ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  imainlem GIF version

Theorem imainlem 5401
Description: One direction of imain 5402. This direction does not require Fun 𝐹. (Contributed by Jim Kingdon, 25-Dec-2018.)
Assertion
Ref Expression
imainlem (𝐹 “ (𝐴𝐵)) ⊆ ((𝐹𝐴) ∩ (𝐹𝐵))

Proof of Theorem imainlem
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-rex 2514 . . . . 5 (∃𝑥 ∈ (𝐴𝐵)𝑥𝐹𝑦 ↔ ∃𝑥(𝑥 ∈ (𝐴𝐵) ∧ 𝑥𝐹𝑦))
2 elin 3387 . . . . . . . . 9 (𝑥 ∈ (𝐴𝐵) ↔ (𝑥𝐴𝑥𝐵))
32anbi1i 458 . . . . . . . 8 ((𝑥 ∈ (𝐴𝐵) ∧ 𝑥𝐹𝑦) ↔ ((𝑥𝐴𝑥𝐵) ∧ 𝑥𝐹𝑦))
4 anandir 593 . . . . . . . 8 (((𝑥𝐴𝑥𝐵) ∧ 𝑥𝐹𝑦) ↔ ((𝑥𝐴𝑥𝐹𝑦) ∧ (𝑥𝐵𝑥𝐹𝑦)))
53, 4bitri 184 . . . . . . 7 ((𝑥 ∈ (𝐴𝐵) ∧ 𝑥𝐹𝑦) ↔ ((𝑥𝐴𝑥𝐹𝑦) ∧ (𝑥𝐵𝑥𝐹𝑦)))
65exbii 1651 . . . . . 6 (∃𝑥(𝑥 ∈ (𝐴𝐵) ∧ 𝑥𝐹𝑦) ↔ ∃𝑥((𝑥𝐴𝑥𝐹𝑦) ∧ (𝑥𝐵𝑥𝐹𝑦)))
7 19.40 1677 . . . . . 6 (∃𝑥((𝑥𝐴𝑥𝐹𝑦) ∧ (𝑥𝐵𝑥𝐹𝑦)) → (∃𝑥(𝑥𝐴𝑥𝐹𝑦) ∧ ∃𝑥(𝑥𝐵𝑥𝐹𝑦)))
86, 7sylbi 121 . . . . 5 (∃𝑥(𝑥 ∈ (𝐴𝐵) ∧ 𝑥𝐹𝑦) → (∃𝑥(𝑥𝐴𝑥𝐹𝑦) ∧ ∃𝑥(𝑥𝐵𝑥𝐹𝑦)))
91, 8sylbi 121 . . . 4 (∃𝑥 ∈ (𝐴𝐵)𝑥𝐹𝑦 → (∃𝑥(𝑥𝐴𝑥𝐹𝑦) ∧ ∃𝑥(𝑥𝐵𝑥𝐹𝑦)))
10 df-rex 2514 . . . . 5 (∃𝑥𝐴 𝑥𝐹𝑦 ↔ ∃𝑥(𝑥𝐴𝑥𝐹𝑦))
11 df-rex 2514 . . . . 5 (∃𝑥𝐵 𝑥𝐹𝑦 ↔ ∃𝑥(𝑥𝐵𝑥𝐹𝑦))
1210, 11anbi12i 460 . . . 4 ((∃𝑥𝐴 𝑥𝐹𝑦 ∧ ∃𝑥𝐵 𝑥𝐹𝑦) ↔ (∃𝑥(𝑥𝐴𝑥𝐹𝑦) ∧ ∃𝑥(𝑥𝐵𝑥𝐹𝑦)))
139, 12sylibr 134 . . 3 (∃𝑥 ∈ (𝐴𝐵)𝑥𝐹𝑦 → (∃𝑥𝐴 𝑥𝐹𝑦 ∧ ∃𝑥𝐵 𝑥𝐹𝑦))
1413ss2abi 3296 . 2 {𝑦 ∣ ∃𝑥 ∈ (𝐴𝐵)𝑥𝐹𝑦} ⊆ {𝑦 ∣ (∃𝑥𝐴 𝑥𝐹𝑦 ∧ ∃𝑥𝐵 𝑥𝐹𝑦)}
15 dfima2 5069 . 2 (𝐹 “ (𝐴𝐵)) = {𝑦 ∣ ∃𝑥 ∈ (𝐴𝐵)𝑥𝐹𝑦}
16 dfima2 5069 . . . 4 (𝐹𝐴) = {𝑦 ∣ ∃𝑥𝐴 𝑥𝐹𝑦}
17 dfima2 5069 . . . 4 (𝐹𝐵) = {𝑦 ∣ ∃𝑥𝐵 𝑥𝐹𝑦}
1816, 17ineq12i 3403 . . 3 ((𝐹𝐴) ∩ (𝐹𝐵)) = ({𝑦 ∣ ∃𝑥𝐴 𝑥𝐹𝑦} ∩ {𝑦 ∣ ∃𝑥𝐵 𝑥𝐹𝑦})
19 inab 3472 . . 3 ({𝑦 ∣ ∃𝑥𝐴 𝑥𝐹𝑦} ∩ {𝑦 ∣ ∃𝑥𝐵 𝑥𝐹𝑦}) = {𝑦 ∣ (∃𝑥𝐴 𝑥𝐹𝑦 ∧ ∃𝑥𝐵 𝑥𝐹𝑦)}
2018, 19eqtri 2250 . 2 ((𝐹𝐴) ∩ (𝐹𝐵)) = {𝑦 ∣ (∃𝑥𝐴 𝑥𝐹𝑦 ∧ ∃𝑥𝐵 𝑥𝐹𝑦)}
2114, 15, 203sstr4i 3265 1 (𝐹 “ (𝐴𝐵)) ⊆ ((𝐹𝐴) ∩ (𝐹𝐵))
Colors of variables: wff set class
Syntax hints:  wa 104  wex 1538  wcel 2200  {cab 2215  wrex 2509  cin 3196  wss 3197   class class class wbr 4082  cima 4721
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-14 2203  ax-ext 2211  ax-sep 4201  ax-pow 4257  ax-pr 4292
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-rex 2514  df-v 2801  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-br 4083  df-opab 4145  df-xp 4724  df-cnv 4726  df-dm 4728  df-rn 4729  df-res 4730  df-ima 4731
This theorem is referenced by:  imain  5402
  Copyright terms: Public domain W3C validator