Step | Hyp | Ref
| Expression |
1 | | simpl 108 |
. . . . . 6
⊢ ((𝜑 ∧ 𝜓) → 𝜑) |
2 | 1 | imim2i 12 |
. . . . 5
⊢ ((𝑗 ≤ 𝑘 → (𝜑 ∧ 𝜓)) → (𝑗 ≤ 𝑘 → 𝜑)) |
3 | 2 | ralimi 2533 |
. . . 4
⊢
(∀𝑘 ∈
𝐴 (𝑗 ≤ 𝑘 → (𝜑 ∧ 𝜓)) → ∀𝑘 ∈ 𝐴 (𝑗 ≤ 𝑘 → 𝜑)) |
4 | 3 | reximi 2567 |
. . 3
⊢
(∃𝑗 ∈
ℝ ∀𝑘 ∈
𝐴 (𝑗 ≤ 𝑘 → (𝜑 ∧ 𝜓)) → ∃𝑗 ∈ ℝ ∀𝑘 ∈ 𝐴 (𝑗 ≤ 𝑘 → 𝜑)) |
5 | | simpr 109 |
. . . . . 6
⊢ ((𝜑 ∧ 𝜓) → 𝜓) |
6 | 5 | imim2i 12 |
. . . . 5
⊢ ((𝑗 ≤ 𝑘 → (𝜑 ∧ 𝜓)) → (𝑗 ≤ 𝑘 → 𝜓)) |
7 | 6 | ralimi 2533 |
. . . 4
⊢
(∀𝑘 ∈
𝐴 (𝑗 ≤ 𝑘 → (𝜑 ∧ 𝜓)) → ∀𝑘 ∈ 𝐴 (𝑗 ≤ 𝑘 → 𝜓)) |
8 | 7 | reximi 2567 |
. . 3
⊢
(∃𝑗 ∈
ℝ ∀𝑘 ∈
𝐴 (𝑗 ≤ 𝑘 → (𝜑 ∧ 𝜓)) → ∃𝑗 ∈ ℝ ∀𝑘 ∈ 𝐴 (𝑗 ≤ 𝑘 → 𝜓)) |
9 | 4, 8 | jca 304 |
. 2
⊢
(∃𝑗 ∈
ℝ ∀𝑘 ∈
𝐴 (𝑗 ≤ 𝑘 → (𝜑 ∧ 𝜓)) → (∃𝑗 ∈ ℝ ∀𝑘 ∈ 𝐴 (𝑗 ≤ 𝑘 → 𝜑) ∧ ∃𝑗 ∈ ℝ ∀𝑘 ∈ 𝐴 (𝑗 ≤ 𝑘 → 𝜓))) |
10 | | breq1 3990 |
. . . . . . . 8
⊢ (𝑗 = 𝑥 → (𝑗 ≤ 𝑘 ↔ 𝑥 ≤ 𝑘)) |
11 | 10 | imbi1d 230 |
. . . . . . 7
⊢ (𝑗 = 𝑥 → ((𝑗 ≤ 𝑘 → 𝜑) ↔ (𝑥 ≤ 𝑘 → 𝜑))) |
12 | 11 | ralbidv 2470 |
. . . . . 6
⊢ (𝑗 = 𝑥 → (∀𝑘 ∈ 𝐴 (𝑗 ≤ 𝑘 → 𝜑) ↔ ∀𝑘 ∈ 𝐴 (𝑥 ≤ 𝑘 → 𝜑))) |
13 | 12 | cbvrexv 2697 |
. . . . 5
⊢
(∃𝑗 ∈
ℝ ∀𝑘 ∈
𝐴 (𝑗 ≤ 𝑘 → 𝜑) ↔ ∃𝑥 ∈ ℝ ∀𝑘 ∈ 𝐴 (𝑥 ≤ 𝑘 → 𝜑)) |
14 | | breq1 3990 |
. . . . . . . 8
⊢ (𝑗 = 𝑦 → (𝑗 ≤ 𝑘 ↔ 𝑦 ≤ 𝑘)) |
15 | 14 | imbi1d 230 |
. . . . . . 7
⊢ (𝑗 = 𝑦 → ((𝑗 ≤ 𝑘 → 𝜓) ↔ (𝑦 ≤ 𝑘 → 𝜓))) |
16 | 15 | ralbidv 2470 |
. . . . . 6
