| Step | Hyp | Ref
| Expression |
| 1 | | simpl 109 |
. . . . . 6
⊢ ((𝜑 ∧ 𝜓) → 𝜑) |
| 2 | 1 | imim2i 12 |
. . . . 5
⊢ ((𝑗 ≤ 𝑘 → (𝜑 ∧ 𝜓)) → (𝑗 ≤ 𝑘 → 𝜑)) |
| 3 | 2 | ralimi 2560 |
. . . 4
⊢
(∀𝑘 ∈
𝐴 (𝑗 ≤ 𝑘 → (𝜑 ∧ 𝜓)) → ∀𝑘 ∈ 𝐴 (𝑗 ≤ 𝑘 → 𝜑)) |
| 4 | 3 | reximi 2594 |
. . 3
⊢
(∃𝑗 ∈
ℝ ∀𝑘 ∈
𝐴 (𝑗 ≤ 𝑘 → (𝜑 ∧ 𝜓)) → ∃𝑗 ∈ ℝ ∀𝑘 ∈ 𝐴 (𝑗 ≤ 𝑘 → 𝜑)) |
| 5 | | simpr 110 |
. . . . . 6
⊢ ((𝜑 ∧ 𝜓) → 𝜓) |
| 6 | 5 | imim2i 12 |
. . . . 5
⊢ ((𝑗 ≤ 𝑘 → (𝜑 ∧ 𝜓)) → (𝑗 ≤ 𝑘 → 𝜓)) |
| 7 | 6 | ralimi 2560 |
. . . 4
⊢
(∀𝑘 ∈
𝐴 (𝑗 ≤ 𝑘 → (𝜑 ∧ 𝜓)) → ∀𝑘 ∈ 𝐴 (𝑗 ≤ 𝑘 → 𝜓)) |
| 8 | 7 | reximi 2594 |
. . 3
⊢
(∃𝑗 ∈
ℝ ∀𝑘 ∈
𝐴 (𝑗 ≤ 𝑘 → (𝜑 ∧ 𝜓)) → ∃𝑗 ∈ ℝ ∀𝑘 ∈ 𝐴 (𝑗 ≤ 𝑘 → 𝜓)) |
| 9 | 4, 8 | jca 306 |
. 2
⊢
(∃𝑗 ∈
ℝ ∀𝑘 ∈
𝐴 (𝑗 ≤ 𝑘 → (𝜑 ∧ 𝜓)) → (∃𝑗 ∈ ℝ ∀𝑘 ∈ 𝐴 (𝑗 ≤ 𝑘 → 𝜑) ∧ ∃𝑗 ∈ ℝ ∀𝑘 ∈ 𝐴 (𝑗 ≤ 𝑘 → 𝜓))) |
| 10 | | breq1 4036 |
. . . . . . . 8
⊢ (𝑗 = 𝑥 → (𝑗 ≤ 𝑘 ↔ 𝑥 ≤ 𝑘)) |
| 11 | 10 | imbi1d 231 |
. . . . . . 7
⊢ (𝑗 = 𝑥 → ((𝑗 ≤ 𝑘 → 𝜑) ↔ (𝑥 ≤ 𝑘 → 𝜑))) |
| 12 | 11 | ralbidv 2497 |
. . . . . 6
⊢ (𝑗 = 𝑥 → (∀𝑘 ∈ 𝐴 (𝑗 ≤ 𝑘 → 𝜑) ↔ ∀𝑘 ∈ 𝐴 (𝑥 ≤ 𝑘 → 𝜑))) |
| 13 | 12 | cbvrexv 2730 |
. . . . 5
⊢
(∃𝑗 ∈
ℝ ∀𝑘 ∈
𝐴 (𝑗 ≤ 𝑘 → 𝜑) ↔ ∃𝑥 ∈ ℝ ∀𝑘 ∈ 𝐴 (𝑥 ≤ 𝑘 → 𝜑)) |
| 14 | | breq1 4036 |
. . . . . . . 8
⊢ (𝑗 = 𝑦 → (𝑗 ≤ 𝑘 ↔ 𝑦 ≤ 𝑘)) |
| 15 | 14 | imbi1d 231 |
. . . . . . 7
⊢ (𝑗 = 𝑦 → ((𝑗 ≤ 𝑘 → 𝜓) ↔ (𝑦 ≤ 𝑘 → 𝜓))) |
| 16 | 15 | ralbidv 2497 |
