Step | Hyp | Ref
| Expression |
1 | | df-rex 2438 |
. . . . 5
⊢
(∃𝑥 ∈
(𝐴 ∩ 𝐵)𝑥𝐹𝑦 ↔ ∃𝑥(𝑥 ∈ (𝐴 ∩ 𝐵) ∧ 𝑥𝐹𝑦)) |
2 | | elin 3286 |
. . . . . . . . 9
⊢ (𝑥 ∈ (𝐴 ∩ 𝐵) ↔ (𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵)) |
3 | 2 | anbi1i 454 |
. . . . . . . 8
⊢ ((𝑥 ∈ (𝐴 ∩ 𝐵) ∧ 𝑥𝐹𝑦) ↔ ((𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵) ∧ 𝑥𝐹𝑦)) |
4 | | anandir 581 |
. . . . . . . 8
⊢ (((𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵) ∧ 𝑥𝐹𝑦) ↔ ((𝑥 ∈ 𝐴 ∧ 𝑥𝐹𝑦) ∧ (𝑥 ∈ 𝐵 ∧ 𝑥𝐹𝑦))) |
5 | 3, 4 | bitri 183 |
. . . . . . 7
⊢ ((𝑥 ∈ (𝐴 ∩ 𝐵) ∧ 𝑥𝐹𝑦) ↔ ((𝑥 ∈ 𝐴 ∧ 𝑥𝐹𝑦) ∧ (𝑥 ∈ 𝐵 ∧ 𝑥𝐹𝑦))) |
6 | 5 | exbii 1582 |
. . . . . 6
⊢
(∃𝑥(𝑥 ∈ (𝐴 ∩ 𝐵) ∧ 𝑥𝐹𝑦) ↔ ∃𝑥((𝑥 ∈ 𝐴 ∧ 𝑥𝐹𝑦) ∧ (𝑥 ∈ 𝐵 ∧ 𝑥𝐹𝑦))) |
7 | | 19.40 1608 |
. . . . . 6
⊢
(∃𝑥((𝑥 ∈ 𝐴 ∧ 𝑥𝐹𝑦) ∧ (𝑥 ∈ 𝐵 ∧ 𝑥𝐹𝑦)) → (∃𝑥(𝑥 ∈ 𝐴 ∧ 𝑥𝐹𝑦) ∧ ∃𝑥(𝑥 ∈ 𝐵 ∧ 𝑥𝐹𝑦))) |
8 | 6, 7 | sylbi 120 |
. . . . 5
⊢
(∃𝑥(𝑥 ∈ (𝐴 ∩ 𝐵) ∧ 𝑥𝐹𝑦) → (∃𝑥(𝑥 ∈ 𝐴 ∧ 𝑥𝐹𝑦) ∧ ∃𝑥(𝑥 ∈ 𝐵 ∧ 𝑥𝐹𝑦))) |
9 | 1, 8 | sylbi 120 |
. . . 4
⊢
(∃𝑥 ∈
(𝐴 ∩ 𝐵)𝑥𝐹𝑦 → (∃𝑥(𝑥 ∈ 𝐴 ∧ 𝑥𝐹𝑦) ∧ ∃𝑥(𝑥 ∈ 𝐵 ∧ 𝑥𝐹𝑦))) |
10 | | df-rex 2438 |
. . . . 5
⊢
(∃𝑥 ∈
𝐴 𝑥𝐹𝑦 ↔ ∃𝑥(𝑥 ∈ 𝐴 ∧ 𝑥𝐹𝑦)) |
11 | | df-rex 2438 |
. . . . 5
⊢
(∃𝑥 ∈
𝐵 𝑥𝐹𝑦 ↔ ∃𝑥(𝑥 ∈ 𝐵 ∧ 𝑥𝐹𝑦)) |
12 | 10, 11 | anbi12i 456 |
. . . 4
⊢
((∃𝑥 ∈
𝐴 𝑥𝐹𝑦 ∧ ∃𝑥 ∈ 𝐵 𝑥𝐹𝑦) ↔ (∃𝑥(𝑥 ∈ 𝐴 ∧ 𝑥𝐹𝑦) ∧ ∃𝑥(𝑥 ∈ 𝐵 ∧ 𝑥𝐹𝑦))) |
13 | 9, 12 | sylibr 133 |
. . 3
⊢
(∃𝑥 ∈
(𝐴 ∩ 𝐵)𝑥𝐹𝑦 → (∃𝑥 ∈ 𝐴 𝑥𝐹𝑦 ∧ ∃𝑥 ∈ 𝐵 𝑥𝐹𝑦)) |
14 | 13 | ss2abi 3196 |
. 2
⊢ {𝑦 ∣ ∃𝑥 ∈ (𝐴 ∩ 𝐵)𝑥𝐹𝑦} ⊆ {𝑦 ∣ (∃𝑥 ∈ 𝐴 𝑥𝐹𝑦 ∧ ∃𝑥 ∈ 𝐵 𝑥𝐹𝑦)} |
15 | | dfima2 4923 |
. 2
⊢ (𝐹 “ (𝐴 ∩ 𝐵)) = {𝑦 ∣ ∃𝑥 ∈ (𝐴 ∩ 𝐵)𝑥𝐹𝑦} |
16 | | dfima2 4923 |
. . . 4
⊢ (𝐹 “ 𝐴) = {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑥𝐹𝑦} |
17 | | dfima2 4923 |
. . . 4
⊢ (𝐹 “ 𝐵) = {𝑦 ∣ ∃𝑥 ∈ 𝐵 𝑥𝐹𝑦} |
18 | 16, 17 | ineq12i 3302 |
. . 3
⊢ ((𝐹 “ 𝐴) ∩ (𝐹 “ 𝐵)) = ({𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑥𝐹𝑦} ∩ {𝑦 ∣ ∃𝑥 ∈ 𝐵 𝑥𝐹𝑦}) |
19 | | inab 3371 |
. . 3
⊢ ({𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑥𝐹𝑦} ∩ {𝑦 ∣ ∃𝑥 ∈ 𝐵 𝑥𝐹𝑦}) = {𝑦 ∣ (∃𝑥 ∈ 𝐴 𝑥𝐹𝑦 ∧ ∃𝑥 ∈ 𝐵 𝑥𝐹𝑦)} |
20 | 18, 19 | eqtri 2175 |
. 2
⊢ ((𝐹 “ 𝐴) ∩ (𝐹 “ 𝐵)) = {𝑦 ∣ (∃𝑥 ∈ 𝐴 𝑥𝐹𝑦 ∧ ∃𝑥 ∈ 𝐵 𝑥𝐹𝑦)} |
21 | 14, 15, 20 | 3sstr4i 3165 |
1
⊢ (𝐹 “ (𝐴 ∩ 𝐵)) ⊆ ((𝐹 “ 𝐴) ∩ (𝐹 “ 𝐵)) |