⊢ (𝑗 = 𝑦 → (∀𝑘 ∈ 𝐴 (𝑗 ≤ 𝑘 → 𝜓) ↔ ∀𝑘 ∈ 𝐴 (𝑦 ≤ 𝑘 → 𝜓))) |
17 | 16 | cbvrexv 2697 |
. . . . 5
⊢
(∃𝑗 ∈
ℝ ∀𝑘 ∈
𝐴 (𝑗 ≤ 𝑘 → 𝜓) ↔ ∃𝑦 ∈ ℝ ∀𝑘 ∈ 𝐴 (𝑦 ≤ 𝑘 → 𝜓)) |
18 | 13, 17 | anbi12i 457 |
. . . 4
⊢
((∃𝑗 ∈
ℝ ∀𝑘 ∈
𝐴 (𝑗 ≤ 𝑘 → 𝜑) ∧ ∃𝑗 ∈ ℝ ∀𝑘 ∈ 𝐴 (𝑗 ≤ 𝑘 → 𝜓)) ↔ (∃𝑥 ∈ ℝ ∀𝑘 ∈ 𝐴 (𝑥 ≤ 𝑘 → 𝜑) ∧ ∃𝑦 ∈ ℝ ∀𝑘 ∈ 𝐴 (𝑦 ≤ 𝑘 → 𝜓))) |
19 | | reeanv 2639 |
. . . 4
⊢
(∃𝑥 ∈
ℝ ∃𝑦 ∈
ℝ (∀𝑘 ∈
𝐴 (𝑥 ≤ 𝑘 → 𝜑) ∧ ∀𝑘 ∈ 𝐴 (𝑦 ≤ 𝑘 → 𝜓)) ↔ (∃𝑥 ∈ ℝ ∀𝑘 ∈ 𝐴 (𝑥 ≤ 𝑘 → 𝜑) ∧ ∃𝑦 ∈ ℝ ∀𝑘 ∈ 𝐴 (𝑦 ≤ 𝑘 → 𝜓))) |
20 | 18, 19 | bitr4i 186 |
. . 3
⊢
((∃𝑗 ∈
ℝ ∀𝑘 ∈
𝐴 (𝑗 ≤ 𝑘 → 𝜑) ∧ ∃𝑗 ∈ ℝ ∀𝑘 ∈ 𝐴 (𝑗 ≤ 𝑘 → 𝜓)) ↔ ∃𝑥 ∈ ℝ ∃𝑦 ∈ ℝ (∀𝑘 ∈ 𝐴 (𝑥 ≤ 𝑘 → 𝜑) ∧ ∀𝑘 ∈ 𝐴 (𝑦 ≤ 𝑘 → 𝜓))) |
21 | | maxcl 11161 |
. . . . . 6
⊢ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) →
sup({𝑥, 𝑦}, ℝ, < ) ∈
ℝ) |
22 | 21 | adantl 275 |
. . . . 5
⊢ ((𝐴 ⊆ ℝ ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) →
sup({𝑥, 𝑦}, ℝ, < ) ∈
ℝ) |
23 | | r19.26 2596 |
. . . . . 6
⊢
(∀𝑘 ∈
𝐴 ((𝑥 ≤ 𝑘 → 𝜑) ∧ (𝑦 ≤ 𝑘 → 𝜓)) ↔ (∀𝑘 ∈ 𝐴 (𝑥 ≤ 𝑘 → 𝜑) ∧ ∀𝑘 ∈ 𝐴 (𝑦 ≤ 𝑘 → 𝜓))) |
24 | | anim12 342 |
. . . . . . . 8
⊢ (((𝑥 ≤ 𝑘 → 𝜑) ∧ (𝑦 ≤ 𝑘 → 𝜓)) → ((𝑥 ≤ 𝑘 ∧ 𝑦 ≤ 𝑘) → (𝜑 ∧ 𝜓))) |
25 | | simplrl 530 |
. . . . . . . . . 10
⊢ (((𝐴 ⊆ ℝ ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) ∧ 𝑘 ∈ 𝐴) → 𝑥 ∈ ℝ) |
26 | | simplrr 531 |
. . . . . . . . . 10
