Proof of Theorem reusv3i
| Step | Hyp | Ref
 | Expression | 
| 1 |   | reusv3.1 | 
. . . . . 6
⊢ (𝑦 = 𝑧 → (𝜑 ↔ 𝜓)) | 
| 2 |   | reusv3.2 | 
. . . . . . 7
⊢ (𝑦 = 𝑧 → 𝐶 = 𝐷) | 
| 3 | 2 | eqeq2d 2208 | 
. . . . . 6
⊢ (𝑦 = 𝑧 → (𝑥 = 𝐶 ↔ 𝑥 = 𝐷)) | 
| 4 | 1, 3 | imbi12d 234 | 
. . . . 5
⊢ (𝑦 = 𝑧 → ((𝜑 → 𝑥 = 𝐶) ↔ (𝜓 → 𝑥 = 𝐷))) | 
| 5 | 4 | cbvralv 2729 | 
. . . 4
⊢
(∀𝑦 ∈
𝐵 (𝜑 → 𝑥 = 𝐶) ↔ ∀𝑧 ∈ 𝐵 (𝜓 → 𝑥 = 𝐷)) | 
| 6 | 5 | biimpi 120 | 
. . 3
⊢
(∀𝑦 ∈
𝐵 (𝜑 → 𝑥 = 𝐶) → ∀𝑧 ∈ 𝐵 (𝜓 → 𝑥 = 𝐷)) | 
| 7 |   | raaanv 3557 | 
. . . 4
⊢
(∀𝑦 ∈
𝐵 ∀𝑧 ∈ 𝐵 ((𝜑 → 𝑥 = 𝐶) ∧ (𝜓 → 𝑥 = 𝐷)) ↔ (∀𝑦 ∈ 𝐵 (𝜑 → 𝑥 = 𝐶) ∧ ∀𝑧 ∈ 𝐵 (𝜓 → 𝑥 = 𝐷))) | 
| 8 |   | anim12 344 | 
. . . . . . 7
⊢ (((𝜑 → 𝑥 = 𝐶) ∧ (𝜓 → 𝑥 = 𝐷)) → ((𝜑 ∧ 𝜓) → (𝑥 = 𝐶 ∧ 𝑥 = 𝐷))) | 
| 9 |   | eqtr2 2215 | 
. . . . . . 7
⊢ ((𝑥 = 𝐶 ∧ 𝑥 = 𝐷) → 𝐶 = 𝐷) | 
| 10 | 8, 9 | syl6 33 | 
. . . . . 6
⊢ (((𝜑 → 𝑥 = 𝐶) ∧ (𝜓 → 𝑥 = 𝐷)) → ((𝜑 ∧ 𝜓) → 𝐶 = 𝐷)) | 
| 11 | 10 | ralimi 2560 | 
. . . . 5
⊢
(∀𝑧 ∈
𝐵 ((𝜑 → 𝑥 = 𝐶) ∧ (𝜓 → 𝑥 = 𝐷)) → ∀𝑧 ∈ 𝐵 ((𝜑 ∧ 𝜓) → 𝐶 = 𝐷)) | 
| 12 | 11 | ralimi 2560 | 
. . . 4
⊢
(∀𝑦 ∈
𝐵 ∀𝑧 ∈ 𝐵 ((𝜑 → 𝑥 = 𝐶) ∧ (𝜓 → 𝑥 = 𝐷)) → ∀𝑦 ∈ 𝐵 ∀𝑧 ∈ 𝐵 ((𝜑 ∧ 𝜓) → 𝐶 = 𝐷)) | 
| 13 | 7, 12 | sylbir 135 | 
. . 3
⊢
((∀𝑦 ∈
𝐵 (𝜑 → 𝑥 = 𝐶) ∧ ∀𝑧 ∈ 𝐵 (𝜓 → 𝑥 = 𝐷)) → ∀𝑦 ∈ 𝐵 ∀𝑧 ∈ 𝐵 ((𝜑 ∧ 𝜓) → 𝐶 = 𝐷)) | 
| 14 | 6, 13 | mpdan 421 | 
. 2
⊢
(∀𝑦 ∈
𝐵 (𝜑 → 𝑥 = 𝐶) → ∀𝑦 ∈ 𝐵 ∀𝑧 ∈ 𝐵 ((𝜑 ∧ 𝜓) → 𝐶 = 𝐷)) | 
| 15 | 14 | rexlimivw 2610 | 
1
⊢
(∃𝑥 ∈
𝐴 ∀𝑦 ∈ 𝐵 (𝜑 → 𝑥 = 𝐶) → ∀𝑦 ∈ 𝐵 ∀𝑧 ∈ 𝐵 ((𝜑 ∧ 𝜓) → 𝐶 = 𝐷)) |