. . . . . 6
⊢ (𝑗 = 𝑦 → (∀𝑘 ∈ 𝐴 (𝑗 ≤ 𝑘 → 𝜓) ↔ ∀𝑘 ∈ 𝐴 (𝑦 ≤ 𝑘 → 𝜓))) |
| 17 | 16 | cbvrexv 2730 |
. . . . 5
⊢
(∃𝑗 ∈
ℝ ∀𝑘 ∈
𝐴 (𝑗 ≤ 𝑘 → 𝜓) ↔ ∃𝑦 ∈ ℝ ∀𝑘 ∈ 𝐴 (𝑦 ≤ 𝑘 → 𝜓)) |
| 18 | 13, 17 | anbi12i 460 |
. . . 4
⊢
((∃𝑗 ∈
ℝ ∀𝑘 ∈
𝐴 (𝑗 ≤ 𝑘 → 𝜑) ∧ ∃𝑗 ∈ ℝ ∀𝑘 ∈ 𝐴 (𝑗 ≤ 𝑘 → 𝜓)) ↔ (∃𝑥 ∈ ℝ ∀𝑘 ∈ 𝐴 (𝑥 ≤ 𝑘 → 𝜑) ∧ ∃𝑦 ∈ ℝ ∀𝑘 ∈ 𝐴 (𝑦 ≤ 𝑘 → 𝜓))) |
| 19 | | reeanv 2667 |
. . . 4
⊢
(∃𝑥 ∈
ℝ ∃𝑦 ∈
ℝ (∀𝑘 ∈
𝐴 (𝑥 ≤ 𝑘 → 𝜑) ∧ ∀𝑘 ∈ 𝐴 (𝑦 ≤ 𝑘 → 𝜓)) ↔ (∃𝑥 ∈ ℝ ∀𝑘 ∈ 𝐴 (𝑥 ≤ 𝑘 → 𝜑) ∧ ∃𝑦 ∈ ℝ ∀𝑘 ∈ 𝐴 (𝑦 ≤ 𝑘 → 𝜓))) |
| 20 | 18, 19 | bitr4i 187 |
. . 3
⊢
((∃𝑗 ∈
ℝ ∀𝑘 ∈
𝐴 (𝑗 ≤ 𝑘 → 𝜑) ∧ ∃𝑗 ∈ ℝ ∀𝑘 ∈ 𝐴 (𝑗 ≤ 𝑘 → 𝜓)) ↔ ∃𝑥 ∈ ℝ ∃𝑦 ∈ ℝ (∀𝑘 ∈ 𝐴 (𝑥 ≤ 𝑘 → 𝜑) ∧ ∀𝑘 ∈ 𝐴 (𝑦 ≤ 𝑘 → 𝜓))) |
| 21 | | maxcl 11375 |
. . . . . 6
⊢ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) →
sup({𝑥, 𝑦}, ℝ, < ) ∈
ℝ) |
| 22 | 21 | adantl 277 |
. . . . 5
⊢ ((𝐴 ⊆ ℝ ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) →
sup({𝑥, 𝑦}, ℝ, < ) ∈
ℝ) |
| 23 | | r19.26 2623 |
. . . . . 6
⊢
(∀𝑘 ∈
𝐴 ((𝑥 ≤ 𝑘 → 𝜑) ∧ (𝑦 ≤ 𝑘 → 𝜓)) ↔ (∀𝑘 ∈ 𝐴 (𝑥 ≤ 𝑘 → 𝜑) ∧ ∀𝑘 ∈ 𝐴 (𝑦 ≤ 𝑘 → 𝜓))) |
| 24 | | anim12 344 |
. . . . . . . 8
⊢ (((𝑥 ≤ 𝑘 → 𝜑) ∧ (𝑦 ≤ 𝑘 → 𝜓)) → ((𝑥 ≤ 𝑘 ∧ 𝑦 ≤ 𝑘) → (𝜑 ∧ 𝜓))) |
| 25 | | simplrl 535 |
. . . . . . . . . 10
⊢ (((𝐴 ⊆ ℝ ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) ∧ 𝑘 ∈ 𝐴) → 𝑥 ∈ ℝ) |
| 26 | | simplrr 536 |
. . . . . . . . . 10