⊢ (((𝐴 ⊆ ℝ ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) ∧ 𝑘 ∈ 𝐴) → 𝑦 ∈ ℝ) |
27 | | simpl 108 |
. . . . . . . . . . 11
⊢ ((𝐴 ⊆ ℝ ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) → 𝐴 ⊆
ℝ) |
28 | 27 | sselda 3147 |
. . . . . . . . . 10
⊢ (((𝐴 ⊆ ℝ ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) ∧ 𝑘 ∈ 𝐴) → 𝑘 ∈ ℝ) |
29 | | maxleastb 11165 |
. . . . . . . . . 10
⊢ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ∧ 𝑘 ∈ ℝ) →
(sup({𝑥, 𝑦}, ℝ, < ) ≤ 𝑘 ↔ (𝑥 ≤ 𝑘 ∧ 𝑦 ≤ 𝑘))) |
30 | 25, 26, 28, 29 | syl3anc 1233 |
. . . . . . . . 9
⊢ (((𝐴 ⊆ ℝ ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) ∧ 𝑘 ∈ 𝐴) → (sup({𝑥, 𝑦}, ℝ, < ) ≤ 𝑘 ↔ (𝑥 ≤ 𝑘 ∧ 𝑦 ≤ 𝑘))) |
31 | 30 | imbi1d 230 |
. . . . . . . 8
⊢ (((𝐴 ⊆ ℝ ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) ∧ 𝑘 ∈ 𝐴) → ((sup({𝑥, 𝑦}, ℝ, < ) ≤ 𝑘 → (𝜑 ∧ 𝜓)) ↔ ((𝑥 ≤ 𝑘 ∧ 𝑦 ≤ 𝑘) → (𝜑 ∧ 𝜓)))) |
32 | 24, 31 | syl5ibr 155 |
. . . . . . 7
⊢ (((𝐴 ⊆ ℝ ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) ∧ 𝑘 ∈ 𝐴) → (((𝑥 ≤ 𝑘 → 𝜑) ∧ (𝑦 ≤ 𝑘 → 𝜓)) → (sup({𝑥, 𝑦}, ℝ, < ) ≤ 𝑘 → (𝜑 ∧ 𝜓)))) |
33 | 32 | ralimdva 2537 |
. . . . . 6
⊢ ((𝐴 ⊆ ℝ ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) →
(∀𝑘 ∈ 𝐴 ((𝑥 ≤ 𝑘 → 𝜑) ∧ (𝑦 ≤ 𝑘 → 𝜓)) → ∀𝑘 ∈ 𝐴 (sup({𝑥, 𝑦}, ℝ, < ) ≤ 𝑘 → (𝜑 ∧ 𝜓)))) |
34 | 23, 33 | syl5bir 152 |
. . . . 5
