𝑥 ∈ 𝐴 ∧ 𝑥𝐹𝑦) ∧ ∃𝑥(𝑥 ∈ 𝐵 ∧ 𝑥𝐹𝑦))) |
| 10 | | df-rex 2481 |
. . . . 5
⊢
(∃𝑥 ∈
𝐴 𝑥𝐹𝑦 ↔ ∃𝑥(𝑥 ∈ 𝐴 ∧ 𝑥𝐹𝑦)) |
| 11 | | df-rex 2481 |
. . . . 5
⊢
(∃𝑥 ∈
𝐵 𝑥𝐹𝑦 ↔ ∃𝑥(𝑥 ∈ 𝐵 ∧ 𝑥𝐹𝑦)) |
| 12 | 10, 11 | anbi12i 460 |
. . . 4
⊢
((∃𝑥 ∈
𝐴 𝑥𝐹𝑦 ∧ ∃𝑥 ∈ 𝐵 𝑥𝐹𝑦) ↔ (∃𝑥(𝑥 ∈ 𝐴 ∧ 𝑥𝐹𝑦) ∧ ∃𝑥(𝑥 ∈ 𝐵 ∧ 𝑥𝐹𝑦))) |
| 13 | 9, 12 | sylibr 134 |
. . 3
⊢
(∃𝑥 ∈
(𝐴 ∩ 𝐵)𝑥𝐹𝑦 → (∃𝑥 ∈ 𝐴 𝑥𝐹𝑦 ∧ ∃𝑥 ∈ 𝐵 𝑥𝐹𝑦)) |
| 14 | 13 | ss2abi 3256 |
. 2
⊢ {𝑦 ∣ ∃𝑥 ∈ (𝐴 ∩ 𝐵)𝑥𝐹𝑦} ⊆ {𝑦 ∣ (∃𝑥 ∈ 𝐴 𝑥𝐹𝑦 ∧ ∃𝑥 ∈ 𝐵 𝑥𝐹𝑦)} |
| 15 | | dfima2 5012 |
. 2
⊢ (𝐹 “ (𝐴 ∩ 𝐵)) = {𝑦 ∣ ∃𝑥 ∈ (𝐴 ∩ 𝐵)𝑥𝐹𝑦} |
| 16 | | dfima2 5012 |
. . . 4
⊢ (𝐹 “ 𝐴) = {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑥𝐹𝑦} |
| 17 | | dfima2 5012 |
. . . 4
⊢ (𝐹 “ 𝐵) = {𝑦 ∣ ∃𝑥 ∈ 𝐵 𝑥𝐹𝑦} |
| 18 | 16, 17 | ineq12i 3363 |
. . 3
⊢ ((𝐹 “ 𝐴) ∩ (𝐹 “ 𝐵)) = ({𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑥𝐹𝑦} ∩ {𝑦 ∣ ∃𝑥 ∈ 𝐵 𝑥𝐹𝑦}) |
| 19 | | inab 3432 |
. . 3
⊢ ({𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑥𝐹𝑦} ∩ {𝑦 ∣ ∃𝑥 ∈ 𝐵 𝑥𝐹𝑦}) = {𝑦 ∣ (∃𝑥 ∈ 𝐴 𝑥𝐹𝑦 ∧ ∃𝑥 ∈ 𝐵 𝑥𝐹𝑦)} |
| 20 | 18, 19 | eqtri 2217 |
. 2
⊢ ((𝐹 “ 𝐴) ∩ (𝐹 “ 𝐵)) = {𝑦 ∣ (∃𝑥 ∈ 𝐴 𝑥𝐹𝑦 ∧ ∃𝑥 ∈ 𝐵 𝑥𝐹𝑦)} |
| 21 | 14, 15, 20 | 3sstr4i 3225 |
1
⊢ (𝐹 “ (𝐴 ∩ 𝐵)) ⊆ ((𝐹 “ 𝐴) ∩ (𝐹 “ 𝐵)) |