⊢ (((𝐴 ⊆ ℝ ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) ∧ 𝑘 ∈ 𝐴) → 𝑦 ∈ ℝ) |
| 27 | | simpl 109 |
. . . . . . . . . . 11
⊢ ((𝐴 ⊆ ℝ ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) → 𝐴 ⊆
ℝ) |
| 28 | 27 | sselda 3183 |
. . . . . . . . . 10
⊢ (((𝐴 ⊆ ℝ ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) ∧ 𝑘 ∈ 𝐴) → 𝑘 ∈ ℝ) |
| 29 | | maxleastb 11379 |
. . . . . . . . . 10
⊢ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ∧ 𝑘 ∈ ℝ) →
(sup({𝑥, 𝑦}, ℝ, < ) ≤ 𝑘 ↔ (𝑥 ≤ 𝑘 ∧ 𝑦 ≤ 𝑘))) |
| 30 | 25, 26, 28, 29 | syl3anc 1249 |
. . . . . . . . 9
⊢ (((𝐴 ⊆ ℝ ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) ∧ 𝑘 ∈ 𝐴) → (sup({𝑥, 𝑦}, ℝ, < ) ≤ 𝑘 ↔ (𝑥 ≤ 𝑘 ∧ 𝑦 ≤ 𝑘))) |
| 31 | 30 | imbi1d 231 |
. . . . . . . 8
⊢ (((𝐴 ⊆ ℝ ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) ∧ 𝑘 ∈ 𝐴) → ((sup({𝑥, 𝑦}, ℝ, < ) ≤ 𝑘 → (𝜑 ∧ 𝜓)) ↔ ((𝑥 ≤ 𝑘 ∧ 𝑦 ≤ 𝑘) → (𝜑 ∧ 𝜓)))) |
| 32 | 24, 31 | imbitrrid 156 |
. . . . . . 7
⊢ (((𝐴 ⊆ ℝ ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) ∧ 𝑘 ∈ 𝐴) → (((𝑥 ≤ 𝑘 → 𝜑) ∧ (𝑦 ≤ 𝑘 → 𝜓)) → (sup({𝑥, 𝑦}, ℝ, < ) ≤ 𝑘 → (𝜑 ∧ 𝜓)))) |
| 33 | 32 | ralimdva 2564 |
. . . . . 6
⊢ ((𝐴 ⊆ ℝ ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) →
(∀𝑘 ∈ 𝐴 ((𝑥 ≤ 𝑘 → 𝜑) ∧ (𝑦 ≤ 𝑘 → 𝜓)) → ∀𝑘 ∈ 𝐴 (sup({𝑥, 𝑦}, ℝ, < ) ≤ 𝑘 → (𝜑 ∧ 𝜓)))) |
| 34 | 23, 33 | biimtrrid 153 |
. . . . 5