⊢ ((𝐴 ⊆ ℝ ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) →
((∀𝑘 ∈ 𝐴 (𝑥 ≤ 𝑘 → 𝜑) ∧ ∀𝑘 ∈ 𝐴 (𝑦 ≤ 𝑘 → 𝜓)) → ∀𝑘 ∈ 𝐴 (sup({𝑥, 𝑦}, ℝ, < ) ≤ 𝑘 → (𝜑 ∧ 𝜓)))) |
35 | | breq1 3990 |
. . . . . . . 8
⊢ (𝑗 = sup({𝑥, 𝑦}, ℝ, < ) → (𝑗 ≤ 𝑘 ↔ sup({𝑥, 𝑦}, ℝ, < ) ≤ 𝑘)) |
36 | 35 | imbi1d 230 |
. . . . . . 7
⊢ (𝑗 = sup({𝑥, 𝑦}, ℝ, < ) → ((𝑗 ≤ 𝑘 → (𝜑 ∧ 𝜓)) ↔ (sup({𝑥, 𝑦}, ℝ, < ) ≤ 𝑘 → (𝜑 ∧ 𝜓)))) |
37 | 36 | ralbidv 2470 |
. . . . . 6
⊢ (𝑗 = sup({𝑥, 𝑦}, ℝ, < ) → (∀𝑘 ∈ 𝐴 (𝑗 ≤ 𝑘 → (𝜑 ∧ 𝜓)) ↔ ∀𝑘 ∈ 𝐴 (sup({𝑥, 𝑦}, ℝ, < ) ≤ 𝑘 → (𝜑 ∧ 𝜓)))) |
38 | 37 | rspcev 2834 |
. . . . 5
⊢
((sup({𝑥, 𝑦}, ℝ, < ) ∈
ℝ ∧ ∀𝑘
∈ 𝐴 (sup({𝑥, 𝑦}, ℝ, < ) ≤ 𝑘 → (𝜑 ∧ 𝜓))) → ∃𝑗 ∈ ℝ ∀𝑘 ∈ 𝐴 (𝑗 ≤ 𝑘 → (𝜑 ∧ 𝜓))) |
39 | 22, 34, 38 | syl6an 1427 |
. . . 4
⊢ ((𝐴 ⊆ ℝ ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) →
((∀𝑘 ∈ 𝐴 (𝑥 ≤ 𝑘 → 𝜑) ∧ ∀𝑘 ∈ 𝐴 (𝑦 ≤ 𝑘 → 𝜓)) → ∃𝑗 ∈ ℝ ∀𝑘 ∈ 𝐴 (𝑗 ≤ 𝑘 → (𝜑 ∧ 𝜓)))) |
40 | 39 | rexlimdvva 2595 |
. . 3
⊢ (𝐴 ⊆ ℝ →
(∃𝑥 ∈ ℝ
∃𝑦 ∈ ℝ
(∀𝑘 ∈ 𝐴 (𝑥 ≤ 𝑘 → 𝜑) ∧ ∀𝑘 ∈ 𝐴 (𝑦 ≤ 𝑘 → 𝜓)) → ∃𝑗 ∈ ℝ ∀𝑘 ∈ 𝐴 (𝑗 ≤ 𝑘 → (𝜑 ∧ 𝜓)))) |
41 | 20, 40 | syl5bi 151 |
. 2
⊢ (𝐴 ⊆ ℝ →
((∃𝑗 ∈ ℝ
∀𝑘 ∈ 𝐴 (𝑗 ≤ 𝑘 → 𝜑) ∧ ∃𝑗 ∈ ℝ ∀𝑘 ∈ 𝐴 (𝑗 ≤ 𝑘 → 𝜓)) → ∃𝑗 ∈ ℝ ∀𝑘 ∈ 𝐴 (𝑗 ≤ 𝑘 → (𝜑 ∧ 𝜓)))) |
42 | 9, 41 | impbid2 142 |
1
⊢ (𝐴 ⊆ ℝ →
(∃𝑗 ∈ ℝ
∀𝑘 ∈ 𝐴 (𝑗 ≤ 𝑘 → (𝜑 ∧ 𝜓)) ↔ (∃𝑗 ∈ ℝ ∀𝑘 ∈ 𝐴 (𝑗 ≤ 𝑘 → 𝜑) ∧ ∃𝑗 ∈ ℝ ∀𝑘 ∈ 𝐴 (𝑗 ≤ 𝑘 → 𝜓)))) |