ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  reusv3i GIF version

Theorem reusv3i 4272
Description: Two ways of expressing existential uniqueness via an indirect equality. (Contributed by NM, 23-Dec-2012.)
Hypotheses
Ref Expression
reusv3.1 (𝑦 = 𝑧 → (𝜑𝜓))
reusv3.2 (𝑦 = 𝑧𝐶 = 𝐷)
Assertion
Ref Expression
reusv3i (∃𝑥𝐴𝑦𝐵 (𝜑𝑥 = 𝐶) → ∀𝑦𝐵𝑧𝐵 ((𝜑𝜓) → 𝐶 = 𝐷))
Distinct variable groups:   𝑥,𝑦,𝑧,𝐵   𝑥,𝐶,𝑧   𝑥,𝐷,𝑦   𝜑,𝑥,𝑧   𝜓,𝑥,𝑦
Allowed substitution hints:   𝜑(𝑦)   𝜓(𝑧)   𝐴(𝑥,𝑦,𝑧)   𝐶(𝑦)   𝐷(𝑧)

Proof of Theorem reusv3i
StepHypRef Expression
1 reusv3.1 . . . . . 6 (𝑦 = 𝑧 → (𝜑𝜓))
2 reusv3.2 . . . . . . 7 (𝑦 = 𝑧𝐶 = 𝐷)
32eqeq2d 2099 . . . . . 6 (𝑦 = 𝑧 → (𝑥 = 𝐶𝑥 = 𝐷))
41, 3imbi12d 232 . . . . 5 (𝑦 = 𝑧 → ((𝜑𝑥 = 𝐶) ↔ (𝜓𝑥 = 𝐷)))
54cbvralv 2590 . . . 4 (∀𝑦𝐵 (𝜑𝑥 = 𝐶) ↔ ∀𝑧𝐵 (𝜓𝑥 = 𝐷))
65biimpi 118 . . 3 (∀𝑦𝐵 (𝜑𝑥 = 𝐶) → ∀𝑧𝐵 (𝜓𝑥 = 𝐷))
7 raaanv 3385 . . . 4 (∀𝑦𝐵𝑧𝐵 ((𝜑𝑥 = 𝐶) ∧ (𝜓𝑥 = 𝐷)) ↔ (∀𝑦𝐵 (𝜑𝑥 = 𝐶) ∧ ∀𝑧𝐵 (𝜓𝑥 = 𝐷)))
8 prth 336 . . . . . . 7 (((𝜑𝑥 = 𝐶) ∧ (𝜓𝑥 = 𝐷)) → ((𝜑𝜓) → (𝑥 = 𝐶𝑥 = 𝐷)))
9 eqtr2 2106 . . . . . . 7 ((𝑥 = 𝐶𝑥 = 𝐷) → 𝐶 = 𝐷)
108, 9syl6 33 . . . . . 6 (((𝜑𝑥 = 𝐶) ∧ (𝜓𝑥 = 𝐷)) → ((𝜑𝜓) → 𝐶 = 𝐷))
1110ralimi 2438 . . . . 5 (∀𝑧𝐵 ((𝜑𝑥 = 𝐶) ∧ (𝜓𝑥 = 𝐷)) → ∀𝑧𝐵 ((𝜑𝜓) → 𝐶 = 𝐷))
1211ralimi 2438 . . . 4 (∀𝑦𝐵𝑧𝐵 ((𝜑𝑥 = 𝐶) ∧ (𝜓𝑥 = 𝐷)) → ∀𝑦𝐵𝑧𝐵 ((𝜑𝜓) → 𝐶 = 𝐷))
137, 12sylbir 133 . . 3 ((∀𝑦𝐵 (𝜑𝑥 = 𝐶) ∧ ∀𝑧𝐵 (𝜓𝑥 = 𝐷)) → ∀𝑦𝐵𝑧𝐵 ((𝜑𝜓) → 𝐶 = 𝐷))
146, 13mpdan 412 . 2 (∀𝑦𝐵 (𝜑𝑥 = 𝐶) → ∀𝑦𝐵𝑧𝐵 ((𝜑𝜓) → 𝐶 = 𝐷))
1514rexlimivw 2485 1 (∃𝑥𝐴𝑦𝐵 (𝜑𝑥 = 𝐶) → ∀𝑦𝐵𝑧𝐵 ((𝜑𝜓) → 𝐶 = 𝐷))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 102  wb 103   = wceq 1289  wral 2359  wrex 2360
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 665  ax-5 1381  ax-7 1382  ax-gen 1383  ax-ie1 1427  ax-ie2 1428  ax-8 1440  ax-10 1441  ax-11 1442  ax-i12 1443  ax-bndl 1444  ax-4 1445  ax-17 1464  ax-i9 1468  ax-ial 1472  ax-i5r 1473  ax-ext 2070
This theorem depends on definitions:  df-bi 115  df-tru 1292  df-nf 1395  df-sb 1693  df-cleq 2081  df-clel 2084  df-nfc 2217  df-ral 2364  df-rex 2365
This theorem is referenced by:  reusv3  4273
  Copyright terms: Public domain W3C validator