⊢ ((𝐴 ⊆ ℝ ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) →
((∀𝑘 ∈ 𝐴 (𝑥 ≤ 𝑘 → 𝜑) ∧ ∀𝑘 ∈ 𝐴 (𝑦 ≤ 𝑘 → 𝜓)) → ∀𝑘 ∈ 𝐴 (sup({𝑥, 𝑦}, ℝ, < ) ≤ 𝑘 → (𝜑 ∧ 𝜓)))) |
| 35 | | breq1 4036 |
. . . . . . . 8
⊢ (𝑗 = sup({𝑥, 𝑦}, ℝ, < ) → (𝑗 ≤ 𝑘 ↔ sup({𝑥, 𝑦}, ℝ, < ) ≤ 𝑘)) |
| 36 | 35 | imbi1d 231 |
. . . . . . 7
⊢ (𝑗 = sup({𝑥, 𝑦}, ℝ, < ) → ((𝑗 ≤ 𝑘 → (𝜑 ∧ 𝜓)) ↔ (sup({𝑥, 𝑦}, ℝ, < ) ≤ 𝑘 → (𝜑 ∧ 𝜓)))) |
| 37 | 36 | ralbidv 2497 |
. . . . . 6
⊢ (𝑗 = sup({𝑥, 𝑦}, ℝ, < ) → (∀𝑘 ∈ 𝐴 (𝑗 ≤ 𝑘 → (𝜑 ∧ 𝜓)) ↔ ∀𝑘 ∈ 𝐴 (sup({𝑥, 𝑦}, ℝ, < ) ≤ 𝑘 → (𝜑 ∧ 𝜓)))) |
| 38 | 37 | rspcev 2868 |
. . . . 5
⊢
((sup({𝑥, 𝑦}, ℝ, < ) ∈
ℝ ∧ ∀𝑘
∈ 𝐴 (sup({𝑥, 𝑦}, ℝ, < ) ≤ 𝑘 → (𝜑 ∧ 𝜓))) → ∃𝑗 ∈ ℝ ∀𝑘 ∈ 𝐴 (𝑗 ≤ 𝑘 → (𝜑 ∧ 𝜓))) |
| 39 | 22, 34, 38 | syl6an 1445 |
. . . 4
⊢ ((𝐴 ⊆ ℝ ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) →
((∀𝑘 ∈ 𝐴 (𝑥 ≤ 𝑘 → 𝜑) ∧ ∀𝑘 ∈ 𝐴 (𝑦 ≤ 𝑘 → 𝜓)) → ∃𝑗 ∈ ℝ ∀𝑘 ∈ 𝐴 (𝑗 ≤ 𝑘 → (𝜑 ∧ 𝜓)))) |
| 40 | 39 | rexlimdvva 2622 |
. . 3
⊢ (𝐴 ⊆ ℝ →
(∃𝑥 ∈ ℝ
∃𝑦 ∈ ℝ
(∀𝑘 ∈ 𝐴 (𝑥 ≤ 𝑘 → 𝜑) ∧ ∀𝑘 ∈ 𝐴 (𝑦 ≤ 𝑘 → 𝜓)) → ∃𝑗 ∈ ℝ ∀𝑘 ∈ 𝐴 (𝑗 ≤ 𝑘 → (𝜑 ∧ 𝜓)))) |
| 41 | 20, 40 | biimtrid 152 |
. 2
⊢ (𝐴 ⊆ ℝ →
((∃𝑗 ∈ ℝ
∀𝑘 ∈ 𝐴 (𝑗 ≤ 𝑘 → 𝜑) ∧ ∃𝑗 ∈ ℝ ∀𝑘 ∈ 𝐴 (𝑗 ≤ 𝑘 → 𝜓)) → ∃𝑗 ∈ ℝ ∀𝑘 ∈ 𝐴 (𝑗 ≤ 𝑘 → (𝜑 ∧ 𝜓)))) |
| 42 | 9, 41 | impbid2 143 |
1
⊢ (𝐴 ⊆ ℝ →
(∃𝑗 ∈ ℝ
∀𝑘 ∈ 𝐴 (𝑗 ≤ 𝑘 → (𝜑 ∧ 𝜓)) ↔ (∃𝑗 ∈ ℝ ∀𝑘 ∈ 𝐴 (𝑗 ≤ 𝑘 → 𝜑) ∧ ∃𝑗 ∈ ℝ ∀𝑘 ∈ 𝐴 (𝑗 ≤ 𝑘 → 𝜓)))) |